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1. Introduction.

For a fixed integer k > 2, denote by rr{n
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re(n) = #{(u1,u2) € Z% ¢ |uy|" + uo) = n }.

"The average order of this arithmetic function is described by the sum

Bi(u)= > ri(n),

1<n<uk*

where u is a large real variable!. One is interested in precise asymptotic formulas
for this summatory function Ry(u).

For k = 2, this is the celebrated Gaussian circle problem. (An enlightening
account on its history can be found in the monograph of Kritzel [10].) The sharpest
published results to date? read

RZ(U) =7Tu2+P2(u), (11)

Py(u) = O(u*/™ (Iogu)315/146) . (1.2)

1991 Mathematics Subject Classification: 11P21, 11N37, 11LO7

1 Note that, in part of the relevant literature, ¢ = 42 is used as the basic variable.

2 Actually, M. Huxley has meanwhile improved further this upper bound, essentially replacing
the exponent % = 0.6301... by ég—é = 0.6298.... The author is indebted to Professor Huxley
for sending him a copy of his unpublished manuscript.

3 We recall that Fy(u) = 2.(F2(u)) means that lim sup(*Fl (u)/ F2 (u)) > 0 for u — oo where
* s either + or —, and Fy(u) is positive for u sufficiently large.
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Pa(u) = Q4 (u/? exp(c’(loglog u)'#(logloglog u) =%/4)) (¢ >0). (1.4)

These are due to Huxley [4], [6], Hafner (3], and Corradi & Katai [1], respectively.

i L

It is a wide-standing belief that
s oA e N 8 1 /4 =
inf{6 € R: (u) <o v’ } =5 (i.5)
In favour of this conjecture, there is the mean-square asymptotic

/T ? 2 2 L 5 (2(n)?
(P2(w) du=CoT?+O(T(logT)"). Co=-—> —— (L6)

JO T T

which has been established (with this precise error term) by Kdtai [7].

The proofs of the results (1.3), (1.4), (1.6) were based on the fact that the
generating function (Dirichlet series) of rp(n) is the Epstein zeta- function of the
quadratic form u$ +u3, which satisfies a well-known functional equation and thus
makes available the whole toolkit of complex analysis.

The general case, k > 3, lacks this technical advantage. Nevertheless, the
problem concerning the asymptotic behaviour of Ri(u), k > 3, has attracted a lot
of attention, too. It has first been dealt with by Van der Corput [18] and Kréatzel

[9]. For a thorough account on the history of this problem and the results available
until 1988. see again Kriitzel's textbook [10]. Tt turns out that

Rip(v) = =% 4 Bip®y (u)u! " VF + Pe(u) (1.7)
where
1
B :23—1/k *l—l/k:kl/k‘l’* 1 Y.
k 0 (1+ k)

o~ 11k m
@k(u):Zn ! 1/'l‘sm(27rnu—2—k).

n=1

and the new error term Py (u) satisfies an estimate quite analogous to (1.2). i.e..

Pi(u) = O(u*/"(logu) ) (1.8
as was proved by Kuba [11], using Huxley’s method [4]. [6].
Concerning lower bounds, it was shown by the author [16] that, for any fixed

k>3,
Pr(u) = Q- (u'?(logu)'/?), (1.9)

and by Kiiehleitner, Nowak, Schoifiengeier & Wooley [13] that

Palw) = Q. (ul/?(
3lu) = Sipu
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The similarity of these results to those for the case k — 2 suggested to extend the
classic conjecture (1.5) to arbitrary &k > 2. It turned out that this is again true i
mean-square: In fact, the author [15] was able to show that, for T large,

m

I N
?/0 (Pe(u)) dux T (1.11)
for any fixed k > 3. M. Kiiehleitner (12] refined this estimate, proving an asymp-
totic formula .
1 2 —wi e
T [ (Pi(u)) du:C‘kT%—O(T1 ket ), (1.12)

with explicite constants Ci and wr > 0.

2. Statement of result

In the present note we investigate the question whether the “gverage moderate
size” of this error term Py (u), as displayed by (1.11), can be observed only “in the
long run,” i.e., by averaging over an interval of order T, or if a similar estimate
is possible for a “short interval mean.” In fact, it turns out that it essentially
suffices to average over an interval of bounded length—at the cost of a small loss
of precision (extra logarithmic factor).

Theorem 2.1. For T large and arbitrary fixed k > 3,

T+3 ) )
| (Pew)?du < T (logT)?,
T3

with the < -constant dependin

g on k.

Remarks. This work is inspired by a paper of Huxley [5] who investigated the
corresponding problem for the lattice rest of a convex planar domain (with smooth
boundary of finite nonzero curvature throughout), linearly dilated by a large fac-
tor u. He obtained the corresponding mean-square bound O(TlogT), thereby
including the case of a circle, i.e., that of k= 2 in our problem.

In geometric terms, for k > 3 we are concerned with the number of lattice
points in a domain bounded by a Lamé’s curve l§|k+ |77(k = u*. This has curvature
0 in its points of intersection with the coordinate axes. As a consequence, the
expansion of the lattice rest into a trigonometric series, as discovered by Kendall
[8] and employed by Huxley [3], is no longer available. Therefore, we use a different
approach based on fractional part sums, Vaaler’s transition to exponential sums,
the Van der Corput transformation (“B-step”), and. in the end, Huxley’s trick
involving the Féjer kernel.

Catching a word of Huxley [5] (who imagined the dilation factor u as a time
variable), we can say that, according to our result, these number-theoretic error
terms “have no memory,” or, a bit more precisely, that their average small size is
accomplished “not by long-term memory, but by short-term memory.”
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3. Proof of the Theorem 2.1
As in our earlier article [15], we start from formulae (3.57), (3.58) (and the asymp-

totic expansion below) in Krétzel [10], p. 148. In our notation, this reads
k _ o kyi/k
Pe(u)=-8 > p((u* - n")%) + o), (3.1)
au<n<u

with ¥(w) = w — [w} — £ throughout, and a := 27/*. We suppose that T
is sufficiently large, u € [T — 3, T + 1], and define ¢ by 1/k + 1/q = 1, te.,
q=~Fk/(k—1), and thus 1 < ¢ < 3. We break up the range of summation into
subintervals JAVQ\U,) = J“],“J_l_l_l where IVJ - u\L+n m)—l/k‘7 _/ =0 11,JT
with J minimal such that u— Ny <1 forall ue [T — 5, T+ 4].4 It follows that

the length of any N( u) is equal to Njy1 — N; < 27997, and that w € Nj(u)

implies that u* — w* < 2799T% We put

T+5 2
L(T) = / ( > u’}((uk—‘nk)l/k)> du
T3 \new, w

and infer from Cauchy’s inequality, with some fixed ¢ > 0 sufficiently small, that

(3.2)

J
<Y gie Z 27° [(T) <« Z 2l [

We now invoke a deep result of Vaaler [17] which connects fractional parts with

exponential sums. (See also Graham and Kolesnik [2], p. 116.) For every positive
. . D .
integer D there exists a sequence (o, U)h—l contained in the interval [0,1] such

that for all reals w,

N Q|h).D | 1 o]
‘w(u)+2ml<‘h|<D h e(hw)(§2D+2 Z(l -—D+1)e(hw),

with e(w) = e*™" as usual. From this it is easy to see that there exists a complex-

D .
valued sequence (8, p),_, with

Br.p < % (3.3)

4 The idea of this special choice of subdivision points is that ﬁ ((uk - wk)l/k) assumes integer

values at w = N, . See the application of the Lemma below.




7 A e g g T < 4

On sums of two k-th powers: a mean-square bound over short intervals 121

such that

k k17K ? 27097 2
D fp Y e(—h(uF MR dy 4 ( ) (34)
We choose D = exp(log2[ilog 7/ log2]), i.e., D is a power of 2 and D = /T.
The last term in (3.4) is thus < 4=997".

We now transform the exponential sums under consideration by a fairly sharp
form of the “Van der Corput step.”

Lemma 3.1. Suppose that f is a real-valued function which possesses four con-

tinuous derivatives on the interval [A, B]. Let L and U be real parameters not
less than 1 such that B — A < L,

fIw) <UL prweld B), j=1,234,
and, for some C* > 0,
flw) >C*UL! forw € (A, B).

Suppose further that f'(A) and f'(B) are integers, and denote by ¢ the inverse
function of f'. Then it follows that

S oatn=c(t) 3 M (d’(/r%;(,"f"f-(m)) +O(log(1 + 1)),

A<k<B B Ay <m< F(B) % m)) ' /

where 3" means that the terms corresponding to m = f'(A) and m = f(B) get
i

a factor 3. The O-constant depends on C* and on the constants implied in the
order symbols in the suppositions.

Proof. This is Lemma 2 in Kiihleitner [12]. For a more general version of the
same precision, as well as for comments on the history of this sort of results, see
Kiihleitner & Nowak [14], Lemma 2.2.

We use this formula to transform each of the sums over n in (3.4), with
[4, B] = [N}, Nj;1], and

flw) = —h(u* - wk)l/k.

We readily compute the derivatives agb
_ —14+1/k ~
f(wy = hw" 1 (uP — wk) R < hoT

f'(w) = hk = Dukwh=2 (ub — k) 2FVE o -t gicaa

5 Recall that w € N, (u) implies that w = T and u* — wk = 9—Je7k
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W) Y (k= 200 + (B + Dw*)

F(w) = h(k — l)ukwl"fs(ujc
& hT™2237%9

f(4)(w) = hik 1)ukwk_4(uk — wk)%H/k
x {(k = 2)(k — 3)u®* + (k + 1)k — Ty 0" + (k + D)k + 2)w™)
&« hT39217%1
lies with L = N; 13 — N; x 27097, U = h 27, and we obtain
1
31,

Cur Lemn
alculation. for u € [T — 3, T + 3

by a straightforwar

=
joN

C

T /1 k Ex1/kN
D e(—h{u® —n")F)
nenN, (t)
1
6(3\ .1/ —// Ly N R IPNY L, ST “n—a+1/2 4 r NETRERY
= k\—,lhu =) thm) TR m]l " e(—ulitn, m)l,)
meM, (h)
+O(logT)
(3.5)
with
14 ! Toip oitl
My(h) = 17N, £/ (N )] = |20 2 R] |
. . 1/q .
and |||, denoting the g-norm in R?, ie. |[(ur,u2)ll, = (Junl? + Jual?) /T With
a look back to (3.4), we define

T (hmy T2 | () | 2 e (—u (R m)l,)

meM;(h)

dic subintervals H;
( ude

and divide the range 1 < h < D = 2 (say) into dya
J2iml 2], i = 1..... [ < logT. Combining (3.4) and (3.5). we conch by
Cauchy’s inequality that
T+ | 1L 12 _
L)< [ w > Sh(u)‘ du + (log T)? +4799T
T-3  li=1hen;
(3.6)

PTH+4 1

12
du + (log T)? +4779T.

> Sn(u)

<« T(logT)? max/
ity 1S

Following an idea of Huxley [5]. we now use the Féjer kernel

By Jordan's inequality. p(w) > 4/7? for jw| < §. and the Fourier transform has

the simple shape
B = [ lwle(y) dw = max(0.1~ ly).
R
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Therefore,
4 T+% 2 2
= _ Z Sh(u) dug/Rgo(u~T) Z Sp(u)| du =
—2 'heH, heH,
—q+1/2
B /2 — v ({iChym)ll, fitha, ma)il,)
— Z (h]hQ)q ﬁhl.Dﬁhz.D Z (m1m2~)1_q/2
hi.hacH; ?TLIE/‘V‘lJ(}Ll). ) -

m2eM;(hz)
x e(=T(I(hr,m1)|l, = lI(hz, m2)],))

[ eture(=ullths, mi)l, = 1z ma)1, ) du
2T NI i N —gL1/2
7 ,—L \ h kS
< 3 (i trez S T, I 217_’:2“(;)
hi.haeH, mi1EM;(h1). (m1m2)
ma2EM, (ha)

x max (0,1 — |||(h1.m1)||q - ||(h‘2‘m2)HqD .

(3.7)
using the bound (3.3) for the 3’s. We recall that h € H; implies & > 2¢ and
m € M;(h) implies that ||(k, m)ll, = m = 27 h. Therefore, the last expression in
(3.7) is

< (27N T R (hy hg my my) € ZE by he € H,,

m1 € Mj(h), ma € Mj(ha), [lI(heoma)ll, = [|(ha, ma)], | <1}.
Now denote by A*(u) the number of lattice points v € Z? with Ivll, <u, then

the most elementary estimate
ice points = area + O(length of boundary)”
implies, for any fixed (hy.m;), hy € H;, my € M;(hy), that

A7 (W), + 1) = 43 ks, ), = 1) < ()], <

Thus, combining (3.7) and (3.8), it follows that

Z Sp(uw)

heH,

/*T-I-%I

fry

2

2
du <« (21)—2+q(21’+j)—1~q Z Z my < (29179,
h1€H,. mi€M;(h1)

uniformly in ¢ = 1,... 1. Using this in (3.6), we get

Li(T) < 2779 D T(log T)? + (log T)?.
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Recalling (3.1), (3.2), and the fact that ¢ = k/(k — 1) > 1, we complete the proof
of the Theorem. [ |
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