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Abstract

We prove, in particular, that every finite subset A of an abelian group with the additive energy
κ|A|3 contains a set A′ such that |A′| ≫ κ|A| and |A′ −A′| ≪ κ−4|A′|.

1 Introduction

Balog-Szemerédi-Gowers theorem [2], [4] is one of the most important tool in additive combinatorics.
It asserts that very finite subset A of an abelian group with large additive energy E(A) i.e. with many
solutions to the equation x + y = x′ + y′, contains a large subset A′ with small sumset A′ + A′. This
result has huge number of deep applications, see for example [3], [4]. The first effective bound on the size
of A′ and A′ + A′ was given by Gowers and since then the theorem was improved many times and the
currently best estimate is due to Balog [1]. He showed, in particular, that if E(A) = κ|A|3 then there
exists A′ ⊆ A such that |A′| ≫ κ|A| and |A′ −A′| ≪ κ−6|A′|.

Here we prove two theorems, which provides further improvements.

Theorem 1.1 Let A be a subset of an abelian group such that E(A) = κ|A|3. Then there exists A′ ⊆ A
such that |A′| ≫ κ|A| and

|A′ −A′| ≪ κ−4|A′| .

Theorem 1.2 Let A be a subset of an abelian group such that E(A) = κ|A|3. Then there exist A′, B′ ⊆ A

such that |A′|, |B′| ≫ κ3/4 log−5/4(1/κ)|A| and

|A′ −B′| ≪ κ−7/2 log5/2(1/κ)(|A′||B′|)1/2 .

Theorem 2 provides stronger estimates, however Theorem 1 allows us to take A′ = B′. Our general
strategy is essentially still the same as in [1], [2], [4], [6] i.e. we show that each element from A′ −A′ has
many representations in the form (a1 − a2)− (a3 − a4), a1, a2, a3, a4 ∈ A. Our improvements comes from
considering different candidates for A′. In previous works the authors looked for A′ among dense subsets
of A∩ (P + s), where P ⊆ A−A is the popular difference set. Here we will pick A′ ⊆ A∩ (A+ s). Bounds
in Theorem 2 follows from combining both methods.

Notation. Let A be a finite subset of an abelian group G. We will write A(x) for the indicator
function of the set A. Define

(A ∗B)(x) =
∑
y∈G

A(y)B(x− y)
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(A ◦B)(x) =
∑
y∈G

A(y)B(x+ y) ,

so that (A ◦B)(x) is the number of representations in the form x = b− a, a ∈ A, b ∈ B, while (A ∗B)(x)
is the number of representations in the form x = b+ a, a ∈ A, b ∈ B. For β ∈ R put

Eβ(A) =
∑
x

(A ◦A)(x)β .

Note that E(A) = E2(A). By log we always mean log2 .

2 Proof of Theorem 1.1

We start with a variant of Sanders lemma [5]. Let Pγ be the set of γ−popular differences i.e. the set of
all x such that (A ◦A)(x) > γ|A|.

Lemma 2.1 Let A be a finite subset of an abelian group G and let c > 0. Suppose that E(A) = κ|A|3.
Then there exists a set X ⊆ A of size at least 1

3κ|A| such that∑
x

(X ◦X)(x)Pcκ(x) > (1− 16c)|X|2 .

P r o o f. Observe that ∑
(A◦A)(x)6 1

2κ|A|

(A ◦A)(x)2 6 1

2
κ|A|

∑
x

(A ◦A)(x) = κ

2
|A|3 =

1

2
E(A) (1)

For 0 6 i 6 ⌈log(1/κ)⌉, let Qi = {x : 2−i−1|A| < (A ◦ A)(x) 6 2−i|A|}. Hence, putting δi = κ−12−2i, in
view of (1) we have ∑

i

δi|Qi| =
1

κ|A|2
∑
i

|A|2

22i
|Qi| >

E(A)

2κ|A|2
=

1

2
|A| .

Let S be the set of all pairs (a, b) ∈ A2 such that a− b ̸∈ Pcκ. Then∑
i

∑
(a,b)∈S

|(A− a) ∩ (A− b) ∩Qi| 6
∑

(a,b)∈S

|(A− a) ∩ (A− b)| 6 cκ|A||S| 6 cκ|A|3 .

Therefore, there exists i0 such that∑
(a,b)∈S

|(A− a) ∩ (A− b) ∩Qi0 | 6 2cκδi0 |Qi0 ||A|2 . (2)

Put Q = Qi0 , λ = 2−i0 , δ = δi0 and N = |Q|. We choose at random s ∈ G such that

P(s = x) =
Q(x)

N
,

for every x ∈ G. Set X = A ∩ (A+ s) and observe that a ∈ X if and only if a ∈ A and s ∈ a−A, hence

P(a ∈ X) =
A(a)|(a−A) ∩Q|

N
=

A(a)(A ∗Q)(a)

N
,

and

E|X| = N−1
∑
a∈A

(A ∗Q)(a) = N−1
∑
x∈Q

(A ◦A)(x) > 1

2
λ|A| .
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Let T be the set of all pairs (a, b) ∈ X2 such that a− b ̸∈ Pcκ. Then

P(a, b ∈ X) = N−1
∑

x∈(A−a)∩(A−b)

Q(x) = N−1|(A− a) ∩ (A− b) ∩Q| ,

so that by (2) we have

E|T | =
∑

(a,b)∈S

P(a, b ∈ X) = N−1
∑

(a,b)∈S

|(A− a) ∩ (A− b) ∩Q| 6 2cκδ|A|2 = 2cλ2|A|2.

Therefore

E
(
|X|2 − (16c)−1|T |

)
> 1

8
λ2|A|2 ,

so there exists s such that

|X|2 − (16c)−1|T | > 1

8
λ2|A|2.

In particular, |X| > 1
2
√
2
λ|A| > 1

3κ|A| and |T | 6 16c|X|2, which completes the proof. �

P r o o f o f T h e o r em 1.1. Let X be a set given by Lemma 2.1 applied for c = 1/128, and consider the
following graph

H =
{
(x, y) ∈ X2 : (A ◦A)(x− y) > 1

128
κ|A|

}
.

By Lemma 2.1 H has at least (7/8)|X|2 edges. Denote by A′ the set of all elements x ∈ X of degree at
least (3/4)|X| in H. Then clearly |A′| > |X|/2 ≫ κ|A|. Take any a, b ∈ A′, then there are at least |X|/2
elements y ∈ Y such that (a, y), (b, y) ∈ H. Therefore

a− b = (a− y)− (b− y)

has ≫ κ3|A|3 representations in the form (a1 − a2)− (a3 − a4), a1, a2, a3, a4 ∈ A. Thus

κ3|A|3|A′ −A′| ≪ |A|4

and the assertion follows. �

3 Proof of Theorem 1.2

We will need another version of Lemma 2.1 that make use of the E3-energy.

Lemma 3.1 Let A be a finite subset of an abelian group G and let c > 0. Suppose that E(A) = κ|A|3
and E3(A) = Mκ2|A|4. Then there exist Mκ 6 λ 6 1, and X ⊆ A of size at least 1

3λ|A| such that∑
x

(X ◦X)(x)Pγ(x) > (1− 16c)|X|2 ,

where γ = cMκ2λ−1.

P r o o f. Note that the straightforward inequalities (E(A)/|A|)2 6 E3(A) 6 |A|E(A) imply that 1 6 M 6
κ−1. In view of E(A) = κ|A|3, we have∑

(A◦A)(x)> 1
2Mκ|A|

(A ◦A)(x)3 = E3(A)−
∑

(A◦A)(x)< 1
2Mκ|A|

(A ◦A)(x)3

> E3(A)−
1

2
Mκ|A|

∑
x

(A ◦A)(x)2 =
1

2
E3(A) . (3)
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For 0 6 i 6 ⌈log(M/κ)⌉, let Qi = {x : 2−i−1|A| < (A ◦ A)(x) 6 2−i|A|}. Putting εi = κ−2M−12−3i, by
(3) we have ∑

i

εi|Qi| =
1

κ2M |A|3
∑
i

|A|3

23i
|Qi| >

E3(A)

2κ2M |A|3
> 1

2
|A| .

Again, let S be the set of all pairs (a, b) ∈ A2 such that a− b ̸∈ Pγ . Using similar argument as in Lemma
2.1 we infer that there exists λ > Mκ such that for Q = {x : 1

2λ|A| < (A ◦A)(x) 6 λ|A|} we have∑
(a,b)∈S

|(A− a) ∩ (A− b) ∩Q| 6 2γεN |A|2 ,

where ε = κ−2M−1λ3 and N := |Q|. Again we choose at random s ∈ G such that

P(s = x) =
Q(x)

N
.

for every x ∈ G. Put X = A ∩ (A+ s) and observe that

E|X| = N−1
∑
a∈A

(A ∗Q)(a) = N−1
∑
x∈Q

(A ◦A)(x) > 1

2
λ|A| .

Let T be the set of all pairs (a, b) ∈ X2 such that a− b ̸∈ Pγ . Then E|T | 6 2γε|A|2 = 2cλ2|A|2, so that

E
(
|X|2 − (16c)−1|T |

)
> 1

8
λ2|A|2 .

Thus, there exists s such that |X| > 1
3λ|A| and |T | 6 16c|X|2. �

The next lemma is Corollary 6.20 in [7].

Lemma 3.2 Let H = (A,B,E) be a bipartite graph with |E| > |A||B|/M. Then there exist A′ ⊆ A, B′ ⊆
B with |A′| > |A|/6M , |B′| > |B|/6M such that every a ∈ A′ and b ∈ B′ is connected by at least
|A||B|/212M4 paths of length three.

P r o o f o f T h e o r em 1.2. Assume that and E3(A) = Mκ2|A|4. Similarly as in the proof of Theorem 1.1
let X and λ > Mκ be given by Lemma 3.1 applied for c = 1/128, and consider the graph

H =
{
(x, y) ∈ X2 : (A ◦A)(x− y) > 1

16
Mκ2λ−1|A|

}
.

By Lemma 3.1 H has at least (7/8)|X|2 edges. Denote by A′ the set of all elements x ∈ X of degree at
least (3/4)|X| in H. Then clearly |A′| > |X|/2 ≫ λ|A|. Take any a, b ∈ A′, then there are at least |X|/2
elements y ∈ Y such that (a, y), (b, y) ∈ H. Therefore

a− b = (a− y)− (b− y)

has ≫ κ3|A|3 representations in the form (a1 − a2)− (a3 − a4), a1, a2, a3, a4 ∈ A. Thus

|A′ −A′| ≪ M−2κ−4|A′| . (4)

In the next step of the proof we obtain another estimate. Observe that∑
(A◦A)(x)>2Mκ|A|

(A ◦A)(x)2 6 E3(A)

2Mκ|A|
=

1

2
E(A) .
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Therefore there exists κ/2 6 µ 6 2Mκ such that for Q = {x : µ|A| < (A ◦A)(x) 6 2µ|A|} we have∑
x∈Q

(A ◦A)(x) ≫ κ

µ logM
|A|2 . (5)

Let G = (A,A,E) (here we can assume that the vertex set of G consists of two disjoint copies of A, for
details see [7]) be a bipartite graph such that E =

{
{a, b} : a, b ∈ A, a − b ∈ Q

}
, so that by (5) |E| =

α|A|2 ≫ κµ−1(logM)−1|A|2. Therefore, by Lemma 3.2 there are sets A′, B′ ⊆ A with |A′|, |B′| ≫ α|A|
such that every a ∈ A′ and b ∈ B′ is connected by ≫ α4|A||B| paths of length three in G. Therefore, for
each a ∈ A′ and b ∈ B′ there are ≫ α4|A||B| elements x, y ∈ A such that {a, y}, {x, y}, {x, b} ∈ G. Thus

a− b = (a− y)− (x− y) + (x− b)

has ≫ µ3|A|3α4|A|2 representations in the form (a1−a2)− (a3−a4)+ (a5−a6), a1, a2, a3, a4, a5, a6 ∈ A.
Hence

|A′ −B′| ≪ µ−3α−4|A| ≪ µ−3α−5(|A′||B′|)1/2 6 κ−3M2 log5 M(|A′||B′|)1/2 . (6)

We use (4) if κ−1/4 log−5/4(1/κ) 6 M 6 κ−1, while we use (6) if 1 6 M 6 κ−1/4 log−5/4(1/κ). In the
former case we have

|A′| = |B′| ≫ Mκ|A| > κ3/4

log5/4(1/κ)
|A|

and in the latest one

|A′|, |B′| ≫ 1

M logM
|A| ≫ κ1/4

log1/4(1/κ)
|A|,

which completes the proof. �
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