New bounds in Balog-Szemerédi-Gowers theorem

By

Tomasz Schoen*

Abstract

We prove, in particular, that every finite subset A of an abelian group with the additive energy $\kappa |A|^3$ contains a set A' such that $|A'| \gg \kappa |A|$ and $|A' - A'| \ll \kappa^{-4} |A'|$.

1 Introduction

Balog-Szemerédi-Gowers theorem [2], [4] is one of the most important tool in additive combinatorics. It asserts that very finite subset A of an abelian group with large additive energy $\mathsf{E}(A)$ i.e. with many solutions to the equation x + y = x' + y', contains a large subset A' with small sumset A' + A'. This result has huge number of deep applications, see for example [3], [4]. The first effective bound on the size of A' and A' + A' was given by Gowers and since then the theorem was improved many times and the currently best estimate is due to Balog [1]. He showed, in particular, that if $\mathsf{E}(A) = \kappa |A|^3$ then there exists $A' \subseteq A$ such that $|A'| \gg \kappa |A|$ and $|A' - A'| \ll \kappa^{-6} |A'|$.

Here we prove two theorems, which provides further improvements.

Theorem 1.1 Let A be a subset of an abelian group such that $\mathsf{E}(A) = \kappa |A|^3$. Then there exists $A' \subseteq A$ such that $|A'| \gg \kappa |A|$ and

$$|A' - A'| \ll \kappa^{-4} |A'|.$$

Theorem 1.2 Let A be a subset of an abelian group such that $\mathsf{E}(A) = \kappa |A|^3$. Then there exist $A', B' \subseteq A$ such that $|A'|, |B'| \gg \kappa^{3/4} \log^{-5/4}(1/\kappa)|A|$ and

$$|A' - B'| \ll \kappa^{-7/2} \log^{5/2} (1/\kappa) (|A'| |B'|)^{1/2}$$
.

Theorem 2 provides stronger estimates, however Theorem 1 allows us to take A' = B'. Our general strategy is essentially still the same as in [1], [2], [4], [6] i.e. we show that each element from A' - A' has many representations in the form $(a_1 - a_2) - (a_3 - a_4)$, $a_1, a_2, a_3, a_4 \in A$. Our improvements comes from considering different candidates for A'. In previous works the authors looked for A' among dense subsets of $A \cap (P+s)$, where $P \subseteq A - A$ is the popular difference set. Here we will pick $A' \subseteq A \cap (A+s)$. Bounds in Theorem 2 follows from combining both methods.

Notation. Let A be a finite subset of an abelian group **G**. We will write A(x) for the indicator function of the set A. Define

$$(A * B)(x) = \sum_{y \in \mathbf{G}} A(y)B(x - y)$$

^{*}The author is supported by NCN grant 2012/07/B/ST1/03556.

²⁰¹⁰ Mathematics Subject Classification: primary 11B75, secondary 11P99.

BALOG-SZEMERÉDI-GOWERS THEOREM

$$(A \circ B)(x) = \sum_{y \in \mathbf{G}} A(y)B(x+y),$$

so that $(A \circ B)(x)$ is the number of representations in the form x = b - a, $a \in A$, $b \in B$, while (A * B)(x) is the number of representations in the form x = b + a, $a \in A$, $b \in B$. For $\beta \in \mathbb{R}$ put

$$\mathsf{E}_{\beta}(A) = \sum_{x} (A \circ A)(x)^{\beta}$$

Note that $\mathsf{E}(A) = \mathsf{E}_2(A)$. By log we always mean \log_2 .

2 Proof of Theorem 1.1

We start with a variant of Sanders lemma [5]. Let P_{γ} be the set of γ -popular differences i.e. the set of all x such that $(A \circ A)(x) \ge \gamma |A|$.

Lemma 2.1 Let A be a finite subset of an abelian group **G** and let c > 0. Suppose that $\mathsf{E}(A) = \kappa |A|^3$. Then there exists a set $X \subseteq A$ of size at least $\frac{1}{3}\kappa |A|$ such that

$$\sum_{x} (X \circ X)(x) P_{c\kappa}(x) \ge (1 - 16c) |X|^2 \,.$$

Proof. Observe that

$$\sum_{(A \circ A)(x) \leqslant \frac{1}{2}\kappa|A|} (A \circ A)(x)^2 \leqslant \frac{1}{2}\kappa|A| \sum_x (A \circ A)(x) = \frac{\kappa}{2}|A|^3 = \frac{1}{2}\mathsf{E}(A)$$
(1)

For $0 \leq i \leq \lceil \log(1/\kappa) \rceil$, let $Q_i = \{x : 2^{-i-1}|A| < (A \circ A)(x) \leq 2^{-i}|A|\}$. Hence, putting $\delta_i = \kappa^{-1}2^{-2i}$, in view of (1) we have

$$\sum_{i} \delta_{i} |Q_{i}| = \frac{1}{\kappa |A|^{2}} \sum_{i} \frac{|A|^{2}}{2^{2i}} |Q_{i}| \ge \frac{\mathsf{E}(A)}{2\kappa |A|^{2}} = \frac{1}{2} |A|$$

Let S be the set of all pairs $(a, b) \in A^2$ such that $a - b \notin P_{c\kappa}$. Then

$$\sum_{i} \sum_{(a,b)\in S} |(A-a) \cap (A-b) \cap Q_i| \leq \sum_{(a,b)\in S} |(A-a) \cap (A-b)| \leq c\kappa |A| |S| \leq c\kappa |A|^3.$$

Therefore, there exists i_0 such that

$$\sum_{(a,b)\in S} |(A-a) \cap (A-b) \cap Q_{i_0}| \leq 2c\kappa \delta_{i_0} |Q_{i_0}| |A|^2 \,.$$
⁽²⁾

Put $Q = Q_{i_0}, \lambda = 2^{-i_0}, \delta = \delta_{i_0}$ and N = |Q|. We choose at random $s \in \mathbf{G}$ such that

$$\mathbb{P}(s=x) = \frac{Q(x)}{N}$$

for every $x \in \mathbf{G}$. Set $X = A \cap (A + s)$ and observe that $a \in X$ if and only if $a \in A$ and $s \in a - A$, hence

$$\mathbb{P}(a \in X) = \frac{A(a)|(a-A) \cap Q|}{N} = \frac{A(a)(A * Q)(a)}{N},$$

and

$$\mathbb{E}|X| = N^{-1} \sum_{a \in A} (A * Q)(a) = N^{-1} \sum_{x \in Q} (A \circ A)(x) \ge \frac{1}{2} \lambda |A|.$$

T. Schoen

Let T be the set of all pairs $(a, b) \in X^2$ such that $a - b \notin P_{c\kappa}$. Then

$$\mathbb{P}(a, b \in X) = N^{-1} \sum_{x \in (A-a) \cap (A-b)} Q(x) = N^{-1} | (A-a) \cap (A-b) \cap Q |,$$

so that by (2) we have

$$\mathbb{E}|T| = \sum_{(a,b)\in S} \mathbb{P}(a,b\in X) = N^{-1} \sum_{(a,b)\in S} |(A-a) \cap (A-b) \cap Q| \leq 2c\kappa\delta |A|^2 = 2c\lambda^2 |A|^2.$$

Therefore

$$\mathbb{E}(|X|^2 - (16c)^{-1}|T|) \ge \frac{1}{8}\lambda^2 |A|^2,$$

so there exists s such that

$$|X|^2 - (16c)^{-1}|T| \ge \frac{1}{8}\lambda^2 |A|^2.$$

In particular, $|X| \ge \frac{1}{2\sqrt{2}}\lambda|A| \ge \frac{1}{3}\kappa|A|$ and $|T| \le 16c|X|^2$, which completes the proof.

Proof of Theorem 1.1. Let X be a set given by Lemma 2.1 applied for c = 1/128, and consider the following graph

$$\mathcal{H} = \left\{ (x, y) \in X^2 : (A \circ A)(x - y) \ge \frac{1}{128} \kappa |A| \right\}.$$

By Lemma 2.1 \mathcal{H} has at least $(7/8)|X|^2$ edges. Denote by A' the set of all elements $x \in X$ of degree at least (3/4)|X| in \mathcal{H} . Then clearly $|A'| \ge |X|/2 \gg \kappa |A|$. Take any $a, b \in A'$, then there are at least |X|/2 elements $y \in Y$ such that $(a, y), (b, y) \in \mathcal{H}$. Therefore

$$a-b = (a-y) - (b-y)$$

has $\gg \kappa^3 |A|^3$ representations in the form $(a_1 - a_2) - (a_3 - a_4), a_1, a_2, a_3, a_4 \in A$. Thus

$$\kappa^{3}|A|^{3}|A' - A'| \ll |A|^{4}$$

and the assertion follows.

3 Proof of Theorem 1.2

We will need another version of Lemma 2.1 that make use of the E_3 -energy.

Lemma 3.1 Let A be a finite subset of an abelian group **G** and let c > 0. Suppose that $\mathsf{E}(A) = \kappa |A|^3$ and $\mathsf{E}_3(A) = M\kappa^2 |A|^4$. Then there exist $M\kappa \leq \lambda \leq 1$, and $X \subseteq A$ of size at least $\frac{1}{3}\lambda |A|$ such that

$$\sum_{x} (X \circ X)(x) P_{\gamma}(x) \ge (1 - 16c) |X|^2 \,,$$

where $\gamma = cM\kappa^2\lambda^{-1}$.

Proof. Note that the straightforward inequalities $(\mathsf{E}(A)/|A|)^2 \leq \mathsf{E}_3(A) \leq |A|E(A)$ imply that $1 \leq M \leq \kappa^{-1}$. In view of $\mathsf{E}(A) = \kappa |A|^3$, we have

$$\sum_{(A \circ A)(x) \ge \frac{1}{2}M\kappa|A|} (A \circ A)(x)^3 = \mathsf{E}_3(A) - \sum_{(A \circ A)(x) < \frac{1}{2}M\kappa|A|} (A \circ A)(x)^3 \\ \ge \mathsf{E}_3(A) - \frac{1}{2}M\kappa|A| \sum_x (A \circ A)(x)^2 = \frac{1}{2}\mathsf{E}_3(A) \,.$$
(3)

For $0 \leq i \leq \lceil \log(M/\kappa) \rceil$, let $Q_i = \{x : 2^{-i-1} | A | < (A \circ A)(x) \leq 2^{-i} | A |\}$. Putting $\varepsilon_i = \kappa^{-2} M^{-1} 2^{-3i}$, by (3) we have

$$\sum_i \varepsilon_i |Q_i| = \frac{1}{\kappa^2 M |A|^3} \sum_i \frac{|A|^3}{2^{3i}} |Q_i| \geqslant \frac{\mathsf{E}_3(A)}{2\kappa^2 M |A|^3} \geqslant \frac{1}{2} |A| \,.$$

Again, let S be the set of all pairs $(a, b) \in A^2$ such that $a - b \notin P_{\gamma}$. Using similar argument as in Lemma 2.1 we infer that there exists $\lambda \ge M\kappa$ such that for $Q = \{x : \frac{1}{2}\lambda |A| < (A \circ A)(x) \le \lambda |A|\}$ we have

$$\sum_{(a,b)\in S} |(A-a) \cap (A-b) \cap Q| \leq 2\gamma \varepsilon N |A|^2 \,,$$

where $\varepsilon = \kappa^{-2} M^{-1} \lambda^3$ and N := |Q|. Again we choose at random $s \in \mathbf{G}$ such that

$$\mathbb{P}(s=x) = \frac{Q(x)}{N} \,.$$

for every $x \in \mathbf{G}$. Put $X = A \cap (A + s)$ and observe that

$$\mathbb{E}|X| = N^{-1} \sum_{a \in A} (A * Q)(a) = N^{-1} \sum_{x \in Q} (A \circ A)(x) \ge \frac{1}{2}\lambda|A|$$

Let T be the set of all pairs $(a, b) \in X^2$ such that $a - b \notin P_{\gamma}$. Then $\mathbb{E}|T| \leq 2\gamma \varepsilon |A|^2 = 2c\lambda^2 |A|^2$, so that

$$\mathbb{E}(|X|^{2} - (16c)^{-1}|T|) \ge \frac{1}{8}\lambda^{2}|A|^{2}.$$

Thus, there exists s such that $|X| \ge \frac{1}{3}\lambda |A|$ and $|T| \le 16c|X|^2$.

The next lemma is Corollary 6.20 in [7].

Lemma 3.2 Let $\mathcal{H} = (A, B, E)$ be a bipartite graph with $|E| \ge |A||B|/M$. Then there exist $A' \subseteq A$, $B' \subseteq B$ with $|A'| \ge |A|/6M$, $|B'| \ge |B|/6M$ such that every $a \in A'$ and $b \in B'$ is connected by at least $|A||B|/2^{12}M^4$ paths of length three.

Proof of Theorem 1.2. Assume that and $\mathsf{E}_3(A) = M\kappa^2 |A|^4$. Similarly as in the proof of Theorem 1.1 let X and $\lambda \ge M\kappa$ be given by Lemma 3.1 applied for c = 1/128, and consider the graph

$$\mathcal{H} = \left\{ (x, y) \in X^2 : (A \circ A)(x - y) \ge \frac{1}{16} M \kappa^2 \lambda^{-1} |A| \right\}$$

By Lemma 3.1 \mathcal{H} has at least $(7/8)|X|^2$ edges. Denote by A' the set of all elements $x \in X$ of degree at least (3/4)|X| in \mathcal{H} . Then clearly $|A'| \ge |X|/2 \gg \lambda |A|$. Take any $a, b \in A'$, then there are at least |X|/2 elements $y \in Y$ such that $(a, y), (b, y) \in \mathcal{H}$. Therefore

$$a - b = (a - y) - (b - y)$$

has $\gg \kappa^3 |A|^3$ representations in the form $(a_1 - a_2) - (a_3 - a_4), a_1, a_2, a_3, a_4 \in A$. Thus

$$|A' - A'| \ll M^{-2} \kappa^{-4} |A'|.$$
(4)

In the next step of the proof we obtain another estimate. Observe that

$$\sum_{(A \circ A)(x) > 2M\kappa |A|} (A \circ A)(x)^2 \leqslant \frac{\mathsf{E}_3(A)}{2M\kappa |A|} = \frac{1}{2}\mathsf{E}(A) \,.$$

T. Schoen

Therefore there exists $\kappa/2 \leq \mu \leq 2M\kappa$ such that for $Q = \{x : \mu | A | < (A \circ A)(x) \leq 2\mu | A |\}$ we have

$$\sum_{x \in Q} (A \circ A)(x) \gg \frac{\kappa}{\mu \log M} |A|^2.$$
(5)

Let $\mathcal{G} = (A, A, E)$ (here we can assume that the vertex set of \mathcal{G} consists of two disjoint copies of A, for details see [7]) be a bipartite graph such that $E = \{\{a, b\} : a, b \in A, a - b \in Q\}$, so that by (5) $|E| = \alpha |A|^2 \gg \kappa \mu^{-1} (\log M)^{-1} |A|^2$. Therefore, by Lemma 3.2 there are sets $A', B' \subseteq A$ with $|A'|, |B'| \gg \alpha |A|$ such that every $a \in A'$ and $b \in B'$ is connected by $\gg \alpha^4 |A| |B|$ paths of length three in \mathcal{G} . Therefore, for each $a \in A'$ and $b \in B'$ there are $\gg \alpha^4 |A| |B|$ elements $x, y \in A$ such that $\{a, y\}, \{x, y\}, \{x, b\} \in \mathcal{G}$. Thus

$$a - b = (a - y) - (x - y) + (x - b)$$

has $\gg \mu^3 |A|^3 \alpha^4 |A|^2$ representations in the form $(a_1 - a_2) - (a_3 - a_4) + (a_5 - a_6), a_1, a_2, a_3, a_4, a_5, a_6 \in A$. Hence

$$|A' - B'| \ll \mu^{-3} \alpha^{-4} |A| \ll \mu^{-3} \alpha^{-5} (|A'||B'|)^{1/2} \leqslant \kappa^{-3} M^2 \log^5 M(|A'||B'|)^{1/2}.$$
 (6)

We use (4) if $\kappa^{-1/4} \log^{-5/4}(1/\kappa) \leq M \leq \kappa^{-1}$, while we use (6) if $1 \leq M \leq \kappa^{-1/4} \log^{-5/4}(1/\kappa)$. In the former case we have

$$|A'| = |B'| \gg M\kappa |A| \ge \frac{\kappa^{3/4}}{\log^{5/4}(1/\kappa)} |A|$$

and in the latest one

$$|A'|, |B'| \gg \frac{1}{M \log M} |A| \gg \frac{\kappa^{1/4}}{\log^{1/4}(1/\kappa)} |A|,$$

which completes the proof.

Acknowledgements. I would like to thank anonymous referees for pointing out some inaccuracies in the first version of the paper.

References

- A. BALOG, Many additive quadruples, Additive combinatorics, CRM Proc. Lecture Notes, 43, Amer. Math. Soc., Providence, RI, 2007, 39–49.
- [2] A. BALOG, E. SZEMERÉDI, A statistical theorem of set addition, Combinatorica, 14 (1994), 263–268.
- [3] J. BOURGAIN, A. GLIBICHUK, S. KONYAGIN, Estimates for the number of sums and products and for exponential sums in fields of prime order, J. London Math. Soc. 73 (2006), 380–398.
- [4] W. T. GOWERS, A new proof of Szemerédi's theorem, Geom. Funct. Anal. 11 (2001), 465–588.
- [5] T. SANDERS, Popular difference sets, Online J. Anal. Comb., 5 (2010), Art. 5, 4 pp.
- [6] B. SUDAKOV, E. SZEMERÉDI, V. VU, On a question of Erdős and Moser, Duke Math. J. 129 (2005), 129–155.
- [7] T. TAO, V. VU, Additive combinatorics, Cambridge University Press 2006.

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland schoen@amu.edu.pl