Rachunek Prawdopodobieństwa 2

Zestaw zadań nr 2
Termin realizacji: 24 X 2008

1. Consider a symmetric random walk with an absorbing barrier at \(N \) and a reflective barrier at \(0 \) (so that, when particle is at 0, it moves to 1 at the next step). Find the probability that the particle, having started at \(k \), visits 0 exactly \(j \) times before being absorbed at \(N \). Here \(j \geq 1 \) and \(0 \leq k \leq N \). (If \(k = 0 \), then the starting point counts as one visit.)

2. \(N + 1 \) plates are laid down around a circular table, and a hot cake is passed between them in the manner of a symmetric random walk: each time it arrives on a plate, it is tossed to one of the two neighboring plates, each possibility having probability \(\frac{1}{2} \). The game stops when the cake has visited every plate at least once. Show that, with the exception of the plate where the cake began, each plate has probability \(\frac{1}{N} \) of being the last plate visited by the cake.

3. Determine \(D_k \) for arbitrary \(p \). (ROZWIĄZANE NA WYKŁADZIE)

4. Determine \(F_k \).

5. Compute \(E|S_n| \). (Here and in all problems below assume \(S_0 = 0 \).)

6. (ZMIANA TREŚCI - zniknęło b) Prove that for \(p = q \) and \(r > 0 \),
 \[P(M_n \geq r) = P(S_n \geq r) + P(S_n \geq r + 1). \]

7. (ZMIANA TREŚCI - pojawilo się r) Prove that for \(p = q \) and \(r > 0 \),
 \[P(M_n = r) = \max \{ P(S_n = r), P(S_n = r + 1) \}. \]

8. Let \(T = \min\{n \geq 1 : S_n = 0\} \) and \(p = q \). Compute \(P(T = 2n) \).

9. (Termin: 31 X) Prove that, for \(p = q \),
 \[P(S_1 \cdots S_{2n} \neq 0) = P(S_{2n} = 0). \]

10. (Termin: 31 X) Let \(p = q \). Compute the probability that the first visit in \(S_{2n} \) takes place at time \(2k \). (Hint: use the reversal technique)