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THE WALSH TRANSFORM OF WAVELET TYPE SYSTEMS:
DIVERGENCE ALMOST EVERYWHERE

ANNA KAMONT & BARBARA WOLNIK

t The main result of the paper is the following: for the Walsh transform of a wavelet

type Lem on [0,1], there is an integrable function whose Fourier expansion with respect to
the nansformed system is divergent almost everywhere on [0,1]. This is an extension of the
result by K. 8. Kazarian and A. 8. Sargsian [9] for the bounded Ciesielski system, i.e. the Walsh
transform of the Franklin system.
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1. Introduction

In 1975 S.V. Bockariev [1] has proved that for any uniformly bounded ONS
{fn}new on [0,1] there is a function f € L;(0,1) whose Fourier series in the
system {fn}nen diverges unboundedly at every point of a set E C [0,1] of pos-
itive measure. In general, it is not possible to assert the existence of a function
f € L1(0,1) whose Fourier series in the system {f,}nen diverges a.e. on 0,1} ~
this follows from K.S. Kazarian [8], where he has proved that for any set G C [0,1],
0 < |G| < 1, there is a uniformly bounded CONS {f,,}.en with the property that
for any function f € L,(0,1) the Fourier series of f in {f,}nen converges to f
a.e.on G.

However, for certain uniformly bounded ONS one can find a function whose
Fourier series diverges unboundedly a.e. For the trigonometric system, the exis-
tence of such a function is a classical result by A.N. Kolmogorov [11]. An analogous
result for Walsh system has been obtained by E.M. Stein [17] (see also [16]). More-
over, I(.S. IKazarian and A.S. Sargsian [9] have proved the same for the bounded
Ciesielski system — here, by the bounded Ciesielski system we mean the bounded
system of polygonals which arises from Franklin system in the same way as Walsh
system arises from Haar system (this system was introduced by Ciesielski in [4]).
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In this paper we extend the result of K.S. Kazarian and A.S. Sargsian to
the Walsh transform of wavelet type systems on [0 1}. By a biorthogonal wavelet
type system on [0,1] we mean a system {ip, dn}so _n of functions in Lo(0, 1),
biorthogonal with respect to the scalar product in L5(0,1), where N > —1 is
given, and such that for any = € [0, 1]

[ 1n(@)], 18 (2)] < -Ngnglt,
{125 4 x ()], f¢2:+k($)| 285(2|a — =), 720, 1<k,

—
—
R

where S : [0,00) — R is a nonincreasing function satisfing some kind of integral
condition. In this paper we assume that

0
/ log(1l + ) S(x)dx < +00. (2)
0
In our main result — Theﬂrw.. 1.1 below -~ we assume condition (2), the linear
density of {1/1 o2 _n in L3(0,1) and the Riesz system property in L2(0,1) for
{¥n} _n. These assumptions guarantee in particular that for any f € L4(0,1)

{P;f}jen converges to f in L; — norm, (3)

where P; denote the partial sum operators on L; (0, 1), ie. ij(w)zzij:l(f, On)n .
Indeed, one can show for the kernels K (x y) 22;1 dn(x)Yn(y) for almost all

11

x € [0,1] there is a set I, C [0,1] with |I;] = 1 such that for y € I,

|Kj(z,4)] < CPR(¥|z ~yl), where R(t)=» 2'S(2*"'max(t, 1)),

i=0

and condition (2) implies that [° R(t)dt < oo, so consequently |P;||; < C for
all 7 > 0, and the system {y,}52 _ is a basis in L;(0,1) (more details can be
found in [18] or [10], which contains an earlier analogous result for wavelets on
R). Moreover, under these assumptions it follows that {¢,}°2 _, is also a Riesz
system in Lz(O 1).

Let us note that if we know (3) in advance, then it is enough to assume

[o o]
/ S(z)dz < +oo, (4)
0
and moreover, the assumption on linear demsity of {¥,}3 5 in L2(0,1) is
not needed (however, then we need to assume the Riesz system property for
{¢n}n:—N )

'The current paper should be considered as a complement to B. Wolnik {19},
where the convergence a.e. of Fourier series with respect to Walsh transform of
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wavelet type systems is studied. The main results of [19] are the convergence
a.e. of the Fourier series with respect to the Walsh transforms of wavelet type

vatama far f C T..(0 1) Mmoo~ 1 nd (Cagarn siitmmahility Af qrie avnanasinnag for
D_ynucjun UL T Lip Uy L), P~ 1, ang Lesare sum ALICA/IIIVY VUL DML VAP ALIsIVLLG UL
feLi6,1).

Let us mention some examples of systems satisfying assumptions of Theorem
1.1, other than Haar system or the Franklin system. This list includes e.g. both
orthonormal and biorthogonal spline systems, see e.g. [5], [6], Carleson’s system
(see [3] for the construction, and [13] for the estimates for the biorthogonal system),
the orthogonal system of trigonometric conjugates to the Franklin functions (see
[2], and [18] for estimates (1)), various adaptations of Daubechies’ wavelets to
the interval [0,1] (see e.g. [12]) or biorthogonal systems consisting of rational
functions of uniformly bounded degrees [14].

We consider uniformly bounded systems which arise from {¢n, #,}52 _ 5 in
the same way as the Walsh functions are obtained from the Haar functions.

. R | 1.1 e A
Let i)(nJ‘nEN and 1'Unj’neN denote the Haar and Walsh functions, respec-

tively. For any j 2 0 we define the matrix
; j 20-1 ;
A(k]z = (Was 4, X2i41) = 2_%101: (W) , k1=1,2,...,2% (5)

which is orthogonal and symmetric (see [4] or [16]).
Now, the Walsh transform of the wavelet type system {1n, ¢, }2 _ 5 is de-
fined by the formulae

wﬁ’lzapn, ¢¢z:¢" for n=-N,...,1
andfor j >0, 1<k
27 ) 27 ]
W@ = > AN s 1(@), ¢ (@) =D AT boi i (a).
=1 =1
Recall that if {t,}nen is Franklin system then {42},en is Ciesielski bounded

system. One should remark that some questions concerning the Walsh transforms
of spline systems of higher order have been first discussed in {15].

Let us recall that the series ), ; a, is said to diverge unboundedly if

N
limsup | Z an| = 00
N—ooco 7

The main result of this paper is the following:
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Theorem 1.1. Let the biorthogonal wavelet type system {¥n, dn}2 N satisty
conditions (1) and (2). If {pn}2_ 5 is both linearly dense and a Riesz system in
L(0,1), then there is a function f € L,(0,1) whose Fourier series in the system
{wb}% _n unboundedly diverges a.e. on [0, 1}.

Let us recall that by a Riesz system in Lo (0, 1) we mean a system of
functions {z,}nen such that for any sequence of coefficients {an}nen we have
1
1 EY
(Coena?)? <
n

dent of the coeffici

"
2

1.1. Idea of the proof of Theorem 1.1

In [9] K.S.Kazarian and A.S.Sargsian have proved that there is a function from
L1(0,1) whose Fourier series in Ciesielski bounded system diverges a.e. on [0, 1]}.
One of the crucial steps in their proof is the following lemma concerning Franklin
system:

Lemma 1.2. Let {f,}nen be the Franklin system. There is a constant o« > 0
such that for all m € N and z € [0,1)

2m+ 1

Z 2z 2 a- 2™

n=2m41

Their proof of this lemma depends heavily on the concrete formulae for
Franklin functions and is rather technical.

In general case we do not have such precise informations on {¥n, dn}2 N
However, in the general situation, we can prove weaker version of Lemma 1.2
(see Lemma 2.3 below) which is also sufficient for the proof of Theorem 1.1. The
method we use is simpler and transparent.

Once we get Lemma 2.3, the rest of the proof is the same as in (9] but we
sketch it for the reader’s convenience.

2. Proof of Theorem 1.1

2.1. Auxiliary results

We introduce some notation. By I we will denote the interval [k—-—l, :};] and
for n € N we define n % I;; as the set {z €[0,1] : |z — %l < 57}- The ball

B(o, k) is defined similarly, i.e. B(zo,h) = {z€[0,1]: |z — xo| < h}.

We start from an easy fact concerning systems {9l gb1e N

Lemma 2.1. Let {1, ¢} _ 5 satisfy conditions (1), (2). Then {¥8,ph12
is a uniformly bounded biorthogonal system.

If {¢n}2 _n, {$5}52 _n are Riesz systems in L,(0,1), then {#2} N,
{¥8} _n are also Riesz systems in L»(0,1).
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Proof. Using (5), the fact that |w,(z)| = 1 and the properties of S we get

N 2J . . i H
lwwk(m)—lZz Fu (- Jﬂ)pw(mn 1> 2 b2bsie - )<
=1

The biorthogonality of {¢2,#5}%2. 5 and the property of being a Riesz system
follows by the orthogonality of the Walsh matrix. [ |

The next two results concern the systems {ym, pn}oo _ 5.

Lemma 2.2. Let {1, $n}>> _ 5 satisfy conditions (1), (2). There are constants
o >0 and v > 0 such that for each 0 < h < é there exists j, € N such that for
any xo € (0,1} and 7 > 7

[{z € B(zo,h) : D ¥, k(@) > 027} > 7| B(zo, h)|.

Proof. Conditions (1) and (2) imply that there is a constant A > 0 such that
lénlla, lpnlla € A, n = —N. In turn, this and the biorthogonality condition gives

1
1= (4n, ¢n) < [[Vnllzlignllz < Allnllz and = <flopulls < A

Let jo be any fixed natural number for which we have

i 1
S?(x)dz < —
o (z)dz < =, (6)
then .
2. (x)dz > —.
Lo Pust@ee > 57
If a= 8.2;1-014 and v = m@;{ then for Djx = {z € 270 x I} : wgbrk(:c) P
> Q_Jl we can write
> } can write
1

Vi i (T)dT = /D Vi (z)de + / ¥y x()dr <
3.k

24 S |,
270415 29015, k\Dj i

, ) . . 1
< |D; k|27 5%(0) + |27 * I ka2’ < |D;x|27S%(0) + Vi

Thus )
1Dkl 2 —rme— = 29[270 x I |
Wikl > yoryara = 212" * ikl
Now we fix h € (0,1) and z¢ € [0,1]. Let jy be such that h > 2 .2/0=0n
where jo is as in (6). Now let j > j,. We divide the interval [0, 1] into 2/—%~1
equal parts. Each interval of this partition has the length 270+1=7 and is equal to
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the set 20 x I; . for some k. Since h > 22779 > |25  I; |, so there is s € N
such that the set B(xo, k) contains s disjoint intervals of the form 27 & I; ;. and
can be covered by at most s + 2 such disjoint intervals. Thus

27
9 )
[{z € B(xo, k) : E ha; 1 (T) Z a2’} >
k=1
8
>3 Ho €2 s L, s g (0) > a2i}| =
i=1
8 8
_( 1 | ( _lojo |~ s B N IRsYa IRY —
=D Wikl 2 ) _ 272 x x| 2 S+227|D(:vo,h)| Z v|B(zo, h)| ]

Using the above lemma we get an analogue of Lemma 1.2:

Lemma 2.3. Let {t)n, dn}32 5 satisfy the decay conditions (1), (2). There is

a > 0 such that for a.e. z € [0,1] the inequality

by

Lt 2 N . ;\‘;i PN
D ¥ (@) 2 a2 (7)
k=1

holds for infinitely many j.
Proof. Let o be such as in Lemma 2.2. Denote:
27

Aj={ze€[0,1]: Z¢§:‘+k($) >a2’}, jEN
k=1

By = UAj, mEN
jzm

oo
H = () B, =limsup 4;.
m=1

j—co

We need to show that |[H| =1.
From the fact that Iy € L1(0,1) we have

i 1 $u+h
lim 5 o 15 (z)dr = 1n(z0) (8)

for each Lebesgue point of 1y, and consequently - for almost every Io € (0,1).
Let xo be any Lebesgue point of 1. By Lemma 2.2 for any h € (0,20 A (1 —x0))
there is j, € N such that for 57 > j,

|4; N B(wmo, k)| 2 v|B(zo, k)| > vh,
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which implies that for all m > 1

I~ AR
| Dm (1 D\Z0, it)] = Yit.

The last statment is equivalent to

1 zo+h

1
—_ > -
T - 1p,. (x)dz > 27

for all m € N. Since 1p,, \, 1g, we have

1 zo+h

1 .’B(]+h
— dr = — 1 =
oh /xn_h la(@de =55 |, A, 15 (@)de

m-— 00

1 [roth 1
= lim — > =,
i o [ 1. (@e > g

By (8), this means that 15(xo) > 2 > 0, and consequently 1g(xg) = 1. Therefore
|H| =1. [ |

2.2. Final part of the proof of Theorem 1.1

Now we are ready to complete the proof of the main theorem. As we have said
at the begining, this part repeats the arguments of Kazarian-Sargsian’s paper [9],
but we present it for the sake of completeness.

Proof of Theorem 1.1: Note that for each g € L1(0,1) and K > 0 we
have

oK+1 gF+1
Z (g, ¢n)¢n = Z (g: ¢Ez)¢£ﬂ
n=2K41 n=2K 41

thus from (3) we get

-
sup | Y (g.85)wili—0 as K — oo
m>K n=2% 41

Therefore, it is enough to show that for any £ > 0 there is a function
ge € L1(0,1) such that the Fourier series of g. is unboundedly divergent on a set

E. with |E;|>21—¢€.
Suppose that for some € > 0 and for any f € L;(0,1) the set

N :
{xel0,1]: lil{,nsup|Z(f, #2 )9l (z)| < oo}
—0C n==1

has measure at least €.
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Then it follows from Saks Theorem (see e.g. [7], p. 26) that there is a set
T C [0, 1] such that

N
(A) VYf € Lq(0,1) limsup| Z(f, )l (x)| < o aeon T,
N -

—o

(B) VYfeli(0,1)\F llmsuplZ(f #° )yl (x)| = oo a.e.on TC.

IV OO

where I is a subset of L1(0,1) of first category. What more, T| > ¢

Now, we refer to S.V. Bockariev [1]. In [1], he has proved that for any
uniformly bounded ONS on [0,1], there is an intergrable function whose Fouricr
series in this system diverges unboundedly on a set of positive measure. Analyzing
his proof, one finds that his argument can be applied also to a uniformly bounded
blorthogonal system {fn, qn} satisfying an additional condition that both {f,},
{gn} are Riesz systems. Thus, the following version of Bockariev’s result is true:

Theorem 2.4. Let {fn, gn}ncy bean uniform]y bounded biorthogonal system of
functions on m 11 S"ppose that lJn}nCN and IannCN are the Riesz by.SLelTlS

Let T be a set; of positive measure, and suppose that there is 3 > 0 such that for
a.e. £ €T and for every N € N the inequality

2N (p+1)

> fiz) = 2N (9)

n=2Np+1

holds for infinitely many p. Then there is f € L1(0,1) and a set of positive
measure T1 C T such that the series 3 °0°  (f, gn)fn(z) unboundedly diverges on
Ty .

(Morcover, for {f,, 9.} as in Theorem 2.4, it is not hard to prove the exis-
tence of set T' satisfying conditions of Theorem 2.4 - this can be donc by arguments
analogous to those used in ”] for a bounded orthonormal s system; therefore for any
uniformly bounded blorthogonal system {fn, gn}nen functions on [0, 1] such that
{fn}nen and {gn}newn are the Riesz systems there exists integrable function whose
Fourier series in {fp}nen is unboundedly divergent on a set of positive measure.)

It follows by Lemma 2.3 that there is « > 0 such that for ae. z € [0,1] and
for all N € N the inequality

(10)

1 The main change needed to treat the biorthogonal case is that one should analyse the
kernels Zk @i @ Yy instead of Zk Yk @ @i from the orthogonal case.
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holds for infinitely many p. Thus, the set 7' and the system {2, %}
satisfy the assumptions of Theorem 2.4, so we conclude that there is a function
Jo € L0, 1) such that the Fourier series of fo is unboundedly divergent on some
Ty C T with |[T31] > 0, which contradicts (A). [ |
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