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RESONANCE CURVES IN THE BOMBIERI-TWANIEC METHOD
MARTIN N. HUXLEY

Abstract: The construction of resonance curves in the author’s monograph ‘Area, Lattice
Points, and Exponential Sums’ is modified so that the resonance curves now have a differen-
tial equatlon a functorial mapping property, and better approxnnatlon properties.
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1. Introduction

The Bombieri-Iwaniec method is used to estimate the exponential sums § =
= %e(f(m)), where e(t) = exp27rit is the complex exponential function nor-
malised to have period 1, and the phase function f(z) is smooth but rapidly chang-
ing. Plots of the partlal sums of S show regions of apparently random walk, and
progressive spirals; Sir Michael Berry calls these spirals ‘curlicues’. The curlicues
occur around values of = at which f”(z) takes a rational value 2a/q with ¢ small.
In the Bombieri-Iwaniec method the curlicues are the major arcs (regions where
there is good Diophantine approximation), and the remaining regions are regarded
as made up of incomplete curlicues of large radius (minor arcs). Bombieri and
Iwaniec [1] were able to estimate the contribution of major arcs directly, and that

of minor arcs in mean Dlﬂ‘hth power, in the oparnn] case f-'(rr-\ — Tlngm The ex-

tension to an ‘arbitrary’ f(z) and subsequent 1mprovements by Huxley, Kolesnik
and Watt are detailed in the monograph [3]. The method raises number-theoretic
spacing problems, the second of which involves an action of the group SL(2, 7)
on numbers constructed from the derivatives of f(z).

Iwaniec and Mozzochi [9] adapted the method to the exponential sums which
arise in counting the number of integer lattice points below a smooth curve y =
= g(x). Major arcs occur around values of z at which ¢’(z) takes a rational
value a/g with g small. The rest of the range for z is divided into minor arcs,
each labelled by a rational value of ¢’(x) on the interval, with ¢ large. The
contributions of minor arcs are estimated in mean fourth power. Iwaniec and
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8 Martin N. Huxley

Mozzochi had g(x) = T/z, and the present author generalised the method to
‘arbitrary’ g(z).

In the mean fourth power argument, two different minor arcs are counted
only once if there is an affine map of the form

(Z) — (g i) (;) (modulo integers),

with the matrix in SL(2, Z), which superposes the corresponding arcs of the curve
= g(z) up to a certain accuracy. The author, perhaps unwisely, called this
phenomenon ‘resonance’. The number of resonant pairs of minor arcs has to be
estimated in order to complete the estimation of the original exponential sum.
This is the only point in the Bombieri-Iwaniec and Iwaniec-Mozzochi methods
where the actual form of the function f(z) or g(z) matters, apart from having to
exclude trivial exceptional functions like f(z) = z°, g(z) = z.
The natural method of counting would he to fix a/q, and ask how many

atrix acts on u/q by

a Aa+ Bq
- .
q Ca+ Dgq

This seems very difficult. Bombieri and Iwaniec fixed the matrix, and estimated
the number of rationals using only two of the four coincidence conditions necessary
for a resonance. The author [2] interpreted the other two conditions as: an integer
point lies close to a certain curve, the ‘resonance curve’. We remark at this point
that the shortened version of (2] given in chapter 15 of [3] is actually wrong because
the lemma corresponding to our Lemma 5.5 was omitted.

The Bombieri-Iwaniec method would reach essentially its final form if we
could prove that most resonance curves have no integer point close to them. In this
paper we give a precise construction of the resonance curve, involving a differential
equation like that for the polar dual of a plane curve, and we prove a ‘functorial
under inclusion’ property, which we use to obtain the relationship between integer
points and resonance curves to greater accuracy. The applications to exponential
sums, lattice points, and to the Riemann zeta function [4,5,6] will be published
separately.

We treat the Second Spacing Problem from the beginning, with simplifica-
tions in Lemmas 4.1 and 4.7, which were the key lemmas used by Huxley and
Watt in [7,8]. We do not use the results on rational points close to a curve from [2]
and (3 chapter 4]. In the new approach, Lemma 4.3, that coincidences give in-
teger points close to the resonance curve, is separated from its sharpened form
Lemma 5.2, that long coincidences give integer points closer to the resonance
curve. Section 5, on the correspondence between coincidences and integer points,
has been expanded from the accounts in [2] and [3], which were over-simplified.
Lemmas 5.4 and 5.5 should make matters clearer. The paragraph of proof corre-
sponding to Lemma 5.5 was omitted in error from [3 chapter 15].
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To sketch the functorial property, we note that the resonance curve depends
hoth on the matrix ( C B\ of SL(2,7) and on a ‘reference interval’ between
consecutive Farey fractlons e/ r < a/q < f/s. We represent the reference inter-
val by the matrix J; i of SL(2,7). Allowable subintervals correspond to

multiplying on the right by a matrix of SL(2, Z) with non-negative entries. The
resonance curve for the subinterval is mapped onto the resonance curve for the
whole interval, by an affine map modulo integers whose shift vector is close to
an integer vector, and whose matrix is the matrix used to construct the subin-
terval, but transposed, because the resonance curve lies in a dual vector space.
The difficult part is to show that the shift vector is close to an integer vector;
approximation theory wants to be linear, but the algebra is linear fractional. It is
not possible to make the shift vector zero without using the entire Taylor series
of f(z) or g(x) in the construction. However we only require f(z) to be class C*,
or g(z) to be class C2.

The precise conditions which we assume for the function f(z) are as follows.
We suppose that f(z) is obtained on scaling a fixed function F(z) by f (z) =

— TF'(fr/h/f\ which is four times continuously differentiable for 1 Lz < 2 and

its derwatlves satisfy:
IF" ()] < € (1.1)

for r =2,3,4,
|FT) (2)] > 1/Cy (1.2)

for r = 2,3, where C; is some positive constant. In some ranges we require extra
conditions, either (1.2) for r = 4, or

[F" () F*) () — 3F®(g)?| > 1/Cs (1.3)

for some positive constant C3 (the numbering of constants corresponds to Theo-
rems 1 and 3 of[ |). We also consider a family of functions f(z,y) = TF(z/M,y),
which are four times partially differentiable with respect to z, with Fy; and Fii;
non-zero twice differentiable functions of z and y, which satisfy (1.1), (1.2)
and (1.3) in the appropriate ranges for each fixed y, and also

(BT F)(8:07+ F) — (B8] F) (87 T2F)| > 1/C, (1.4)

for r = 2, where we have written F} or & F for OF [0z, Fy or o F for OF /8y,
and similarly for other partial derivatives; note that Fi means (F}); = 8,8, F
In some ranges we require extra conditions, either (1.4) for » = 3, or

3Fi211 +4F Fiin 3F0 i Flz1 1
Fimn Fiin Figa| 2 E (15)
F11112 F1112 FIIZ 5
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Here again C4 and Cs are positive constants. The implied constants in the order
of magnitude notation (Landau’s O and Vinogradov’s <) are constructed from

This paper and [4] originally formed one long preprint, and references to
[4 sections 3, 4, 5] in [5, 6] should be taken as references to this paper.

2. Subdividing the sum

We divide the sum from M to Mj into short intervals of length N. A related

parameter R is defined as the least positive integer for which %f” (z) changes by

at least 1/R? on any interval of length N so

3

ﬁ g %min}f(s)(:v)[, NszA/IT—.

We label the short interval as a Farey arc I(a/q). The label a/q is a rational

value of %f”(z), usually the rational value a/q with the smallest denominator q.

Intervals for which the smallest denominator ¢ is too small (¢ < Qo) or too

large (¢ > Q) are exceptional. If the smallest denominator has ¢ > Q, > R+1,

then a/q lies between two fractions e/r and f/s in the Farey sequence F(Q; —1),
with r» +5 > Q;, 1/rs > 1/R%. If r < s, then s > Q1/2, and

r <2R2/Q), (22)
|a e]/l 2

7 < m S
We take Qo and Q; satisfying 2R? < Qo@; < 3R?, so that (2.2) implies 7 < Qo.
We extend the interval I(e/r) to include all z with

2

Q1

forming the major Farey arc J(e/r). A Farey arc I(a/q) which does not meet any
major arc now has the smallest denominator in the range Qo < ¢ < Q1. There are
incomplete Farey arcs in the complement 6f the major arcs and at the ends of the
interval. For technical reasons there should be at least five complete Farey arcs in
each component of the remaining sum (the minor arcs). Any smaller component
is divided between the major arcs on either side. After this distribution a major
arc J(e/r) has length

(2.1)

¢ _ Ll <
T 2

e 1 1 NR? NQo
N(r) <N r@Q, t+ R?, < rQ, < r

Y

Lemma 7.6.1 of (3] transforms the sum over a major arc into two sums of lengths

at most 9
e r e NQ

k(D) <5 (7)< m

r < NR2 r < rR?
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plus an error term, provided that
Qo < Bil(NRg)”?’, (2.3)

where B is a constant sufliciently large in terms of the derivatives of the under-
lying function F(x). The trivial estimate for a major arc sum is

NR2\ V¢ (NR?)1/3
B LRl
kK (e/r)

NQ)” | (NR)V?
Rr VT

The rational number e/r lies in an interval of length

M 1 M
o (e * av) =0 ()

since @, > r, and the choice of parameters always satisfies

<

log M.

M > NR. (2.4)

Hence by [3] Lemma 7.6.1 the major arc contribution is

3/2 211/3
oy (NQ0 LS M) _

2
o NR Rr VT
MQY?  MQY? Mlog M
=0 logM | =0 —=— 2.
( R3 T (NR2)R R JN )’ (25)
provided that
R\ /5

a condition which implies (2.3).
The remaining Farey arcs are minor arcs. On a Farey arc 1f”(z) runs
through an interval J of length &, where in (2.1)

2
L NT s ONT 26 (
RZ - CcM3 ™" M3 T R :

a9 73
4.i )

N
N

Let e/r be the rational number of smallest denominator on J. If r > R, then we
pick e/r as the rational approximation to f”(z). If r < R, then we pick a/q
with ¢ > R. The point e¢/r divides J into two intervals J; and Jo. Let J be the
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longer, length d, say. Let a/q be the rational number in J, with second smallest
denominator. Since (a —€)/(g—r) is not in J, we have

1
g 62 < 3
(g—r)r
SO
1+ 527’2
7< 14+ 52'." '
and )
i S 02 S 1/2R S 1 (_8)

gr 7 1482027 14+72/2R2 7 3R2

Having chosen the rational approximation a/q on the Farey arc, we take as centre
of approximation the integer m for which % f"(m) is closest to a/q, and we use
the approximation for f(m + n)

3

fm) +f (m) + 2= 4 T ),

writing
b+k
f(m) = ;

é F®m) = p, (2.9)

where b is an integer and & is bounded: b is the nearest integer to ¢f’(m) unless
2qf'(m) is close to an odd integer, when we consider the two nearest integers, with
two choices for b and « in (2.9). Each minor arc sum is transformed by Poisson
summation (including the finite Fourier transform mod ¢). The Farey arc sums are
grouped into classes according to the nature of the rational number a/q: the size
range Q < ¢ < 2Q, and, in (4], whether a/q has a good rational approximation e/r
with 7 much smaller than ¢. The Poisson summation requires the parameters N
and R to lie in certain ranges:

R N<R? N* <« MR%. (2.10)

3. Local Variables on Farey Arcs

The name ‘Farey arcs’ suggests a curve. The underlying curve is the graph of y =
= f'(z). The area beneath this curveis f(z), and Poisson summation interchanges
the - and y-axes. The centre of the Farey arc I(a/q) is the integer mg for
which 3 f”(mg) is closest to a/g. The cubic approximation to f(z) on I(a/q)
gives a quadratic approximation to f/(z):

b
y=f(z)= 1"

2
+ ;“(z — mo) + 3u(z — me)?,
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where b is an integer, —1 < kK < 1. For ¢ odd, let e/r be the fraction before
2a/q in the Farey sequence F(q). The vectors (r,e) and (q,2a) are a basis for

tlha St
LLIT 1LILT

gar lnbting Mha Ahoson ~F voriabhlac
£l 1dauulte. 111C uuaugc WUl valldiyico

X = ry — e(z — myp), Y = qy — 2a(z — myp)

gives

flR

Vv b L w1 24
P4 v o (Y]

K+ 3pg(gX
If q is even we work in F(g/2) and modify b and & to get the denominator ¢/2.
The position of the graph of y = f/(z) with respect to the integer lattice modulo
automorphisms is approximately determined by the the numbers ug® (real), s
(modulo one) and br/q (modulo one). In congruence notation, r is the integer 2a
defined by

1<2a<gq, 202a=1 (mod gq).

The resonance curve is a device for comparing the approximations on neigh-
bouring Farey arcs. We express the construction in terms of the function h(v)
defined implicitly by

v=3/"(), ()= 6ho)

Then
dv dx 1

T—:3h’(’v)‘ T T SN
dr dv dh(v)

fW(z) = 6h’(v)% = 18h(v)H/ (v).

Lemma 3.1. (substitution) Let my, ms = my + n be integers, corresponding to
v = w;, we respectively. Let

b; + Ky
Fma) = B4

- §

1 i
wp = 2" (ms) = =+
"

]

1
hw) = < S @ ma) = pu

For k=0, 1, 2 let I}, be the integrals

and let

G:_l_(g_a_l) (3.1)
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Then

1 1
g I 3.2
3 3m + {o, (3.2)

/\2 _ A 1
3ua 3wy

+ I, (3.3)

and b ! 5
2 -+ K2 _ 1+ K1 n a1n+3y362+2/\26’+

42 1 a1
+ NN + I+ Al o
3p2 170
w2 kB (v
- 1.,
We obtain (3.2) at once by integration. For (3.3) we integrate by parts:

"= f: T _ [3;@)} L /ww f'f‘d w
= Thum) " T T

1 as 1
= [ ZZ 4 A ) = A J1 =
3“2( + 2) 3 ( + )-i- 1

X M 1 (e w) e,
3ua 3u1'3M2\q2 a1/ ‘Ilwl .

Proof. We write

wi

by (3.2). The third term is G in (3.1), and the two integrals give I .
For (3.4) we start from Taylor’s theorem in the form

m-in

f'lm+n) = f'(m) +nf'(m) + / (m+n—x)fO®(z)ds (3.5)

m

with m = m,, n =my — m;. The integral in (3.5) becomes

wa
/=w1/ —dv 2dw = / / 3h( dvdw

_ /’“2 2v—wy) [(v —wl) J +/*“2 (v —wl)zh’(v)du _

w,  Sh(v) 3h(v) wy 3h%(v)

N2
= M + J2 — 2w1J1 + w%']o'

3p2

We expand
— w,)? A2 - A\’ A2 — Ap)?
__(w23 wi) =3p2 (G—i- 2 1) =3l£2G2+2(/\2—/\1)G+———( 2= ) ,

p2 32 Sp2
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so that (3.5) becomes

~m

o>
()

bit ki 2

i3 _a Ki + wl,b+2/\1'I’L+3/4"2G2+2(/\2—/\1)G+
qz2 q1 51
Az — Ap)? 2a1A
+(L__1)_+12_2/\1J1+< 1M /\2).]0
Spiz 4
We substitute (3.3) for Ain and cancel some terms to get (3.4). [ ]

In order to express Lemma 3.1 in terms of v, we write vi = a,/q,, v; =
= h(v;), and we define z; by §f "(z;) = v;. By construction m; is one of the two
mtegers nearest to z; (the nearest integer unless z; is close to halfway between
two consecutive integers; in counting arguments we must consider both choices
for m; in this case). We want to replace G by K where

B2 1 faz a1\
o _ - [22 21
vy 3y \112 )

Y2 (v — )P R (v
Jk = /vl (—#dv (37)

Lemma 38.2. (approximation) We have

Vi_ 1 K_ L
Kk

and in (3.3) and (3.4) of Lemma 3.1
A1 K
== — - . 0
n=K+ e +J1+O(M>, (3.10)

bz—i—l{.z . b1+K1 +2a1'n,
q2 Q1 1

ro(am (7)),

Proof. For (3.8) we use

+ 310K + 20K + Jot

(3.11)

™1 1
”"~V":/z g/ (@i < o

2
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For (3.9) we use

[ [\ -,
wen= ([ )) e e

<L * (NR2)? K
NE? NR2 M S MR

We substitute (3.8) and (3.9) into (3.3) and (3.4). For (3.11) we have also used

2 2
Az — A7

T ML«

N2R?
NR? 4 (we — w1) i ) <

7
(N R2 )2 Y d
1 1 K 1

—. . |
< NR? + M NR? < NR?

To study an interval [a, 3] of values of %f”(m) with #—a < 1/3, we consider
the rational number b/j in [2a— 3,283 — o] of least denominator. Let a/h and c/k
be the predecessor and successor of b/j in the Farey sequence F(j). Choose
integers t > 0, u > 0 with

a+ bt a+b(t+1) bu+1)+c bu+ ¢
—<20—-f3< - , - € 28— - .
h+ jt p h+3(t+1) e+ +k g Jutk

The intervals [(a+ bt)/(h+ jt), b/7] and [b/], (bu+c)/(ju+ k)] cover the interval

[, B]. If either interval does not meet |, 3], then we discard it. Each (remaining)

interval is of the form [e/r, f/s] with f/s—e/r = 1/rs, with length at least 5 —«,

with one endpoint and the mediant (e+ f)/(r+ s) in the interval [2a~ 3,28 ~0].
This implies
2 L :

6(8 - )

Each rational number in a reference interval [e/r, f/s] can be written as

(max(r, s)) 2

t
totl w=t

7y + st’
This is a linear fractional map from u/¢ in the interval (0,00) to a/q in the open
reference interval (e/r, f/s).

Lemma 3.3. (reference interval transformation) Consider a reference interval
e/r < a/q < f/s of values of f”(w) with fr —es=1. In Lemmas 3.1 and 3.2

let
a; e as _eu+ft_e t

q r G ru+st_;+r(ru+st)’

corresponding to a change of variable from v to z = u/t by

e+ f e 1 B
v re+s 1 + r(re + s)’ h(v) = hy(z). (3.12)
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Write b, &, A, p, v for by, K1, A\, 11, va. In this notation (3.7) becomes

J [T He)  de (3.13)
k= N .
/u/t (

z) rk(re 4 s)k
and, corresponding to (3.1), (3.2), (3.3), and (3.4) we have

t

Ke (3.14)
3vr(ru + st)’ e
1
» = g + Jo, (315)
Az A K
=K+ = - @) .16
33 +J1+ (M> (3.16)
by + Ko b+ & 2en 1 K2
— - = T b 3WKEP4 20K+ J+ 0 14+ —-—1). (3.
ru+ st r T HovRT SRR AL <NR'~’(+M>> (3.17)
Then
7N / Q / K2\
bg+ng:B+0t+nu—tG1(?)+O(NR2 KHM ) (3.18)
where
B =bu+2(eu+ ft)n (3.19)
s an mleger, 0 i3 a real number with
(b + Ka)S 2/\
= 3.
e oy (3.20)
and G(zx) is the function of T = u/t defined by
Gr(x) ! 21— vz + 5)J 3.21
= - - r ‘
! 3hi(z)r2(rz + 5) trA T e s, (3.21)
with
Gi(z)=- ! —7Js, (3.22)
3hi(z)r(rz + 5)? -
2
Gi(z) = : .
1 () 3hy(z)(rz + s)3 (3.23)
Proof. We get (3.15) by direct Lntegratlou, whilst (3.14), (3.18), and (3 1’7’) are
restatements of (3.6), (3.10) and (3.11), and (3.13) follows from (3.7) by the su

stitution (3.12). We verify (3.22) and (3. 23) from the definition (3.21) of Gi(z)
by differentiation. The variable £ = u/t decreases as z increases, so there is a
minus sign in (3.13) and (3.22).
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For the main result (3.18) we multiply (3.17) by ru + st, using

e t
(ru+st)- =eu+ ft — —.
T

T
This gives
bst kst 2nt
by + Ka = bu + nu+i+—s+2(eu+ft)n- —+
Kt 2\t Q / K2\ (3.24)
ru+st)Ja + O 1
r 3vr (ru+st)Jz + kNR ( i M
where we have substituted for {ru + st)K from (3.14). By (3.16) we have
2nt t 2\t Kt 2\t 2t Kt

L e A A Y A 3.25
T T 3vr r O 3ur ol + (Mr) (3:25)
and the error term (K?Q/MN R?). We substitute (3.24) into (3.23) and col-
lect terms to obtain (3.18) =

A Farey arc T (a/q) corresponds to a change of basis for the integer lattice

to the vectors (g,a), (@, —q), where ad +qq = 1. If , @ satisfy ¢f + vt = 1,
4 2 1, then we have
a —q\ _ (f e t —u\ [eu+ft et—fau
g a /) \s r u t ) \Nru+st rt—su )’
so that
(eu + ft)(rt — sa) — (ru + st)(et — fa) =1, (3.26)
and _
__r _u_rizsi (3.27)
t(ru+st) t ru-+st

Lemma 3.4. (Inverses mod q) Write bs+ka = B+ L = B+£€+ Ky in the notation
(3.19), where £ is an integer. Let ((m)) denote the reduction modulo 1 of z. Then

N (_%Gi (%) - eTu + g - t(r:i:st) * 3V(r2:2+ St))) "
+O<w1_+—£). (3.28)

Proof. By (3.26) we have

~—~
=3
il

(rt — su)B = (rt — su)bu + 2(rt — su)(eu + ft)n =
= (rtu + stt — s)b+ 2(1 + (ru + st)(et — fu))n =
=2n — bs + (ru + st)(bl + 2(ef — fu)n).
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(((rt-—su)Bm ((27). bs\\

N\ ru+ st \ ru + st

)
(32;2 + (t(ru:- ) %) f)) = (3.29)
! 223

(e ) - w9

From (3.16) and (3.18)

Hence

and by (3.27)

==

2n+E 2K+& 2A 2714—()/ \4-
7 3, 3 \M )
b+ Kk)st  2Mt
+§(—( L )2 + gt Ru—tG) T) +O(M?:.a
14 \ 1 IJH \JVIL_ \

2t k(ru + st)

=b +2J

ot ur(ru + st) 3v 31/ e

t 2 (ru+ st)
e — 2y, MR
’ <3Vr2(ru + st) ta ¢ 2) +

K NR*[ Q A\
v+ g (v (137 )) -

2X2  k(ru+tst) ru+st 1 K
=bs+ — — G o
Tttt T —a(3)rolgt M)

We obtain (3.28) by substituting (3.30) into (3.29). |

4. The Exact Resonance Curve

The Second Spacing Problem is to count the number of coincidences betweeen
pairs of Farey arcs I(a/q) and I(a’/q’). Let (b+ k)/q and u be the coefficients
of the approximation on the Farey arc I{(a/q), and let (b’ + «’)/q’, 1/ be the
corresponding coefficients on I{a’/q"). We recall that a/q and p have fixed orders
of magnitude, with

1 M

= oen =
5" () X+,

We suppose that ¢ and ¢ lie in the same range Q < ¢ < 2Q. We define the
inverse @ (mod ¢) by aa=1 (mod ¢) and similarly a’a’ =1 (mod ¢)’. The

1
MNR?

1

NRZ 3 (41)

) <«

—f(?”( ) <
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Coincidence Conditions can be written as

”_ - =< Ay, {4.9)

e 4« N

ulql3

e — 1] € As, (4.3)

b ab

il R0 (4.4)
| — k] < Ay, (4.5)

where ||z|| denotes the absolute value of {{z)), the reduction of £ modulo one,
and Aj,...,A, areless than 3. By (4.1), (4.3) implies ¢ < ¢, so we lose little
generality by restricting ¢, ¢’ to the same range Q < ¢ € 2Q. The sizes of A;

depend on Q. We suppose that

R 1 R?
— < — .
A1<<HNQ2, M\A2<<HN’ (46)
R2
Az € —, Ay K Q. (4.7)

HQ H
The parameter H can be taken equal to N in this paper, but H may be smaller
in other applications of resonance curves (3 chapters 8, 9]

Define the integers g, ¢’ by ag + ¢ = 1, a’a’ + ¢¢ = 1. The First Coin-
cidence Condition (4.2) says that there is an 1nteger matrix of determinant one
(the ‘magic matrix’) with

o -¢\ (A B a —q
(¢ #)-C0)G )
IC| = lo'g — ag'| < Awgq’ <44,Q°,
so, by (4.6), |C| is bounded uniformly in Q. Since
/ !
¢ _cyp L_c% A
q q g q
we can classify magic matrices as follows.
Type 1. The identity matrix, and a finite set of other matrices.
Type 2. Other triangular matrices with A= D =1, B=0 or C =0.
Type 3. Matrices with A, B, C, D non-zero, C/D negative, and
A_D_B_ B_ M
C~ CT DT AT NR¥
Matrices (if any) with BC non-zero that do not satisfy the conditions for type 3
must have AD bounded; they are the extra matrices of type 1.

For a type 3 matrix the fraction v = a/q lies in a short interval close to
—D/C, called the domain of the magic matrix, and v/ = a’/g' lies in a short
interval close to A/C. Our next lemma (parts of Lemmas 14.3.1, 14.3.2 and
14.3.3 of [3]) uses the Second Coincidence Condition to shorten these intervals.

and
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Lemma 4.1. (the Second Coincidence Condition) For upper triangular matrices
the Second Coincidence Condition (4.3) holds only when

AsM
B« =2 8
< T (4.8)

provided that the underlying function F(z) satisfies

1 LAY, A
— S ()| <Gy (4.9)
Ch

for some constant C; .
For lower triangular matrices the Second Coincidence Condition (4.3) holds

only when

AsNR?
C = 4.10
<= (4.10)
provided that the underlying function F(x) satisfies
1
& SBFO@)? - F'(z) ()] (4.11)
3 :
for some constant Cj.
For type 3 matrices, which have
NR?
C 2 B, Y (4.12)

for some sufficiently large constant B,, the Second Coincidence Condition holds
precisely when f”(z) lies in the intersection of the range of 3 f"(x) with an
interval D(Az), the domain of the magic matriz, with length

=T (4.13)

Proof. The lower bound for A in (4.6) allows us to replace p and p’ by h{v)
and A(v’) in (4.3) with error O(1/M) = O(A3). Hence

log h(v) —log h(v') — 3logq’ + 3logg < Aa. (4.14)
For upper triangular matrices ¢ = ¢'. We have

_ W) 2f®(a)
& B = 0N = e

so by (4.1) and (4.9)
NR?

e
—~

d
‘ o log h(v)

Since B = v’ — v, we deduce (4.8).
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For lower triangular matrices a = a’, so the left hand side of (4.14) is

log h(v) —log h(v') — 3logv’ + 3logw.

We have
d_("id/T)(log h(v) — 3logv) = —v? (Z/((:)) 3 g) _
— 5—)%(%(3)(5)2 @)@ @)
By (4.11) o o
|Wa/vj(logh(v) —3logv)| = NiRZ’

and since C = 1/v' — 1/v, we deduce (4.10).
For type 3 matrices v lies in a range of length O(1/|C|) which can be
covered with a bounded number of reference intervals [e/r, f/s], so that v’ lies in

41 7 £ 7 1

the reference interval [¢//7/, f’/s’], where
(1 9)=(2 5)(* 9.
\§ Ty \vY /NS 1)
We extend the notation (3.12):
ex -+ f o er+ f

= = eee—_— h = h N = .
T+ s’ P+ s ? (U) 1(55), h('U ) h2("L‘)a (4 15)
so that (4.14) becomes
log h1(z) — log ha(z) — Blog(r'z + s') + 3log(rz + s) < Az, (4.16)
we note that rz + s <1’z + s’ The derivative of the left hand side of (4.16) is
Ri(z)  Rhy(z) 3r n 3r
hi(z) ha(z) r'z+s  rr+s
K@) 1 W) 1 3C

= : . +
h(v) (rz+5)2  h(v) (Fz+ )2 " (rz+s)(r'z + ')

= (rz+s)(1r’z:+s’) (30+O (NAI;Z»'

By (4.12), if the condition holds at = = #; and & = z, then

2 3 Ty
d log( ha(@)(re + 5) )d:ch/ do

o dz ha(z)(r'z + 8)3 . (rz +5)? -
1 . f a4+ £\
( _ \:U/e:cli-,_em“.,):C(UI_w).
\T(T‘Il +s)  r(res+ s)) Kr:r;l +s rzat+s
The domain of the magic matrix has been restricted to the interval of v on which

(4.16) holds. Its length has order of magnitude (4.13). Of course the domain may
extend outside the range of v corresponding to the sum S. [ |

=
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To express the Third and Fourth Coincidence Conditions on a reference
interval we extend the notation of Lemma 3.2 and (4.15) by writing

* hh(z) de
[ 2
BT g @ R i1
1 2
G = _"-]’ - ! ! J‘;: ‘
) = Sy m ey T T T (4.18)

corresponding to (3.13) and (3.21). The coincidence-detecting Fortean function is
g(z) = G1(z) — Ga(=).

There is a technical point concerning the Fourth Coincidence Condition (4.5).
We would like to relax (4.5) to

i’ — k|| < Ay (4.19)

We chose « as the difference between g f’(m) and the nearest integer b. Thus (4.19)
implies (4.5) unless « is close to +1/2, when we could have &’ close to F1/2.
For « close to 1/2 we count the Farey arc I(a/q) twice, with both choices b
and b+ 1 for the nearest integer, and for x close to —1/2 we count both b
and b—1. Changing b changes the integer ¢ in Lemma 3.4. This double counting
increases the number of coincidences counted, but it enables us to pass from (4.19)
to (4.5) for two of the four choices of k¥ and «’.

Lemma 4.2. (bounds for the Fortean function) If the First and Second Coinci-
dence Conditions hold at T = u/t, then

A2K2r3 AzNRz

7
9'(2) < Sz < o1 5 (4.20)
and for i =0, 1, 3
: KQ®> K\ K [Kr2\°
(8) AN &8
g (7)) K (A2+A1NR2 + M) - (NR9> ; (4.21)
with
3r K55 K5Q25
0@ + (@) € ot AT (4.22)

re+ 8 M N3RS N4R8S -

Proof. From the definitions (3.7) and (4.17)

K \*"' N2Rt
NR2> M

Ik, ‘]llc 4 (
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so by (3.21), (3.22), (3.23), and (4.18)

1 / K’
9(@) = 3hi(z)r2(rz + s)  3ho(z)r2(r'z + s’) (M
1 1 K3r
g(@)=- 2 7 nz HO 2
3hi(z)r(rz + s) 3ho(:c)r (r'z+ ') MNR
e P S S—
0 dha(zx)(rz 4+ 8)°  Sho(z)(r'x + 5)°
Noting that

R (v) < 1
(re+s5)?2 — M(rz+ )%’

hi(z) =

and similarly for v/, we have

7/ B B N

O(g)z e T vol K
g  hi(@)(rz + 8)t | he(z)(r'T + &) (MN3R6) ’

Here
NR? _N R%t

r(m: + s) rQ ’

(4.23)

and we deduce (4.20) from the Second Coincidence Condition in the form (4.16).
We have

LA T 4 v

r’/ r r's—rs 04

rPr+s rr+s (rz + s)(r'z + ¢') - T (rz + )z + &) <

K2Q22
A1 (4.24)

rz+s ro+s C Q?
- = — <AL= (4.25)

o r T/ r2

Hence
gD (@) + ——g"() =

(4.26)

_ 2 ( r’ r>+O(K55)
C ho(z)rz+ 83 \r'zt+ s rats, _MNB3RS )’

which gives (4.22) by (4.24). Substituting the bound (4.20) for ¢”(z), we obtain
the case 1 = 3 of (4.21). The cases : = 0 and i = 1 are proved similarly,
eliminating the first term and using (4.25). |
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Lemma 4.3. (coincidence detecting) Let =z = u/t, and suppose that

e i a eu+ ft f 1
—+ o< == <= — 0, 4.27
7-+5ZR2 g ru-tst s 2R? (4.27)
with Q < ¢ £ 2Q and
f JV/L,.L’\VTRz
K= 4.28
Shiu/tr(ratot) VT H (4.28)
Let
y=a—-g(z), z2=pB+zd(z)-g(z) (4.29)
where a and B are the constanis
a=k-—-r, (4.30)
b+ x)s b+ &)s 2 2)
ﬁ: ( " ) - ( — ) Fyirerare (4.31)
i ] l)IJl’ Ol.la T

Suppose that the four Coincidence Conditions (4.2) to (4.7) hold on I(a/q), with
the parameter H in (4.7) and (4.8) satisfying

H < min(N, R?). (4.32)

Then there are integers ¢ and d with

z:d+o(—%)=d+o<g’;). (4.34)

Proof. The inequalities (4.27) imply

1 t
— L - N .
@ S KN (4.35)
1 u s R?u Kru
< —, — < = . 4.36
2R? ~ sq H = HQ < HNt (4-36)

We use the notation of Lemmas 3.3 and 3.4, with dashes denoting the correspond-
ing quantities on the Farey arc I(a’/q’). The Fourth Coincidence Condition is

((6 -0+ (k- K)u—tg(u/t)) <« % + NCIZ%Q t ]\f]\zl?%z
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by (3.18). We note that in (4.30) and (4.31) a = k — &', 8 = 0 — &, and the
error terms are all O(Q/H) by (4.28) and (4.31). In the notation of Lemma 3.4
we have

£ - ﬁt-l—au—tg( )—I—O(g) (4.37)
The Third Coincidence Condition can be written as
([ (B _ a(f —¢') k= K kor N ko’ <
19 \t/ t St t(ru+st)  tr'u+s't) )
R? 1 1 K
e b — b —— b ——

THQ Q KQ MQ
where we have taken the terms in Az and A, in (3.28) into the error term.
By (4.32), (4.35), and (4.28), the error terms are all O(R?/HQ). By the identity
in (4.24) we have

whr! Kor (k5 — Ko)r L2 Ké /!
t(r'u -+ s't) t(ru+st) t(ru + st) Kru—{—s’t ru+st) B
_ (Kky — Ko)r £,C

- — . (4.38)
t(ru+ st)  (ru+ st)(r'u+ s't)

We use the First and Fourth Coincidence Conditions to estimate the two terms
in (4.38) as
Q r R* 1 NR? R2 R?
< HtQ tINGE HNQ? < H KHQ t HN < HQ

The Third Coincidence Condition has been simplified to

(i () -5 %) < 430

Multiplying (4.39) by ¢, we have

(( , (u))) < R}  R*  Kr
TI\ HQ ~ H{rz+s)  HN’

0 (4.33) holds for some integer ¢. Multiplying (4.39) by u, we have

(ot ey (1) e

Substituting ¢ — £ from (4.36) gives
u Rz
((0( \——0 f\ 5“<<7‘T+%<<
WO\t \t/ H{rz+s) Hi
Krx ru s Krz R2z

BN T T HE S BN T Hiw 19

by (4.35) and (4.36). Hence (4.34) holds for some integer d. |

<
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The resonance curve is the locus of the point (y,z) as = varies. We sum-
marise some useful properties of the derivatives.

Lemma 4.4. (derivatives of the resonance curve) We have

dy — " dz _ I
Yo t@),  Eoag),
and
dz dy 1
it . T T
dy dz T
d%z 1 &3y 1
WOEE &R
#z _¢®=) &Ly 3¢"(a) +2¢¥(x)
dy3 - g”(.’L‘)3’ dz3 z5g”(z)3 )
Proof. These formulae follow by repeated differentiation of (4.29). [ |

We call the resonance curve C(e/r, f/s;€’/r', '/s’); it is determined by the

two reference intervals [e/r, f/s] and [e¢//r', f'/s’]. Our next two lemmas show

_that the resonance curve depends more on the magic matrix than on the reference
. Intervals.

Lemma 4.5. (the reverse resonance curve) The resonance curve C* = C(f /s, e/r;
['/s',e’[r") is obtained from the resonance curve C = C(e/r, f/s;ejr', f']s") by
translation by a constant vector (n,{) and then interchanging the y and z azes.
The vector (n,¢) is approzimately an integer vector, with

r K? s K?
(142 S L
”’7”<<NR2( +M)’ ”C”<<NR3( +M)’

1
K=—"
3h1 (O)TS

where U is the number of Farey arcs I(a/q) with e/r < a/q< f/s.

with
=< NU,

Proof. To adapt Lemma 4.3 to the reverse-oriented curve C*, we replace f(z)
by —f(—z), which changes the signs of h(z), n, k, A, g and the numerators e,
J. At the end of the calculation we change the signs of y and z.

To compare C with C*, we write

X = 1/1‘, hl(:z:) = h3(.X), hg(m) = h4(X)
Let 7(X) be the analogue of g(z). Then

2 2 3

X = e e X)Xy =9 @)
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The variables Y and Z on C* have
= — /j"(X)dX = /mg"(m)d:c,
J J
= /Xj”(X)dX = —/g”(:z:)d:c,
sothat Y =z +(, Z = y + 7 for some constants 7 and (.

We use the notation of Lemma 3.3 with a3/g> = f/s. At £ = 0 we have
y=A—- A, 2z =B — B, where

1
A:r‘f/ // :’._;l |7,1
- e T aypsz R
r 3,u
(b+r)s 20 1
=1 =2 - _Z J
r 3ur  3ur? Jit sz,

and A’, B’ are the corresponding expressions for the reference interval [¢’ /7, f'/s'].
The corresponding point on C* is X = o0, where ¥ = ay = C ~ (',
Z=8s=D—D' with

(bat ma)r _ 24
s 3vs

CZK,Z, D=

(the minus sign comes from the sign changes due to the orientation of C*), and C”,
D’ are the corresponding expressions for the reference interval [¢//7/, f' /8].

By (3.18)
= (24 2 oo (2 (1+2)),

KZ
C— — .
IC - B|| « —= NRZ (1+ M)

SO

By (3.17)

(bz -+ Iig)?‘
8

KZ
_b+n+2en+3uKzr+2)\2Kr+rJ2+O (NRZ <1+ ﬁ)) =

1 2); K?
=b+2entrt s+ o s +rJ2+O(NR2 (1+ﬁ)),

SO
1/’) AY

M

The corresponding inequalities hold for 4’, B/, C’, and D’, and we deduce the
Lemma. u

1D~ Al < w7 (1+
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A resonance curve C(e/r, f/s; e’ /r’, f'/s') can be constructed for any pair of
reference intervals [e/r, f/s] and [¢//v', f//s']. Tt is of interest if there is a suitable

(L=

and the Second Coincidence Condition holds at one end of the reference interval
le/r, f/s]. Let h, j, k, £ be non-negative integers with h,E —jk = 1. We define

Jo ee [ f e ¢ k

so o) \s r)\j h)’
6 66 _ fl 6/ { k . A B fo €o
sg 1n) \§& 1 3 h) \C D so ro/’

e e fo f
-2 <2,
T To So 8

maocic matriy ‘-‘-’lth

ALlRm i 211G 1A

Then

A typical rational number in the subinterval [eq/ro.fo/s0] is

a _ eoup + folo eu+ ft

q roup + soto  ru -+ st’

(-G 0 G- D0

Lemma 4.6. (affine lifting) Let ©, y, z be the variables for the resonance curve
C = Cle/r,f/s;€'[r',f']&'), and zo, yo, 20 those for Co = C(eo/ro, fo/s0;
e0/7h, f/86) . The mapping

here

T - h:‘l)o -{—]
kg + £
induces an affine map of Co into C of the form

(4.40)

. o —k
(2, ¥) = (20, %0) (—j ¢ >+(C, 7).

The constants n and { are approximately integers:

T K?
n=tot = 2em—ti ¥+ 2 +0 (5 (14 57 )

K
— —bni — /s Lol S
¢ = ~boj = 2fn+ Vi + 21" + (NR? ¥ MT),
where n = mo — m is the distance between the centres of approzimation on the
Farey arcs I(e/r), I(eo/ro), and
k

 3uorro
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is the approzimation to n at x = h/k. Here U s the number of Farey arcs I(a/q)
with e/r < a/q < ep/r0.

A

Proof. From (4.40) we have

v 45— ToTo + So d_:z B 1
" 5= k$0+f ’ dEOv(k.’Eo—!—f)z.

Let

A Y /eom+f0\ 1 VRN /en$+fn\

ng(r) = 4(1,‘) —_  }.

roxr + 30} 7‘0:1: + SO
Let go(zo) be the Fortean function in the construction of Cp. Then
” 2 2 g"(z)
90 (IO) = 3 7 N3 3"
3h3($0)(7‘0$0 + So) 3h4(1‘0)(7‘01}0 + so) (k.’l)o + f)

Then

- /y”(x)dm = /(kwo + £)gg (z0)dmo = —kzo + £yo + 1,

z= /ﬂig”(l‘)dJC = /(hwo + 4)g0 (zo)dmo = hzo — jyo + ¢

for some constants n, .
We compute the constants by putting £ = h/k, zo = 00, s0 rz + 5 = ro/k.
We have
vy= Q’-—g’(l‘) =4 _AI)
where by (3.22)
kz

h
A=k-Gi|+v)=k+ —— +r1J
K l(k> Iw+3 rr8+r 2,

and
z=pf+zg¢(z)—g(z)=B-B,
where by (3.21) and (3.22)

b
p= s, —G’(h) Gl(f -
r Q" \ %k / k
b+ k)s A hr k2
=u+——(—+7roz———.]l+s.]2.
r ur 3por?re T

At 1o = 00 on Cp we have
log —kpo=C—C', —jag+hBy=D~ D,

where ap and B, are given by (4.31) for the curve Cp, so
k(bo + Ko)so _ 2kAo

o 3uoro

h{bp + Ko)s 2hA 2hKr )
(b0 0)0+ O—Jho—boj-lu (bo+/€0) To-
To 3#07‘0 k

C=-

+ Lrp = —bof + Ti(bo + Ko) — 2K,

D:
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Substituting from (3.17), we have

Y 1 g I35 2P\ ' T > )
U = —0gf — 2KTAQ + 0+ K+ 2

4
r K
Frla+ O (NR2 (HI/J_)) -

= —bof+b+2en+ A+ 0

Similarly by (3.17) and (3.16)

hKrdo (b+K)s 2
D = boj + = 0, “LT'”)S+ =2+ 3u0K?s + 200K s+

hro(=2 (1K) =
+sJo+ NL? +M =

2n  (b+kK)s /\OK’I‘O n
— + +
k2%s

2. + sJo+ 0O ( r\rSD') (1 )\ *

3[,1,0?‘ \ LY~ M ’/

(b+K)s 2X 24 K

— _ Ol — | —
T + 3pr T + Mr

=boj +2fn —
r r

+

=boj+2fn+

k('l‘o + hr) K?
_ St ) sy o0 14 )) =
Sugrird o2 AT

K s K%s
= boj — .
°J+2fn+B+O(Mr+NR2+MNR2>

In the error term we have

S o L
NR? T kKNR2 ™ Kr’

so we may drop the last term. |

The conclusions of Lemma 4.6 remain true if we allow f =1, s = 0 or
e = —1, r = 0, so that the label a/q is infinite at the end of the resonance curve
Clefr,f[s;e' /', f']5).

It is also possible to sharpen Lemma 4.6 as follows. An integer point (co, do)
in a disc with centre (yo,20) on Co = C(eo/r0, fo/s0;€5/70, fo/56) is lifted to an
integer point (c, d) in an ellipse with centre (y,z) on C(e/r, f/s; e’ [r', f'/s"). The
major axis of the ellipse is close to the tangent at (y, z), so the nearest point on

tho macamoneos clivve e is muck close han [ar i
tiie resomnance Curve to \L, u,) is much closer than ( \y, ‘.’ There are cxceptional

cases when (y, z) is near the cusp or an end of the curve C(e/r, f/s; e/, f'/s).
We do not need to use this refinement in [4].

In Proposition 2 we have a family of sums with different values of a param-
eter y with 0 < y < 1. We write the Farey arcs as I(a/q,y) to indicate which
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sum of the family they come from. The underlying function F(z,y) depends on =
and y. We write Fy, f, for 8F/8z, 8f/dz, F; and f2 for 8F/8y, df /18y, and

similarly for higher partial derivatives. The function h(v,w) depends on v and w.
To avoid a clash of notation we use 8; for 8/8v and 8, for 8/8w to indicate the

partial derivatives of h(v,w). Although w is the same variable as y, we have

fz 2 Ox fiiz Oy 0 Ay

= e— _—= —— — =0, Y = 1
ov  fin Ow fin Ov ow
so the Jacobian matrix has terms off the diagonal.
Lemma 4.7. (the Second Coincidence Condition for a family of sums s) Suppose
that F(z,y) is deﬁned for 1< 1< 2,0<y<1, and four times partially differen-
tiable with respect to x, and that Fyy(z,y), F 11(.’1: y) are non-zero differentiable

Sfunctions of x and y wzth
[F111 Fi112 — Fri2Funl| 2 1/Cs (4.41)

for some constant Cs. Then for fited a/q, '/q' and y, the values of y for which
the Farey arcs I(e/q,y), I(d'/q,y') satisfy the Second Coincidence Condition lie
in an interval of length O(As).

Let J(y) be the range of v = %fll(m, y) as T wvaries with y fired. For fized y
and y' and a fized type 3 magic matriz, the Second Coincidence Condition holds
if v lies in the intersection of J(y) with an interval D = D(Az,y,y), the domain
of the magic matriz. The length of D is

< Az/|C). (4.42)

For fired y and y' and fized upper triangular matriz (0 1 ) the Farey arcs
I (%,y) and I (5 + B,y) which coincide in the Second Coincidence Condition

have

M
NR?'

B < (|ly - 9|+ Aq) (4.43)

[
W
=~

BgAz ly y | I/Bg, (444)

where the constant Bs is sufficiently large in terms of the range of the derivatives
of F(z,y), the rational a/q must lie in the intersection of J (y) with an interval
D = D(Az,y,y'), provided that Fy; and Fiy; are twice differentiable functions
of T and y, satisfying (4.9) with

[F1111F11112 — FinizFianal 2 1/Cy. (4.45)
The length of the domain D is

AaM
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For fized y and y' and fized lower triangular matriz (1 ©), the Farey arcs
I(%,y) and I(E}C:;_C’y,) which coincide in the Second Coincidence Condition

have

NR?
7
When (4.44) holds, the rational a/q must lie in the intersection of J(y) with an
interval D = D(As,y,y’), provided that Fy, and Fy11 are twice differentiable
functions of x and y, satisfying (4.11), with

C<(ly—y']+A2) (4.47)

|E| > 1/Cs, (4.48)

where F is the determinant

3F?, +4FnFin 3FnFin Fj
E= I i Fin
F11112 F1112 9

The length of the domain D is given by (4.46).

The flmﬂlqaﬂ constants are constructed ﬁr‘,”u C“ " Cs and fr()m the upper
bounds for the partial derivatives of F(z,y).
Proof. The condition (4.14) becomes
log (v,y) — logh(v', ) + 3log g — 3log ¢’ <« As. (4.49)

If v, v/, and y are fixed, then the only variable term in (4.49) is log h(v,y’). We

have
Sz logh(v,y) = bh(v,y) _ Suifue —f112f1111,

h(v Y) fn
which is uniformly bounded away from zero by (4.41). Hence for fixed v, v, o,
the parameter 3’ lies in an interval of length O(A,).
In the other assertions of the Lemma, y, ¢’

For fvnp 2 mngln matrices fhe argument t of Lemma

d the magic matrix are fixed.
w 1"‘3 Dalllt, IIIUDPCLULVL

an
4.1 works
of the values of the parameters.

For upper triangular matrices we have v/ = v+ B, ¢ = q. Weput ¥/ = y+7.

Then (4.49) becomes
logh(v,y) —logh(v + B,y 4+ 1) < As.

By the mean value theorem, there is a 7 between 0 and 1 with

Aq

2. (450
Ngro (450)

Bo1h(v+ 7B,y + 1) + ndh(v + 7B,y + 1) < Apmax |h| <

We have
|61k < 1/M, |92h| < 1/NR2,
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For lower triangular matrices a = a’, so the left hand side of (4.49) is
log h(v,y) — logh(v,y') — 3logv + 3logv'.

We put v =1/v,
H(z,y) = v"k(1/u,y),

etera. We follow the same argument as above,

and we write 8; H f

using (4.11) and (4.48) in place of (4.9) and (4.45) to find that v must lie in an
interval of length

nr 2

_ ASNFR
T Mly-y'|’

which corresponds to an interval for v of length (4.46). a

5. Coincident Farey Arcs and Integer Points

First we compare the approximations on neighbouring Farey arcs.

Lemma 5.1. (neighbouring rational approximations) Suppose that the Coinci-
dence Conditions (4.2) to (4.5) hold on the Farey arc 1(e/r), so that

R4
p/r/:i R2
;1,1‘3 -1k ﬁ’ (5.2)
bs bs R? (5.3)
r o < Hr’ )
|k — K| < %, (5.4)
with
MR?
H < min (N, R?, IE ) (5.5)

Suppose that a/q lies in the reference interval e/r, f/s] with Q < ¢ < 2Q,
and

Sr<Q< o (5.6)

with By sufficiently large in terms of the derivatives of the underlying function
F(z), and that
1L (e c 10C?%

r 4R2\q\1‘Jr R

(5.7)
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NR? 1 1

2 2
|67h] < NYER 61020 < —, 1630 < NRZ

M
B < (Inl+ As) — N

d
E(Balh(UJrTB,vaTﬂ)+7732h(U+TB,y+T77)) =

= (B?8} 4+ 2B18:82 + 7%83) h(v + 7B,y + 1) <

(IBINR?  \? 1 1
< + |7l .
M ") NR? NR?

2 2
< (n” +A3)

Hence we have for 0 €t < 1

1
Boh(v + 7B,y + ™) + 18:h(v + 7B,y + ™) < (n° + Ag)NRz.

The condition (4.41) implies

1

|(alh)(6132h) - (62h)(812h)| 2 W

Now

(8, R)(BO2h + nd1dah) =

F§§a) 1\ ooy 701 / 2
= 1(817)(8182h) — 1(B2h)(83h) Nle(n +A2))—

77+A)

=1 ((81h)(8182k) — (B2h)(B7R)) + O ( M2

Since 7 satisfies (4.44) with Bj sufficiently large, we have

2 < Il
|BaYh +n818h] < T

By continuity BOZ2h + 1,05k has constant sign, so

lai(h(UJrB,ern) —h(v,y))’ =
v

1
(Bafh('u + 7B,y + ™) +n6102h(v + 7B,y + 777)) dt‘ = L\lll
0
Hence N
|— (log h(v + B,y +n) — log (v, v))| < Ian :

and (4.49), if it holds anywhere, holds for an interval in v of length given by (4.43).
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Then the four Coincidence Conditions hold for I(a/q) to the accuracy of (4.6)
and (4.7) weakened by a bounded factor. In Lemma 4.3 the points (o, §) cor-

s oo — L
responding to I{e/r) and (y,z) corvesponding to I{a/q) are close to the same

integer point (c,d).

Proof. Since the magic matrix is fixed, the First Coincidence Condition (5.1) still
holds on I(a/q). By Lemma 4.1, the Second Coincidence Condition holds for an
interval D(A,) in v of length

S P
7R

by (5.1) and (5.2); if we multiply A, by a factor, then the interval D(A) extends
proportionately. Hence the Second Coincidence Condition holds at v = a/q,
T = u/t, weakened by a bounded factor.

In the notation (3.14), we have by (5.7)

m < N, ; = %. (5.8)
We write (5.3) as
2 b e (59)
From (3.18), in the notation of Lemma 3.4,
(k2 = K5) = (L - L")
with
L-I'=

= (0 )t+(~—f»)“—t9k )+OKNR2 k1+MZ))¥

:ht+7t+0(;>+ (n—f»)£ru+st) _tg(?)+O<N%2 (1+%2>> _

2 2
:ht+0(ﬂ+Q+(R +N>A:t+ 9 . Q)

Hr ' H HN " M NR2 " HN
Q)
= ht 0(— 5.10
+0( %) (5.10)

AN I

where we have used (5.8), (5.9), (5.5), (5.4), and (4.21). The term O(Q/H) is
numerically less than 1/2 if B, is sufficiently large in (5.6), so, in the notation of
Lemma 34, ¢ — ¢ = ht. In the Third Coincidence Condition we have by (3.28)
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and (4.37)
fabs @b _
( q ¢ ))
1,/u a(f—¢) K-+« Kar Khr'
(o) - mok e
t7 o\t t t t{ru + st)  t(r'u+ s't)
1 1 K
+O(T+T+T\:
\¢& K@ MQ)
1 ,/u k=K (k) — ko) k5HC ))
- ((‘Zg (?> —ha+ t + t{ru + st) - (ru+ st)(r'u + s't) J +
+O(1 1 4+ R? ) <
Q@ NQ HQ
< (B NANr,r Q@ KR B
t\EHN "M) R "Ht "HQ" HNQ HQ S HQ

where we have used (5.8), (4.21), (5.5), (5.4), (5.10), (5.1), and (5.6). Hence the
Third and Fourth Coincidence Conditions hold on I{a/g) with accuracy (4.7), but
the constants implied in the < sign are larger than in (5.3) and (5.4).

For each x = u/t corresponding to a/g in the range (5.7), the point (y, 2)
is close to some integer point (c,d) by Lemma 4.3. The endpoint (¢, 3) is close

to (0,h). As in the previous calculation, (4.21) gives

A<l « L
Nt/ H B,

by (5.6), so ¢ = 0 if By is sufliciently large. Hence

tI\% it H B

and as in (5.10)

so d = h if By is sufficiently large in (5.6). This completes the proof of the
Lemma. [ ]

In section 2 there was a case when the rational number e/r of smallest
denominator had r < R, and we picked another label a/q, with

2C,
<=
R2

1 <
3R2

a €

q r

by (2.7) and (2.8). Taking ¢/r and f/s of Lemma 5.1 to be the e/r and a/q of
section 2, we see that the Coincidence Conditions hold at e/r if and only if they
hold at e¢/¢ (up to a bounded factor in the inequalities). Hence the change of label
does not essentially affect whether a coincidence occurs.
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Lemma 5.2. (coincident consecutive Farey arcs) Suppose that the conditions of
Lemma 5.1 h ld, and that there are at least L — 2 Farey arcs stn’ctly between
I(e/r) and I(f/s), and that the L —1 Farey arcs I(a/q) following I(e/r) have g
in a range Q q < 2Q satisfying (5.6), and that the four Coincidence Conditions
(4.2) to (4.5) h ld with the appropriate accuracy (4.6) and (4.7). Suppose also

that

MR?
L . 5.11
< N (5.11)
Then the Second Coincidence Condition (4.3) holds with
2
Ay < HIZN' (5.12)
and if the magic matriz is type 3, then
R4
C .
< HISN (5.13)
The poinis (y,z) on the resonance curve corresponding to the L Farey arcs are
close to the same integer point (c,d), and there is an intermediate value of T for
which \
T R
— 40 (_) ¢4 0
y=ct H et (HL(rm—{-s))’ (5.14)
d+0/m+5\ d+O/R2\ 5.15
z= =
( H ) (HLT‘) ’ (5.15)
and .
= =< LN. .16
3hy(z)r(rz + s) (5-16)
Proof. We number the L Farey arcs as I(a;i/q:), where ao/qo = e/r, and
a;  eu; + fi; oy q;
v:-qi—m, $z~t—i, TfEa-i-Sz——i-
Then
viv2 — v; < 1/R?, (5.17)

for i =0,...,L — 3. The Fourth Coincidence Condition is

tal U\« &
(a2 <

From (5.4) of Lemma 5.1

s :
ou; < 4 « B
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so in the notation (5.9) we have

V74 /u; \\\ q; o
kkm— - t,—gkt—i))) <5 (5.18)

The bound (5.10) in the proof of Lemma 5.1 says
vt — ti!](ﬁ\ < % (5.19)
\t/j

when (5.7) holds, so (5.19) is true for ¢ =1,2,3, 4.
We sharpen (5.18) to (5.19) for ¢ = 5,...,L — 1 by induction on i. Suppose
that k > 4 and (5.19) holds for i =1,.. ., k. Since k — 2 > 2, we have

rT+ 8 X 11+ S

for zx_o < £ < Tk 41, and so for j =k — 2 or k we have

J TTi,1 + 8)°
Tj— Tt = — / (rz + 5)%dv < (——Héz—),

v Vil

and Y )
* TThy1 + 8
Tk — Thya = —/ (rz + s)%dv < %,
Vk+2
where we have used (5.17) to estimate the range of integration. We use the inter-
polation mean value theorem in the form

(T2 — Tk) (9(Tkt1) — ) — (Tr—2 — To 1) (9(TK) —7) +
+ (o — Tki1) (g(zr—2) —v) =
1

= (@2 —2) (@2 — Te1) (@K = Th41)g"(€).

for some ¢ between zxy) and zx_ . Hence

rTip1 +8  (rzrer +8)2
9(@hpr) =7 € 19" (€)].

Now ¢ is an intermediate value between values z; at which the Second Coinci-
dence Condition holds. Lemma 4.1 says the the set on which the Second Coinci-
dence Condition holds in its analytic form is an interval, and the bound (4.20) of
Lemma 4.2 is valid at x = £, with A, < R?2/NH. We deduce that

TTry1 + 8

= (5.20)

9(@rp) -7 <

Multiplication by t; gives (5.19) with a larger constant. Since ¢; <« H/B, by the
condition (5.6), the left hand side of (5.19) is numerically less than 1/2. Hence
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(5.18) implies (5.19) with the same implied constant, independent of i, and (5.20)
holds uniformly in k. This completes the induction step.

LLiUD 11d

For the second half of the proof we suppose that the stants in (5.12)

con 5.
to (5.25) are so large that Lemma 4.2 implies Lemma 5.2 for L < 24. For L > 25
we use a subsequence i, ..., ig of the Farey arcs I{a;/q;), with i; = [§(L —1)/8§],
so that

. s L-1 1> 2L
Tip] — 14 2 ——— — —.
3+ 3 ] = 25
For y=1,...,8 let ¢; be the corresponding value of z;. For = between 65 and 6,
we have
NR? R?
IN >~ __ - e | @
Lia¥ N 3 TL T8~ s
r(rz + ) r
and Y )
B+l R~
0; — 0,4 = rz + 8)2dv > )
J
For each k=1,...,4 thereis a & between 0o and Dok with

, ) ] .
) = -~ — L e — K —. (5.21)
g (&) R N T (5.21)

The next derivative g”(z) changes sign at most once, so the range for £ can be
divided into at most two subintervals on which g/(z) is monotone. At least two
consecutive & fall into the same subinterval. If for example & and & fall into
the same subinterval, then ¢'(x) is monotone between & and &5, and we have

. 0, + s R?
"0,) < — 0,) — v <« 22 .
9(1)<<H, 9(01) — v« T <<HL7‘

The value = = 0; satisfies (5.16), and the corresponding point (y, z) satisfies
(5.14) and (5.15) with ¢ =0, d = h.

Now we take k = 2f and k= 2¢—1 in (5.21) for ¢ = 1,2. There is an e
between &or and €9y with

9"(ne) = g'(Eae—1) — g'(E2¢) r Lr’ Ly3

— = . 5.22
Eae—1 — Eoe <HRE < HR? (5.22)
Therefore there is a ¢ between 7, and 7; with
” " 3 2 2,.5
@y - 9 m)—g"(m)  Lr° Lr® L% 503
9+7(<) e IR R <Em (5.23)
Now (5.22) is equivalent to
log hy(z) —log hy(x) + 3log(rz + s) — 3log(r'z + §') <«
(rz +s)3 R2 (5.24)
<« B0 @) < o
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for £ =m and 72. From the analysis in Lemma 4.1, if the magic matrix is upper
or lower triangular, then (5.24) holds for all z, which implies (5.12). If the magic

matrix is type 3, then \o 24} holds for an interval of z which includes m and 1.
Putting z = (, we see from (5.23) and (5.24) that

2.5
g0 + ——g"(O) <« LT
r¢+s HR*
By (4.24) and (4.26) in the proof of Lemma 4.2, we have
2C <« L*r® N L*r3N?
ha(Q)(r¢ + 8)(r'C + 8)4 ~ HRY ~ MRS’
S0
cw R NR2
< HL3N M

By (4.12) we can drop the second term in the upper bound for C, so we have (5.13).
If we take the constant in (5.12) large enough, then the 1nterval on which the
Second Coincidence Condition (4.3) holds to an accuracy (5.12) extends for at
least L Farey arcs on each side of z = { by (4.13). We note that (5.12) is
consistent with the requirement that A; > 1/M of (4.6) when (5.11) holds. m

Lemma 5.3. (points close to long resonance curves) Let (5.5) hold, and let C —
=Cle/r,[/s¢'/r', f']$') be a resonance curve. Suppose that there is a block of I
consecutive Farey arcs I(a/q) on which the Coincidence Conditions (4.3) to (4.7)

hold, corresponding to an interval J of values of z, and for all x on J

1 [MNR?
K(z) = @) SV m (5:25)

and the denominators q lie in some mnge Q < q < 2Q satisfying (5.6). Then
there is an inleger point (c,d) and an =’ in J for whzch the point (y',2') on the
resonance curve satisfies

/ R2 N
i O ————— .
y=ct (HL(T:E’+3))’ (5.26)
R2y'
Z=dy+o| —"—" ). 5.27
+ (HL(T.’E’ + s)) ( )
Moreover either )
BsR
"
’/‘7<z<23c’ l9"(@) < HLz!(rz' + s) (5.28)

Jor some constant Bs, sufficiently large in terms of the bounds for the derivatives
of the underlying function F(z), or there is a value = = x, at which y=rc and

Rgccl
z=G(c)=d+0 (m) (5.29)
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and a value x = x5 at which 2 = d and

/ D2 N\
_ 1 _ I
y=G Hd)=c+O0 (———HL(W — 8)) , (5.30)

where z = G(y) is the equation of the resonance curve.

Proof. If L < 100, then (5.26) and (5.27) follow from Lemma 4.2. For L > 100
we number the Farey arcs I(a;/¢;). Let o = [L/4], B = [3L/4], and let J’ be
the interval [aa/ga,ap/qp]. Let ¢/g be the rational number of least denominator
in J'. Then ¢/g is a;/q; for some i. If ¢ < L/2, then we take eq/ro = c/g,
and we take fo/so to be the successor of ep/rg in the Farey sequence F(rg).
The resonance curve Cy = C(eo/ro, fo/50; €0/Th, f/54) represents all the Farey
arcs I(a;/q;) with i < 7 < B, at least (L +1)/4 arcs. By Lemma 5.2 there is
an integer point (co,dp) close to Cy; for some zo the corresponding point (yo, zo)
has

D2

U , \
yo—‘—Co+Ov(,ﬁO), 20=d0+O(HLLT‘O') ) (5.31)

If 5 > L/2, then we take fo/so = c/g, and eq/ro to be the predecessor of fy/sg
in the Farey sequence F(so). We apply Lemma 5.2 to C§ = C(fo/s0, eo/r0;
f0/50,€5/75), and then we use Lemma 4.5 to deduce an integer point close to Cy

with

[ R ro (. KGg\\

— i N /~.g\2\

Yo L°+U\HL30+NR2 \L+_M}} (9.34)
s S K?
zo=d0+o<ﬁ0+N;22 <1+ﬁ°>) (5.33)
where we write
1 1 fo € 1 fo e .
Ko = = (———)s (——-):K(z]),
3;.’,3(0)',"036 3;1,3(0) \ S0 To / 3:n3(9) \ S0 r/

where z; is the value of z with (ex + f)/(rz + s) = fo/so. Since eg/ro is
between e/r and f/s, the fraction f/s lies in the Farey sequence F(so), so
fo/s0 € f/s,and z; > 0. There are at least (L + 1)/4 Farey arcs represented by
the resonance curve Cp, so by (5.25)

MNR?
LN < Ko € {/ (5.34)
y H
and
NR? R?
roso < < (5.35)

Ko > L'
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the inequality (5.35) is also valid in the case ¢ < L/2. Using (5.34) and (5.35)
with (5.5), we can simplify (5.32) and (5.33) to

R? s
yozco+0(m), 20=do+0(3). (5.36)

In both cases, for  in J’ we have

e L-3 ex+f [ L-3
S

AN

r 4Rz O rT + S

so that
1 T o T
A AT i

P , 2 .
re+s HR? re+s HR2

We have e/r < eg/ro < fo/so € f/s, so we can write

(La)=(C )G )

asin Lemma 4.6 with h, 21, 5,k >0, hf — jk=1. If k£ > 0 then we have

(5.37)

j . o £ s 1 255 (5.38)
T <= :
h To k 0 hk To ’
% 2k kNR? _kR?
S0
¢ 5.39
S Kor? Lr? (5.39)
Even if k =0, we still have the first inequality in (5.38), so
hSO SO NR2 RZ
< — < =K . 5.40
J To T Korrg Lrrg ( )

Lemma 4.6 lifts the point (cp,do) close to Cy to a point (c,d) close to some
point (y/,2’) on C where the gradient of C is —z’. In the case (5.32) we have

T l’ro kR2\
v-cro(im (10 ) o (2 22, ey

Kl J7o0 th
=d+0 2o 5.42
d=d+ (NR2+M)+ <H+HLro>’ (542)

where

h k
Ki=K|-]= )
! <k> 3porro

In the case (5.36) we have
T K? kso ¢R?
= O 1 0O 5.
y=c+ (NR2< +M))+ (H +HLSO) (5.43)

Kl hSO ij
—d+0 o2 . .
d=d+ (NR2 * M ) + ( 7 ¥ His (544)
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Let K’ = K(z'). Then by (5.25), (5.5), and (5.37)
r K2\
, 1 i T
ve T <NE KH )<<NR2 7<E<
HL(m:’ +s)’
and
s K, » K’ NR2 < rw’+s<<
R SWE ST AR < n
< rz’ R? s R/ R%x’
H L(rz’ + s)r tH "Ls(rz’ + s) HL(r:):’ +8)’
By (5.39) and (5.40), if k # 0, then
fro  kR? ER? Kqr K'p R?
H " Wre € Hirg S HIN <HIN < Ti(o 1)
and if k=0, then £=1, r =1 and
brg kR? T R?
=2+ =
H HLro H — HL(rz' +s)
Next we have
jro hR? < hsg hR2? <« hR?
B " HIre < H VT HIr, < Hirg
Now by (5.37)
h e ez’ L
sro § r19 S rx’+s R2
(5.45)
S e’ +f x’
s ro'+s  s(rz! +s)
s0 we have
Jro hR? R?z/
— + < .
H ~ HLrg — HL(rz' + s)
We have as above if k # 0
ksq + LR? < kR? < R?
H HLSO HLTO HL(T‘.’E’ + 3) '
Now by the construction of the interval J/ in the case i > L/2

1

— = _io(L)<« !
rso  r(rz’ + ) R? r(rz’ +s)’
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soif k=20, then h=#¢=1 and

2
kso  (R? R R

H T HLse HLss & HL(rz' +s)’

Also in the case i > L/2

J _f_fo_f el &
sso s so s r+4s  s(ra’ +5s)’
) _
_’}11%2 11%231

HLsg < HL(rz' + s)’
and by (5.35) and (5.45)

hsg hR? Rz’
rr < rr << 1T/ P \
i1 11 LT 11 L/k'f‘m' -+ S}

Hence the error terms in (5.41), (5.42), (5.43), and (5.44) can all be estimated as
in (5.26) and (5.27).
Suppose that (5.28) is false. Then since

x

y—y = —/ g" (z)dz,

the values of 3’ for 2//2 < = < 22/ include an interval [y’ — &,y + 8] with

5 — BsR?
© 2HL(ro + s)

If Bs is so large that § is greater than the error term in (5.26), then y — ¢ for
some value z = z; with #//2 < z; < 22’. The corresponding value z = z; has

/

T —

c—y =<

for some ¢ between z; and 2’. We deduce (5.29). A similar argument shows that
z = d for some value = = x5, and (5.30) holds. |

Our next two lemmas address points that were overlooked in [3]. We count
coincidences by estimating the number of integer points close to resonance curves.
In 2] and [3] it seemed obvious that an integer point close to the curve corresponds

to at most one interval of coincident Farey arcs. In Lemma 5.4 we prove a little
less, that there are at most seven such intervals. Lemma 5.5, that any two integer
points close to the resonance curve differ in both coordinates ¢ and d, is implicit
in the calculations of {3]. The statement and proof of Lemma 5.5 were omitted in

error from the detailed account in [3].
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Lemma 5.4. (coincidences with the same integer point) In Lemma 4.3 the Farey
arcs for which the four Coincidence Conditions hold, and the integers c, d take
fixed values, fall into at most seven disjoint intervals, such that if I(u/q) is any
Farey arc in one of those intervals, then the four Coincidence Conditions, weakened

by a bounded factor, hold on I(a/q).

Proof. We divide the resonance curve into at most seven regions. By Lemma 5.1
there is at most one point zq with g” (:1:0) = 0. The corresponding po'mt (yo, 20)
on the resonance curve is a Cusp. The curve has one concave and one convex
branch. We consider each branch separately. Each branch has negative gradient,
so the lines y = ¢, z = d divide it into at most three parts. Finally, if the points
where ¢ = s/2r and = = 2s/r occur in the same region, then we divide the region
at the point where £ = s/r. On each part of the curve the numbers ¢"(z), y —c,
and z — d have constant sign, and either £ < 2s/r or = > s/2r holds throughout.

Now suppose that there are two Farey arcs I(a;/q1) and I(as/g2) at which
the four Coincidence Conditions hold, with z; and zz in the same region of the

curve, corresponding to the same integer point (rv d) in Lemma 4.3. Consider

cOIICspOICUE YO LIC sl vgpel pullls y & 1 2.eiNINE el ) 81 L0 o)

a general value z = u/t in £; <z < 2. In the notation of Lemma 3.4 and
Lemma 4.3 we have

L ﬂt+au—tg( )+O(N§p (1+K;§z)>)=
—ﬂt-{-au—tg( )+O(H)

by the assumptions (4.32) and (4.28). At £ = z; and z2 we actually have

L——L’zdt+cu+0(%). (5.46)

Subtracting and dividing by t, we have for £ = z; and z,

ru+st< rT+ S
Ht H

B-—d+ (a—cz—g(z) < (5.47)
The derivative of the left hand side of (5.46) is a — ¢ — ¢’(z) = y — ¢, which has
constant sign, so the left hand side is monotone for 7 € £ < z2. For z < 2s/r
we deduce that (5.46) holds for z; < = < z3. In the case z > s/2r we put
X =t/u=1/z, and we use

1 q r+sX r
(,B—d):):-i—a—c—Xg(f) <<E<< H < ﬁ (548)

The derivative with respect to X of the left hand side of (5.48) is

o-o(3) 3o(3)
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so the left hand side is monotone, and (5.48) holds for z; < z < 2. In both cases
we have (5. 46) the Fourth Coincidence Condition weakened by a bounded factor.

For bllt: Luuu kJUL[ll.ldcuLc \JUIIdlblUu Dy u(-‘:uuua 3.4
aby  a’bl
rra
u _a(f-t) o Kar Khr!
= - - 5.49
( ¢ +t t&u+x)+uwu+yﬂ + (549)

+O( Kéh)

The assumption (4.27) of Lemma 4.3 implies (4.35), so K(z) > N, and we may
drop the second error term in (5.49). For z; € = < z2 we have (5.46), so (4.38)
gives

Khr! Kor  (Kh — k)T k4C <
tr'u+ s't)  tru+st)  tlru4-st)  (ru 4 st)(r'u -+ s't)
R 1 NR? R? R?
<Ly -

Hig T NG SHE@q Hg S Hy
where we have used (4.35) again. Next we note that
c u(f—¥¢) c—alcu+dt) _

= = ct — du,
t t t
an integer, so (5.49) simplifies to
fabs 'y c WA\

(e-7)-(G-i-wG) o (1)

For £ = z1 or x5 the Third Coincidence Condition holds, so (4.33) asserts that

2

H(rz + s)
at T = z; and 4. The derivative of the left hand side of (5.50) is —g”(z), which
has constant sign, so the left hand side is monotone for 1 < z < z2. For £ < 2s/r
we deduce (5.50) for z; < z < z2. The other caseis s/2r <z < R%/r?; the upper
bound for = comes from (4.27). The combination (5.47) minus z times (5.50) gives

2 2

; R
B —d+ zg (113) (:E) <<ﬁ+H—<<'fI—‘ (5.51)

at £ = z; and zy. The derivative of the left hand side of (5.51) is zg”(z),
which has constant sign, so the left hand side is monotone and (5.51) holds for
z; € ¢ € 72. Subtracting from (5.47) and dividing by z, we recover (5.50) for
z1 <z < 72. The steps from (5.49) to (5.50) are reversible, so we have

((E—z&— ’b'))< R2
q 7 HQ

for z; < = < x4, the Third Coincidence Condition weakened by a bounded factor.
|

y—c=a—c—g'(z) < (5.50)
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Lemma 5.5. (uniqueness of coordinates) Let L and Q be positive integers, with Q
satisfying (5.6). Let Bg be a constant sufficiently large in terms of the derivatives

of the underlying function F‘(fr\ Then on the part of the resonance curve with

12 JUunCLLIon 1241 CSOTLGNLE LWL Woilia

HLN
BsQ'’
among the integer points (c,d) corresponding to blocks of at least L conscutive
Farey arcs I(a/q), each with ¢ < 2Q, strictly between the Farey arcs I(e/r)

and I(f/s), the integer c determines the integer d uniquely, and the integer d
determines the integer ¢ uniquely.

K(z) < (5.52)

Proof. If z corresponds to a Farey arc I(a/q) in such a block, then

1 <8 e ex+f e 1
2Qr "¢ 1t rzd+s v r(rz+s)
1 <£_g_i_em+f T
20r 5 s q s rz+s rirc+s)

so rz + 5 < min(2Q, 2Qz), and since r < Q, we have

s 20
<CJ

Z —. (5.53)

0 STE
If I{a1/q1), I(az/ge) (with z; < z2) lie in blocks with the same ¢ but with
different d; and ds, then in (5.27)

<<

d: — z: —
A Ftmite) S HIr S By

so for B, sufficiently large we have |d; — ;| < 1/4. Hence for some € in z; < £ <
< 2 we have

1
3 < |71 — 22 = [€(y1 — 92)| € 2|y1 — 0]
.29 Q R Q 1

lyy — 0] <« = < ((z1) < R
6

S TN S HL(rz, +5) C HLNC

=

which is impossible if Bg is sufficiently large.
Similarly if I(a1/q1), I(az/q2) (with z; < z4) lie in blocks with the same d
but with different ¢; and ¢, then in (5.26)

R2 r
- Yi << I‘ Ty
VS HLeamt9) < HLN (@) <35 < B
and since Bg is sufficiently large, we have |¢; — y;| < 1 /4. Thus for some £ in
z; < £ < z9 we have

1 2 o R?
EHL rza+s  HIrg'

=)
b
8

1
<y —ya| = ElZI —»| K

we
1
2
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and we have )

T < E <K (5.54)

HIr'

a4 AV

There are now two cases. If rz; > s, then (5.52) with z = z, gives
NR? < HLN
7"2121 BeQ ’

and so

which is impossible if Bg is sufficiently large. If rz;, < s, then ( 5.52) with z = z;
gives
NR? HLN

s " BeQ
and (5.53) and (5.54) lead to the similar contradiction

BeR? s _ R
HLr ©Q "' HIr
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