Functiones et Approximatio
XXVII (2000), 201-209

To Professor Wlodzimierz Stas on the
occasion of his 75th birthday

ON THE RATE OF CONVERGENCE OF THE BEZIER TYPE
OPERATORS

PAULINA PYCH-TABERSKA

Abstract: The rate of pointwise convergence of the Bézier type modification of some discrete
Feller f‘p‘“‘”*"’“‘“ of ]"\"‘”" bounded functions is estimated. In the gener al theorems the Chantur le
modulus of variation is used In particular, corresponding estimates for functions of bounded
p-th power variation are deduced.
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1. Preliminaries

Let { X} .}32, be a family of sequences of independent and identically distributed

random variables with expectation EX;, = z. &k € N := {1,2,...} and fi-
nite variance o2(r), where z is a real parameter taking values in a bounded
or unbounded interval I € R := {—oc,oc). Suppose that the random vari-

ables X, X2,,... have the common lattice distribution F = {p1,(z) : z €
I,j € Ji} concentrated on a set J; C ZNI, Z:= {0,£1,42,...}, where the
K weights>> p;; of the «atoms>> j are continuous on 7. Consider the sum
Sne = Xip+ Xop + -+ + X and its distribution {p, () iz € 1. j € I}
being the n-fold convolution of F' with itself. Introduce the discrete Feller oper-
ators

Lof(2) = Ef(Sp/n) = Zf( )pnm (neN) (11)

JEJTn

for real-valued functions f defined on I and satisfying E|f(S, ;/n)| < cc [5, p
218).

Suppose that J, is of the form {0,1,2,...,m,} with some m, € N or
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Jn = Np := N U {0} and define, as in {2], the Bézier basis functions

qn rk(x) = z prj(z) for k€ J,,

J€EJn. 2k
Gnom,+1(7) =0 if J,={0,1.2.....,m,}.

QU (@) = g2 (@) — 42 i1 (2).

he Bézier type modification of operators (1.1) is defined by

L@ fipy .= N f/E\ O (2 (1.9)
noJA) n‘%,\/ \Ee=)

R ecently, several

uuuuuuuuu au tudie specia
operators (1.2) in which L, f B, f are the Bernsteln olynomials of f, ie.
Prj(2) = (;’“)Ij(l—x)” I, zel=[0,1],j€J,=10,1,...,n}. Asis known [10.

p.372], the Bernstein-Bézier operators B f are not the Feller type ones. Some

e

results concerning the approximation by operators B,(La)f are given e.g. in [3], [10].
In Darricu]ar Zeng and Piriou [10] gave an estimate for the rate of convergence

of B f for functions f belonging to the class BV([0,1]), i.e. for functions f of
bounded variation in the Jordan sense on [0, 1].

In this paper we first present a general estimate for the rate of pointwise
convergence of the discrete Feller-Bézier operators (1.2) in the case where f is
bounded on the interval I and possesses the one-sided limits f(z+), f(z—) at a
fixed point x. In particular, we obtain the corresponding estimates for functions
f of bounded variation in the generalized sense on [. In the special case where
f € BV([0,1]) and L&f = B f we get the above mentioned result of Zeng
and Piriou [10]. Finally, the extension of our results to unbounded functions f
is presented. Note that analogous problems for the discrete Feller operators (1.1)
were considered e.g. in [1], [8], [9].

Throughout the paper we use the symbol M(I) [resp. M, (I)] for the class
of all real-valued functions bounded on I [resp. bounded on every compact subin-

A o liirdad fr et i
terval of I] For positive integer &, the modulus of variation of a bounded function

g on a compact interval Y = [¢,d] will be denoted by vkx(g;Y) or ve(g;c.d) and
will be defined as in [4] (see also [1], [8]). If Y is an unbounded interval, e.g.
Y = [¢,00), then vg(g;c,00) is understood as the limit of vi(g;c.d) as d — .
Clearly, if g € M(Y'), then for every integer k, vi(g;Y) < oo. Some basic prop-
erties of the modulus of variation can be found e.g. in [4].
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2. Results

Let f € M(I) or f € Mu.(I) and let at a fixed point z € Int] the one-sided
limits f(xz+), f(z—) exist. It is easy to verify that for all ¢ € [,

JO =27 flz)+(1 = 279 @) +g.(0) + 27 (f(z+) = F(z—)) sgnl™ (2)
+ (f(@) =27 f(z+) — (1 = 27%) f(2—)) 8a(t),

where
ft) = f(z+) ift>n, 2 -1 ift >z
g:()=¢0 if t =z, sgn{® () = {o if t =,
\f(t)—f(l'—) ift < T, -1 ift <x
d.(t) =0 if t # = (see [10, p. 381]). Therefore

LEf(x) = 27" f(a4) = (1 = 27°) f(2=) = LiMga(2) + A (fi2) (2.1

AP (fra) =27 (fat) = flz=)) LiPsgn(® (2)
+ (f(@) =27 f(24) = (1= 27 ") f(z—)) L{du(2).  (2.2)

Let a,b be two arbitrary positive numbers. Write the term L,(f‘)gx(z) in the
form

Wat= Y o) )o@ +nen ¥ a(Hete. ey
k€A, (a.b) k€D, (a.b)

where A, (a.b) ={k € J, 12 —a < k/n <z +b}, Dy(a.b) =J,\ Az{a,b) and
Us(a.b) = 0 if neither of the points z — a,z + b belongs to Int,4,(a.b) = 1
otherwise.

In order to estimate the terms of the right-hand side of (2.3) let us observe

that Qn k( ) 2 0»
> Qi) = (Z Pn,j(w)) =1

I\'EJn jEJn

and that the variance of the avergage S, ,/n is equal to

; 2 2
(£ -2) puste) = 2.

n
1€n

Cousequently, in view of the obvious inequality |u® —v®| < alu—v] if a > 1. 0 <
v<u<1, we have

NealC)

n

(——T\ QL () <Oz? <~—:c\ (@n x(2) — Gniy1(x)) =

}cEJ kEJn

Arguing similarly to the proof of Lemma in [1] (see also the proof of Lemma
in [9]) we obtain the following fundamental estimates.
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Lemma 2.1. Let f € M,(I) and let a > 0, b > 0. Then, for every n >4,

T 5@ |
ey i) Grs®)
< (1+SGZQ( )(Z_j% (g3 Le(—ja/ V) + —zum (g2 L (—a)))
+(1 fao” (T )(m:% (923 1230/ V) + —5vm (gz,I.(b)))

where m = [/n], I;(h) = [z + h,2]N T if h <0, L(h)=[z.x+h]NTif h>0.
If f € M(I) and if at least one of the points z — a,z + b belongs to Intl, then
forall n e N,

D gw(f)Qi‘.’imlsa‘,’zf)m(gx;n,

'k€Dy(ab) N7
where ¢ = min{a, b}.

Lemma 2.2. Let [ = [0,00) or I = (—00,0¢) and let a function f of class
Mioc(I) satisfy the growth condition

If(z)] <¢(z) forall zel (2.4)
with a non-negative function 1 € C(I) such that for all n >ng, r € I,

Zw ( )Png ) <9*(z) (peC),p(x) >0 forall rel).

FEJIn

Then

> e (f)biw)

k€D, (a,b)

where ¢ = min{a, b}, o(z) = \/o?(z).

Proof. In view of (2.4) the left-hand side of (2.5) is not greater than

> (¢(5) ) et

|k/n—z|2c *

<2 (3)
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by the Schwarz inequality. Thus, estimate (2.5) follows. [ ]
Inequalities given in Lemmas 2.1 an

1 and 2.2 togeiher with identity (2.3) enable
us to get the estimate of the term L{™g »(2) in (2.1). To obtain the estimate of
the term A" Jiz) in (2.1) we consider only the points z € I at which

of(x) >0 and B(z Z\]—mlpu (z) < . (2.6)

720

4T

Lemma 2.3. Under the assumptions (2.6) we have
A (fp)) < —2T ~ flp—
A5 £ s (B ) = Sam)
+en(@)|f(z) = fx—)I(20(z) + o (x)))
where 0 < 7 <082 and e,(z) =0 if z # k/n for all k € J,, en(x) =1 if there
exists a k' € J, such that z =k'/n.
Proof. First, let us recall that in view of the Berry-Esséen Theorem [5, p. 515],

> pn'j(m)—m(t)g% (n € N.t € R)

J—nrlto(x)/m
where ,
1
Nt = = jf exp(—y*/2)dy
—

and 0 < 7 <0.82 (see [6, p. 93]). From this it follows at once that

and
I [273(x) 1
pus(@) = Epnsfe) = 3 ety < o (22 4 (2.9
<k F<k-1 n\ oi(z) 2ro(x)
Further, it is easy to see (as in [10]) that
LiMsgni®z) = (27 - 1) Y Q)(x) - > Q)
k>ne k<nx
=273 (gha(@) — a2 1(@) = 3 QU@ - Y QU
k>nx k>nx k<nz

_QQ(YPTL? )a_(l_e nch(l'))

j>nx
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and

Hence, in view of (2.2),

A (fra) < |f(z+) - f(m—);,l ( S p

< off(z+) - f(z-)]

+alf(z) = flz=)len(2)pn w (7).
Now, the result follows by (2.7) and (2.8). ]

Combining identity (2. 1) with the inequalities given in our lemmas one can
formulate correspondlng estimates concerning the rate of pointwise convergence of
the operators L‘ ’j

First, let us choose a =b =1 in (2.3). Then we obtain the following

Theorem 2.4. Let f € M(I) and let at a fixed point x € Int! the one-sided
limits f(x+), f(z—) exist. Then, for all n > 4,

S 2 (1 + 80(02(1‘)) (i ! (gcra (.7/\/_) Uy (gr Y (1)))

vi(ge; 1) + AR (f: ).

where m = [y/n]. Yo(h) =[x —h, 2 + h]N I, 9.(1.1) = 0 if neither of the points
= L.z +1 belongs to Intl.9,(1.1) = 1 otherwise, and |AY )(fjm) is est
via Lemnra 2.3.

Next, suppose that [ is an unbounded interval and choose a = b = A >0
in the formula (2.3). Then we get

Theorem 2.5. Let all conditions of Lemma 2.2 be satisfied. If moreover the
function f has the one-sided limits f(z+). flz—) at a fixed point x € Intl and
|z| < A, then for all n > max{4,no},

52@+%§¥5(%41< YalGA/VA) + (g Ya(A)) )

1 ] ur /

+Aﬁ(w@wm+%wm¥m)+MWan
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where m = [\/n], Yz(h) = [z — h,2+ AN T and |A$f1)(f;a:)| is estimated via
Lemma 2.3.

Remark 2.6. In view of the continuity of the function g, at z, the right-hand
sides of the inequalities given in Theorems 2.4 and 2.5 tend to 0 as n — oo (see
Remark 1 in {9]).

3. Corollaries and examples
Let p > 1. Denote by BV, (I) the class of all functions of bounded p-th power

variation on the interval I and by Vp(g;Y) the total p-th variation of the function
g on the interval Y C I, defined as the upper bound of the set of all numbers

/ \ 1/p
(ZIQ(H) —Q(Tz‘)lp)

over all finite systems of non- overlapping intervals (tl, Tg) C Y. Clearly, if Vp(g, ) <
o¢ then for every integer j

This inequality, Theorem 2.4 and some simple calculation (see e.g. [9, p. 152])
lead to

Corollary 3.1. If f € BV,(I), then for every x € IntI and all n > 4,

() £/.\ aq—
L TS\ T4

[ed

=) f(z—)

r—\

Sla+) —(1-

8(1 + 9a0?(z)) o )
(V) +1/p Y (VEHT)THYRY (g, Uy + | AL (f: )],

v k=0

<

where Up = I, Uy = [ = 1/Vk,z + 1/VE|N T if k = 1,2,....n and |AY)(f; 2)|
is estimated as in Lemma 2.3.

Analogously, from Theorem 2.5 one can deduce corresponding estimate for
functions f of bounded p-th power variation on every compact interval contained
in I and satisfying the growth condition (2.4). We will not formulate this corollary

explicite.
Note, that from Theorems 2.4 and 2.5 similar results for more general classes
of functions f of bounded ®-variation can be obtained, too (see e.g. [1], [8], [9]

Now, we will present some simple examples.

1) Let LYV f = B{*®f be the Bernstein-Bégier operators of f € M(I),
defined by (1.2) in which I =0,1},J, ={0,1,...,n},p, (z) = ()2l (1 —z)d.
In this case Theorem 2.4 applies with o?(z) = (1 — z), B(z) = z(1 ~ z)(22? —
2r+1), ¥,(1,1) =0 and
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In view of the Remark 2.6,

: (Of) — ) — DTAN £
lim By f(z) =27f(z+)+ (1 =27 f(z

)
whenever f is bounded on {[0,1] and z € (0,1) is its discontinuity point of the
first kind. This means that our estimate can be treated as a quantitative version
of Corollary 1 in [10].

Note, that we can also proceed as follows. Choosing in Lemma 2.1, a =
z, b=1—z and using representations (2.1), (2.3), we easily get

[BISf(x) =270 fla+) — (1= 27) f(2—)]

m—1

1 iz §(1 — ) 1
< W, E i a2 JANT ) _ .
N a(w)(jzl j3bj (gx,w \/ﬁ‘m+ vn ) + mgvm(gx,(),l)
+ A (f; 2],

where m = [\/n), Wa(z) = 2+ 8a(l — z)/x + 8aur/(1 — x) and 3A§{*>(f; x)| is
estimated in (3.1). For functions f € BV,(]0,1]) the above inequality leads to the
following estimate

B f(2) = 27" f () — (1= 27%) f(2-)

T

— 1 T T L\ 1+1/p / ) X \
Séa(x)wg,(vk+l) pkgmﬂﬁ—ﬁ,ﬂﬁﬁL \/E)

=1

=

+ A (f; )

for all z € (0,1), n > 4, where Z,(z) = 10W,(z). In case p = 1 this gives
the result up to the order the same as in Theorem 1 in [10]. Clearly, in this case
(p = 1), by the direct calculation one can get more precise value of the factor
Za(z) (see [10, Th. 1]). Also, the factor 5a/2y/nz(1 — x) in (3.1) may be slightly
improved and replaced by 2a/(y/nz(1 — ) + 1) (see [10, Lemma 5]).

2) Next, let us consider the Szdsz-Mirakyan operators S, f = L, f given by
(1.1) in which p, j(z) = e™"(nz)? /5! for z € I = [0.00), j € J, = Ny. Denote
by S,(L”)f their modification of the form (1.2). If f is bounded on {0, o0) then one
can apply Theorem 2.4 with o%(2) = 2, 3(z) < zv/1 + 3z, 9,(1.1) =1 and

dav/ 1+ 3x

AL (fra)] < N (If(z+) = F@=) + en(@) | f () — flz—)]) -

Suppose, further, that f is unbounded on I and that it satisfies the growth con-
dition (2.4) with ¢ (z) = (1 + z)? where ¢ is a positive integer. It is easy to see
that
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forall n € N, x € I', where c(q) is some positive constant depending only on ¢ (cf.
e.g. [7, Lemma 3.7]). Hence, one can apply Theorem 2.5 with the above values
of az(w),ﬁ(w),|A,(qﬂ)(f;a:) W(x), ng =1, p(xz) = v/e(g)(1 + x)? and arbitrary
positive number A (in paricular, A may be choosen z). Also, analogous results
can })P (’)hfﬂlnﬁd ﬂ’)r f”nr‘f"lﬂnq f (: AI| {T\ Q9f1QF‘HY‘ID‘ r\nnrqrhnn /r) /1\ “rlf-]"\ anmMma

Aa2aRA2Le T W ei 4 ) salisiyill 5 Viilaivy YWILLL DULNIC

exponential function ¢, e.g. ¥(x) = exp(p;v), p > 0. In this case we have
(3
i.e. Theorem 2.5 holds true with p(z) = exp(2
Finally, let us mention that corresponding rebults can b obtained for the

Bézier type modification (1.2) of the discrete Baskakov operators (defined e.g. as

in [7]).

= I

) Pnj{x) = exp (;v(e"’/”— ))gexka—Tp/n),

T P’j

[N
=

B
A,
3
v
:

;
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