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ON SOME CONNECTIONS BETWEEN ZETA-ZEROS AND
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Abstract: A relationship between 3-free integers and zeros of the Riemann zeta-function, which
1s more explicit than the classical formula is presented.
Keywords: zeros of the Riemann zeta-function, 3-free integers.

As usual, a natural number is called k-free if it is divisible by no integer k-th
power other than 1. Denote p3(n) = 1 for 3-free n and 0 for remaining n.
Following some ideas of my previous works (see [2] and [3] and compare [6]) we
will describe the analytic character of some functions t(z) and T'(z) defined in
the case where there are no multiple zeros g of the Riemann zeta-functions for

Imz > 0 as follows
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where the summation is over all non-trivial zeros ¢ of ¢(s). The sequence T,
yields a certain grouping of the zeros.

If ¢(s) has a multiple zero at s = g, the corresponding term in t(z) and
T(z) must be replaced by an appropriate residue. In the following we will consider
this general case.

First we prove
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Theorem 1. The function t(z) is holomorphic on the upper half-plane and can
be continued analytically to a meromorphic function on the whole complex plane,

2 d

which satisfies the following functional equation

€ o= eI M T (L 4+ 20+ 3)e(20 + D)
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+g2e< 2D (2my 8020 4 D)e(2l + 1)
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s re function of order 2/3 of variable
to 2/3) and the b1rd term is an entire function
of the Ritt order equal to 4/3.

T'he only singularities of t(z) are simple poles at the points z = logn on the real
axis, where n is a 3-free number (also n = 1) with residues

p3(n)
z:rl(g)sgn (Z) 2mi

A more difficult problem connected with the analytic character of the fune-
tion T'(z) will be described in

Theorem 2. The series
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where z = x + iy is uniformly convergent for y > & > 0 almost uniformly with
respect to x. If y = 0, suppose that, z is not equal to logn, where n is 3-free
number, then the series Y‘ OTn(T‘\ is also convergent to T/fr-\ and the conver-
gence is uniform in every closed interval not containing pomts of the form logn.
Finally, applying Theorems 1 and 2 we prove an explicit formula for 3-free
integers which is also an explicit formula for ((3).
Let Q3(x) denote the number of 3-free positive integers not exceeding x.

Then evidently
= Z p3(n) = —2mi Z 68 1(2)

z=logn
n<x n<x

Let

@3 (:L‘ + 0) + Q3 T —

Q5(w) = > = ua(n)
n<x

where Y’ 1ndlcates that when z is a integer the term corresponding to n = z to

have the factor 1. Then we have
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Theorem 3. There is a sequence 7,, 2" lcyg < 1, < 2%y, (n > 1), where ¢g is
an absolute positive constant, such that
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where k, denotes the order of multiplicity of the nontrivial zero ¢ of the Riemann
zeta-function ¢(s).

For the proof of this theorems it is sufficient to remark that we have to
consider for any complex z = z+iy from the upper half-plane H = {z € C:Im z >
0}, the integral

and by a simple and smooth curve 7(0,1] — C denoting by I (—%, -ﬁ-) such that
7(0) =—3, 7(1) =% and 0 <Im7 < 1 for t € (0,1).

The sequence (7,,) yields a certain grouping of the non-trivial zeros of the
Riemann zeta function, implicated by the theorem of Balasubramanian and Ra-
machandra (see [1]) and independently of Montgomery (see [7]) and compare [5],
th.9.4), such that 2" ley < 7, < 2% for n > 1 with a suitabl

able chosen constant
¢y, such that

| s(o + i) |_1§ c1(log 1) for o> -1

where ¢, and ¢y are absolute constants, ¢y depends on ¢s.
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In the proofs of theorem 1, 2 and 3, using methods presented it |2] and [3],

we have to use the Mellin-Barnes integrals (see [4], p.64).

The presence of two last terms in theorem 2 and theorem 3 is easy to explain
as follows.
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We have by functional equation for ¢(s)

S e*¢(s)
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