ADDITIVE COMBINATORICS

Winter Semester 2016/2017

SERIES I

Problem 1.1. Let $A, B \subseteq \mathbb{Z},|A|=|B|$ and $|A+B|=|A|+|B|-1$. Show that A and B are arithmetic progressions with the same common difference.

Problem 1.2. Provide an example of an arbitrary large set A such that $|A+A|=|A|^{\alpha},|A-A|=$ $|A|^{\beta}$ and $\alpha>\beta$.

Problem 1.3. Show that if $A, B \subseteq G$ and $|A|+|B|>|G|$, then $A+B=G$.

Problem 1.4.* Prove that if $|A+A| \leqslant K|A|$, then

$$
|k A| \leqslant\binom{ K^{4}+k-2}{k-1} K^{2}|A|
$$

Hint: Apply Ruzsa's covering lemma for $A=A$ and $B=2 A-A$.

Problem 1.5. Suppose that $|A+B| \leqslant K|A|$. Prove that for each $\varepsilon>0$ there exists $X,|X| \geqslant$ $(1-\varepsilon)|A|$ such that $|X+k B| \leqslant(K / \varepsilon)^{k}|X|$ for every $k \geqslant 1$.

Problem 1.6. For every N give an example of sets $A, B \subseteq \mathbb{Z}^{2}$ such that $|A| \sim N^{2},|B| \ll$ $N,|A+B| \ll N^{2},|A+2 B| \gg N^{3}$.
Hint: Take $B=\{(j, 0): j \in[N]\} \cup\{(0, j): j \in[N]\}$ and choose appropriately A.

Problem 1.7. Show that there exist arbitrary large sets S such that A such that $|A+A|=K|A|$ and $|3 A| \sim K^{3}|A|\left(\right.$ for every $\left.K<|A|^{1 / 3}\right)$.

Problem 1.8. Prove that $|A+2 B| \leqslant \frac{|A+A||A+B|^{2}}{|A|^{2}} \leqslant \frac{|A+B|^{4}}{|A|^{2}|B|}$.
Problem 1.9. Let $A=\left\{\left(x_{1}, \ldots, x_{2 n}\right): x_{1}+\cdots+x_{2 n}=n, x_{i} \geqslant 0\right\}$ and $B=\left\{e_{1}, \ldots, e_{2 n}\right\}$. Show that $|A+B| \ll|A|$ and $|A-B| \geqslant n|A|$.

Problem 1.10. Show that for every $k \in \mathbb{N}$ there exist sets A, B, C, each of cardinality k with $|A-B| \sim k^{2},|A-C| \sim k^{3 / 2}$ and $|B-C| \sim k^{3 / 2}$.

Problem 1.11. Let $A=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{Z}^{d}: \sum_{i} x_{i} \leqslant n, x_{i} \geqslant 0\right\}$. Find $|A|$ and limits $|A+A| /|A|$ i $|A-A| /|A|$ as $n \rightarrow \infty$ and for fix d.

Problem 1.12. Suppose that $|A-A|=K|A|$. Prove that for each k we have $|k A| \geqslant K^{1-2^{-k+1}}|A|$.

Problem 1.13. Check the following properties of Dyson's transform:
a) $A_{x}+B^{x} \subseteq A+B$,
b) $|A|+|B|=\left|A_{x}\right|+\left|B^{x}\right|$,
c) $A_{x} \backslash A=x+\left(B \backslash B^{x}\right)$.

Problem 1.14. Assume that $|A+A|=K|A|$. Show that for each $k \in \mathbb{N}$ we have

$$
\left|A+2^{k} \cdot A\right| \leqslant K^{3 k}|A| .
$$

Problem 1.15. Suppose that $|A+A|=K|A|$ and $|3 A|=K^{3-\varepsilon}|A|$. Show that there is a set $X \subseteq A$ such that $|X| \geqslant|A| / K$ and for every k

$$
|k X| \leqslant K^{\varepsilon k+3}|A| \leqslant K^{\varepsilon k+4}|X| .
$$

Problem 1.16. Suppose that $|A+A|=K|A|$ and $\left|A+B_{i}\right|=K_{i}|A|$ for $i=1, \ldots, k$. Show that

$$
\left|B_{1}+\cdots+B_{k}\right| \leqslant K^{k} K_{1} \cdots K_{k}|A| .
$$

Problem 1.17. Assume that $|A+A|=K|A|$. Show that for each l we have

$$
|A+l \cdot A| \leqslant K^{3\left(\log _{2} 2 l\right)^{2}}|A| .
$$

Problem 1.18. Let $A \subseteq[N]$ be a set with at least $N / 2+1$ elements. Prove that:
a) there exist $a, b \in A$ such that $(a, b)=1$,
b) there exist $c, d \in A$ such that $c \mid d$,
c) there exist $e, f, g \in A$ such that $e+f=g$.

Problem 1.19. Suppose that $A \subseteq \mathbb{Z} / p \mathbb{Z}$ and A does not contain any solution to the equation $x+y=z$. Prove that $|A| \leqslant \frac{p+1}{3}$.

