New bounds in Balog-Szemerédi-Gowers theorem

By

Tomasz Schoen*

Abstract

We prove, in particular, that every finite subset A of an abelian group with the additive energy $\kappa|A|^{3}$ contains a set A^{\prime} such that $\left|A^{\prime}\right| \gg \kappa|A|$ and $\left|A^{\prime}-A^{\prime}\right| \ll \kappa^{-4}\left|A^{\prime}\right|$.

1 Introduction

Balog-Szemerédi-Gowers theorem [2], [4] is one of the most important tool in additive combinatorics. It asserts that very finite subset A of an abelian group with large additive energy $\mathrm{E}(A)$ i.e. with many solutions to the equation $x+y=x^{\prime}+y^{\prime}$, contains a large subset A^{\prime} with small sumset $A^{\prime}+A^{\prime}$. This result has huge number of deep applications, see for example [3], [4]. The first effective bound on the size of A^{\prime} and $A^{\prime}+A^{\prime}$ was given by Gowers and since then the theorem was improved many times and the currently best estimate is due to Balog [1]. He showed, in particular, that if $\mathrm{E}(A)=\kappa|A|^{3}$ then there exists $A^{\prime} \subseteq A$ such that $\left|A^{\prime}\right| \gg \kappa|A|$ and $\left|A^{\prime}-A^{\prime}\right| \ll \kappa^{-6}\left|A^{\prime}\right|$.

Here we prove two theorems, which provides further improvements.
Theorem 1.1 Let A be a subset of an abelian group such that $\mathrm{E}(A)=\kappa|A|^{3}$. Then there exists $A^{\prime} \subseteq A$ such that $\left|A^{\prime}\right| \gg \kappa|A|$ and

$$
\left|A^{\prime}-A^{\prime}\right| \ll \kappa^{-4}\left|A^{\prime}\right|
$$

Theorem 1.2 Let A be a subset of an abelian group such that $\mathrm{E}(A)=\kappa|A|^{3}$. Then there exist $A^{\prime}, B^{\prime} \subseteq A$ such that $\left|A^{\prime}\right|,\left|B^{\prime}\right| \gg \kappa^{3 / 4} \log ^{-5 / 4}(1 / \kappa)|A|$ and

$$
\left|A^{\prime}-B^{\prime}\right| \ll \kappa^{-7 / 2} \log ^{5 / 2}(1 / \kappa)\left(\left|A^{\prime}\right|\left|B^{\prime}\right|\right)^{1 / 2}
$$

Theorem 2 provides stronger estimates, however Theorem 1 allows us to take $A^{\prime}=B^{\prime}$. Our general strategy is essentially still the same as in [1], [2], [4], [6] i.e. we show that each element from $A^{\prime}-A^{\prime}$ has many representations in the form $\left(a_{1}-a_{2}\right)-\left(a_{3}-a_{4}\right), a_{1}, a_{2}, a_{3}, a_{4} \in A$. Our improvements comes from considering different candidates for A^{\prime}. In previous works the authors looked for A^{\prime} among dense subsets of $A \cap(P+s)$, where $P \subseteq A-A$ is the popular difference set. Here we will pick $A^{\prime} \subseteq A \cap(A+s)$. Bounds in Theorem 2 follows from combining both methods.

Notation. Let A be a finite subset of an abelian group \mathbf{G}. We will write $A(x)$ for the indicator function of the set A. Define

$$
(A * B)(x)=\sum_{y \in \mathbf{G}} A(y) B(x-y)
$$

[^0]$$
(A \circ B)(x)=\sum_{y \in \mathbf{G}} A(y) B(x+y),
$$
so that $(A \circ B)(x)$ is the number of representations in the form $x=b-a, a \in A, b \in B$, while $(A * B)(x)$ is the number of representations in the form $x=b+a, a \in A, b \in B$. For $\beta \in \mathbb{R}$ put
$$
\mathrm{E}_{\beta}(A)=\sum_{x}(A \circ A)(x)^{\beta}
$$

Note that $\mathrm{E}(A)=\mathrm{E}_{2}(A)$. By \log we always mean $\log _{2}$.

2 Proof of Theorem 1.1

We start with a variant of Sanders lemma [5]. Let P_{γ} be the set of γ-popular differences i.e. the set of all x such that $(A \circ A)(x) \geqslant \gamma|A|$.

Lemma 2.1 Let A be a finite subset of an abelian group \mathbf{G} and let $c>0$. Suppose that $\mathrm{E}(A)=\kappa|A|^{3}$. Then there exists a set $X \subseteq A$ of size at least $\frac{1}{3} \kappa|A|$ such that

$$
\sum_{x}(X \circ X)(x) P_{c \kappa}(x) \geqslant(1-16 c)|X|^{2}
$$

Proof. Observe that

$$
\begin{equation*}
\sum_{(A \circ A)(x) \leqslant \frac{1}{2} \kappa|A|}(A \circ A)(x)^{2} \leqslant \frac{1}{2} \kappa|A| \sum_{x}(A \circ A)(x)=\frac{\kappa}{2}|A|^{3}=\frac{1}{2} \mathrm{E}(A) \tag{1}
\end{equation*}
$$

For $0 \leqslant i \leqslant\lceil\log (1 / \kappa)\rceil$, let $Q_{i}=\left\{x: 2^{-i-1}|A|<(A \circ A)(x) \leqslant 2^{-i}|A|\right\}$. Hence, putting $\delta_{i}=\kappa^{-1} 2^{-2 i}$, in view of (1) we have

$$
\sum_{i} \delta_{i}\left|Q_{i}\right|=\frac{1}{\kappa|A|^{2}} \sum_{i} \frac{|A|^{2}}{2^{2 i}}\left|Q_{i}\right| \geqslant \frac{\mathrm{E}(A)}{2 \kappa|A|^{2}}=\frac{1}{2}|A|
$$

Let S be the set of all pairs $(a, b) \in A^{2}$ such that $a-b \notin P_{c \kappa}$. Then

$$
\sum_{i} \sum_{(a, b) \in S}\left|(A-a) \cap(A-b) \cap Q_{i}\right| \leqslant \sum_{(a, b) \in S}|(A-a) \cap(A-b)| \leqslant c \kappa|A||S| \leqslant c \kappa|A|^{3}
$$

Therefore, there exists i_{0} such that

$$
\begin{equation*}
\sum_{(a, b) \in S}\left|(A-a) \cap(A-b) \cap Q_{i_{0}}\right| \leqslant 2 c \kappa \delta_{i_{0}}\left|Q_{i_{0}}\right||A|^{2} \tag{2}
\end{equation*}
$$

Put $Q=Q_{i_{0}}, \lambda=2^{-i_{0}}, \delta=\delta_{i_{0}}$ and $N=|Q|$. We choose at random $s \in \mathbf{G}$ such that

$$
\mathbb{P}(s=x)=\frac{Q(x)}{N}
$$

for every $x \in \mathbf{G}$. Set $X=A \cap(A+s)$ and observe that $a \in X$ if and only if $a \in A$ and $s \in a-A$, hence

$$
\mathbb{P}(a \in X)=\frac{A(a)|(a-A) \cap Q|}{N}=\frac{A(a)(A * Q)(a)}{N},
$$

and

$$
\mathbb{E}|X|=N^{-1} \sum_{a \in A}(A * Q)(a)=N^{-1} \sum_{x \in Q}(A \circ A)(x) \geqslant \frac{1}{2} \lambda|A| .
$$

Let T be the set of all pairs $(a, b) \in X^{2}$ such that $a-b \notin P_{c \kappa}$. Then

$$
\mathbb{P}(a, b \in X)=N^{-1} \sum_{x \in(A-a) \cap(A-b)} Q(x)=N^{-1}|(A-a) \cap(A-b) \cap Q|,
$$

so that by (2) we have

$$
\mathbb{E}|T|=\sum_{(a, b) \in S} \mathbb{P}(a, b \in X)=N^{-1} \sum_{(a, b) \in S}|(A-a) \cap(A-b) \cap Q| \leqslant 2 c \kappa \delta|A|^{2}=2 c \lambda^{2}|A|^{2}
$$

Therefore

$$
\mathbb{E}\left(|X|^{2}-(16 c)^{-1}|T|\right) \geqslant \frac{1}{8} \lambda^{2}|A|^{2}
$$

so there exists s such that

$$
|X|^{2}-(16 c)^{-1}|T| \geqslant \frac{1}{8} \lambda^{2}|A|^{2}
$$

In particular, $|X| \geqslant \frac{1}{2 \sqrt{2}} \lambda|A| \geqslant \frac{1}{3} \kappa|A|$ and $|T| \leqslant 16 c|X|^{2}$, which completes the proof.
Proof of Theorem 1.1. Let X be a set given by Lemma 2.1 applied for $c=1 / 128$, and consider the following graph

$$
\mathcal{H}=\left\{(x, y) \in X^{2}:(A \circ A)(x-y) \geqslant \frac{1}{128} \kappa|A|\right\} .
$$

By Lemma $2.1 \mathcal{H}$ has at least $(7 / 8)|X|^{2}$ edges. Denote by A^{\prime} the set of all elements $x \in X$ of degree at least $(3 / 4)|X|$ in \mathcal{H}. Then clearly $\left|A^{\prime}\right| \geqslant|X| / 2 \gg \kappa|A|$. Take any $a, b \in A^{\prime}$, then there are at least $|X| / 2$ elements $y \in Y$ such that $(a, y),(b, y) \in \mathcal{H}$. Therefore

$$
a-b=(a-y)-(b-y)
$$

has $\gg \kappa^{3}|A|^{3}$ representations in the form $\left(a_{1}-a_{2}\right)-\left(a_{3}-a_{4}\right), a_{1}, a_{2}, a_{3}, a_{4} \in A$. Thus

$$
\kappa^{3}|A|^{3}\left|A^{\prime}-A^{\prime}\right| \ll|A|^{4}
$$

and the assertion follows.

3 Proof of Theorem 1.2

We will need another version of Lemma 2.1 that make use of the E_{3}-energy.
Lemma 3.1 Let A be a finite subset of an abelian group \mathbf{G} and let $c>0$. Suppose that $\mathrm{E}(A)=\kappa|A|^{3}$ and $\mathrm{E}_{3}(A)=M \kappa^{2}|A|^{4}$. Then there exist $M \kappa \leqslant \lambda \leqslant 1$, and $X \subseteq A$ of size at least $\frac{1}{3} \lambda|A|$ such that

$$
\sum_{x}(X \circ X)(x) P_{\gamma}(x) \geqslant(1-16 c)|X|^{2}
$$

where $\gamma=c M \kappa^{2} \lambda^{-1}$.
Proof. Note that the straightforward inequalities $(\mathrm{E}(A) /|A|)^{2} \leqslant \mathrm{E}_{3}(A) \leqslant|A| E(A)$ imply that $1 \leqslant M \leqslant$ κ^{-1}. In view of $\mathrm{E}(A)=\kappa|A|^{3}$, we have

$$
\begin{align*}
\sum_{(A \circ A)(x) \geqslant \frac{1}{2} M \kappa|A|}(A \circ A)(x)^{3} & =\mathrm{E}_{3}(A)-\sum_{(A \circ A)(x)<\frac{1}{2} M \kappa|A|}(A \circ A)(x)^{3} \\
& \geqslant \mathrm{E}_{3}(A)-\frac{1}{2} M \kappa|A| \sum_{x}(A \circ A)(x)^{2}=\frac{1}{2} \mathrm{E}_{3}(A) . \tag{3}
\end{align*}
$$

For $0 \leqslant i \leqslant\lceil\log (M / \kappa)\rceil$, let $Q_{i}=\left\{x: 2^{-i-1}|A|<(A \circ A)(x) \leqslant 2^{-i}|A|\right\}$. Putting $\varepsilon_{i}=\kappa^{-2} M^{-1} 2^{-3 i}$, by (3) we have

$$
\sum_{i} \varepsilon_{i}\left|Q_{i}\right|=\frac{1}{\kappa^{2} M|A|^{3}} \sum_{i} \frac{|A|^{3}}{2^{3 i}}\left|Q_{i}\right| \geqslant \frac{\mathrm{E}_{3}(A)}{2 \kappa^{2} M|A|^{3}} \geqslant \frac{1}{2}|A| .
$$

Again, let S be the set of all pairs $(a, b) \in A^{2}$ such that $a-b \notin P_{\gamma}$. Using similar argument as in Lemma 2.1 we infer that there exists $\lambda \geqslant M \kappa$ such that for $Q=\left\{x: \frac{1}{2} \lambda|A|<(A \circ A)(x) \leqslant \lambda|A|\right\}$ we have

$$
\sum_{(a, b) \in S}|(A-a) \cap(A-b) \cap Q| \leqslant 2 \gamma \varepsilon N|A|^{2},
$$

where $\varepsilon=\kappa^{-2} M^{-1} \lambda^{3}$ and $N:=|Q|$. Again we choose at random $s \in \mathbf{G}$ such that

$$
\mathbb{P}(s=x)=\frac{Q(x)}{N}
$$

for every $x \in \mathbf{G}$. Put $X=A \cap(A+s)$ and observe that

$$
\mathbb{E}|X|=N^{-1} \sum_{a \in A}(A * Q)(a)=N^{-1} \sum_{x \in Q}(A \circ A)(x) \geqslant \frac{1}{2} \lambda|A| .
$$

Let T be the set of all pairs $(a, b) \in X^{2}$ such that $a-b \notin P_{\gamma}$. Then $\mathbb{E}|T| \leqslant 2 \gamma \varepsilon|A|^{2}=2 c \lambda^{2}|A|^{2}$, so that

$$
\mathbb{E}\left(|X|^{2}-(16 c)^{-1}|T|\right) \geqslant \frac{1}{8} \lambda^{2}|A|^{2}
$$

Thus, there exists s such that $|X| \geqslant \frac{1}{3} \lambda|A|$ and $|T| \leqslant 16 c|X|^{2}$.
The next lemma is Corollary 6.20 in [7].
Lemma 3.2 Let $\mathcal{H}=(A, B, E)$ be a bipartite graph with $|E| \geqslant|A||B| / M$. Then there exist $A^{\prime} \subseteq A, B^{\prime} \subseteq$ B with $\left|A^{\prime}\right| \geqslant|A| / 6 M,\left|B^{\prime}\right| \geqslant|B| / 6 M$ such that every $a \in A^{\prime}$ and $b \in B^{\prime}$ is connected by at least $|A||B| / 2^{12} M^{4}$ paths of length three.

Proof of Theorem 1.2. Assume that and $\mathrm{E}_{3}(A)=M \kappa^{2}|A|^{4}$. Similarly as in the proof of Theorem 1.1 let X and $\lambda \geqslant M \kappa$ be given by Lemma 3.1 applied for $c=1 / 128$, and consider the graph

$$
\mathcal{H}=\left\{(x, y) \in X^{2}:(A \circ A)(x-y) \geqslant \frac{1}{16} M \kappa^{2} \lambda^{-1}|A|\right\} .
$$

By Lemma $3.1 \mathcal{H}$ has at least $(7 / 8)|X|^{2}$ edges. Denote by A^{\prime} the set of all elements $x \in X$ of degree at least $(3 / 4)|X|$ in \mathcal{H}. Then clearly $\left|A^{\prime}\right| \geqslant|X| / 2 \gg \lambda|A|$. Take any $a, b \in A^{\prime}$, then there are at least $|X| / 2$ elements $y \in Y$ such that $(a, y),(b, y) \in \mathcal{H}$. Therefore

$$
a-b=(a-y)-(b-y)
$$

has $\gg \kappa^{3}|A|^{3}$ representations in the form $\left(a_{1}-a_{2}\right)-\left(a_{3}-a_{4}\right), a_{1}, a_{2}, a_{3}, a_{4} \in A$. Thus

$$
\begin{equation*}
\left|A^{\prime}-A^{\prime}\right| \ll M^{-2} \kappa^{-4}\left|A^{\prime}\right| \tag{4}
\end{equation*}
$$

In the next step of the proof we obtain another estimate. Observe that

$$
\sum_{(A \circ A)(x)>2 M \kappa|A|}(A \circ A)(x)^{2} \leqslant \frac{\mathrm{E}_{3}(A)}{2 M \kappa|A|}=\frac{1}{2} \mathrm{E}(A)
$$

Therefore there exists $\kappa / 2 \leqslant \mu \leqslant 2 M \kappa$ such that for $Q=\{x: \mu|A|<(A \circ A)(x) \leqslant 2 \mu|A|\}$ we have

$$
\begin{equation*}
\sum_{x \in Q}(A \circ A)(x) \gg \frac{\kappa}{\mu \log M}|A|^{2} \tag{5}
\end{equation*}
$$

Let $\mathcal{G}=(A, A, E)$ (here we can assume that the vertex set of \mathcal{G} consists of two disjoint copies of A, for details see [7]) be a bipartite graph such that $E=\{\{a, b\}: a, b \in A, a-b \in Q\}$, so that by (5) $|E|=$ $\alpha|A|^{2} \gg \kappa \mu^{-1}(\log M)^{-1}|A|^{2}$. Therefore, by Lemma 3.2 there are sets $A^{\prime}, B^{\prime} \subseteq A$ with $\left|A^{\prime}\right|,\left|B^{\prime}\right| \gg \alpha|A|$ such that every $a \in A^{\prime}$ and $b \in B^{\prime}$ is connected by $\gg \alpha^{4}|A||B|$ paths of length three in \mathcal{G}. Therefore, for each $a \in A^{\prime}$ and $b \in B^{\prime}$ there are $\gg \alpha^{4}|A||B|$ elements $x, y \in A$ such that $\{a, y\},\{x, y\},\{x, b\} \in \mathcal{G}$. Thus

$$
a-b=(a-y)-(x-y)+(x-b)
$$

has $\gg \mu^{3}|A|^{3} \alpha^{4}|A|^{2}$ representations in the form $\left(a_{1}-a_{2}\right)-\left(a_{3}-a_{4}\right)+\left(a_{5}-a_{6}\right), a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6} \in A$. Hence

$$
\begin{equation*}
\left|A^{\prime}-B^{\prime}\right| \ll \mu^{-3} \alpha^{-4}|A| \ll \mu^{-3} \alpha^{-5}\left(\left|A^{\prime}\right|\left|B^{\prime}\right|\right)^{1 / 2} \leqslant \kappa^{-3} M^{2} \log ^{5} M\left(\left|A^{\prime}\right|\left|B^{\prime}\right|\right)^{1 / 2} . \tag{6}
\end{equation*}
$$

We use (4) if $\kappa^{-1 / 4} \log ^{-5 / 4}(1 / \kappa) \leqslant M \leqslant \kappa^{-1}$, while we use (6) if $1 \leqslant M \leqslant \kappa^{-1 / 4} \log ^{-5 / 4}(1 / \kappa)$. In the former case we have

$$
\left|A^{\prime}\right|=\left|B^{\prime}\right| \gg M \kappa|A| \geqslant \frac{\kappa^{3 / 4}}{\log ^{5 / 4}(1 / \kappa)}|A|
$$

and in the latest one

$$
\left|A^{\prime}\right|,\left|B^{\prime}\right| \gg \frac{1}{M \log M}|A| \gg \frac{\kappa^{1 / 4}}{\log ^{1 / 4}(1 / \kappa)}|A|,
$$

which completes the proof.
Acknowledgements. I would like to thank anonymous referees for pointing out some inaccuracies in the first version of the paper.

References

[1] A. Balog, Many additive quadruples, Additive combinatorics, CRM Proc. Lecture Notes, 43, Amer. Math. Soc., Providence, RI, 2007, 39-49.
[2] A. Balog, E. Szemerédi, A statistical theorem of set addition, Combinatorica, 14 (1994), 263-268.
[3] J. Bourgain, A. Glibichuk, S. Konyagin, Estimates for the number of sums and products and for exponential sums in fields of prime order, J. London Math. Soc. 73 (2006), 380-398.
[4] W. T. Gowers, A new proof of Szemerédi's theorem, Geom. Funct. Anal. 11 (2001), 465-588.
[5] T. Sanders, Popular difference sets, Online J. Anal. Comb., 5 (2010), Art. 5, 4 pp.
[6] B. Sudakov, E. Szemerédi, V. Vu, On a question of Erdős and Moser, Duke Math. J. 129 (2005), 129-155.
[7] T. TaO, V. Vu, Additive combinatorics, Cambridge University Press 2006.
Faculty of Mathematics and Computer Science,
Adam Mickiewicz University,
Umultowska 87, 61-614 Poznań, Poland
schoen@amu.edu.pl

[^0]: *The author is supported by NCN grant 2012/07/B/ST1/03556.
 2010 Mathematics Subject Classification: primary 11B75, secondary 11P99.

