Zanetto, lascia le donne, e studia la matematica.
JeanJacques Rousseau, "Les Confessions"
Stefan Barańczuk, Ph.D.
I am interested in algebraic number theory, arithmetic geometry and Ktheory.
Papers:

On reduction maps and support problem in Ktheory and abelian varieties, J. Number Theory 119 (2006), no. 1, 117.

On reduction maps for the étale and Quillen Ktheory of curves and applications, J. KTheory 2 (2008), no. 1, 103122. (joint work with K. Górnisiewicz)

On a generalization of the support problem of Erdös and its analogues for abelian varieties and Ktheory, J. Pure Appl. Algebra 214 (2010), no. 4, 380384.

Galois Properties of the Eigenproblem of the Hexagonal Magnetic Heisenberg Ring, Acta Physica Polonica A 21 (2012),
56, 11111114. (joint work with G. Banaszak, T. Lulek, J. Milewski and R. Stagraczyński)

A remark on certain simultaneous divisibility sequences, Colloq. Math. 137 (2014), no. 2, 209213. (join work with P. Rzonsowski)

Height functions for groups of Sunits of number fields and reductions modulo prime ideals, Bull. Pol. Acad. Sci. Math. 63 (2015), no. 1, 2431.

On a dynamical localglobal principle in MordellWeil type groups, to appear in
Expositiones Mathematicae.

On certain sequences in Mordell Weil type groups, New York Journal of Mathematics, volume 23 (2017) 4147.

HasseMinkowski theorem for quadratic forms on MordellWeil type groups,
preprint.

On the arithmetic of polynomials with coefficients in MordellWeil type groups, preprint.

On secondorder linear recurrence sequences in MordellWeil type groups, preprint.
Positions:
Education:
 M.S. Adam Mickiewicz University, June 2001; thesis title: On padic representations coming from action of Galois group on etale cohomology of algebraic variety ; thesis adviser: Professor Grzegorz Banaszak
 Ph.D. Adam Mickiewicz University, June 2005; dissertation title: On reduction maps and support problem in Galois cohomology ;
thesis adviser: Professor Grzegorz Banaszak