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Abstract

We show that every 3-uniform hypergraph with n vertices and minimum vertex degree at least
(5/9 + o(1))

(
n
2

)
contains a tight Hamiltonian cycle. Known lower bound constructions show that

this degree condition is asymptotically optimal.

1. Introduction

Dirac [7] proved that every graph G = (V,E) on at least three vertices and with minimum
vertex degree δ(G) � |V |/2 contains a Hamiltonian cycle. This result is best possible, as there
are graphs G with minimum degree δ(G) = �|V |/2� − 1 not containing a Hamiltonian cycle.

We continue the study to which extent Dirac’s theorem can be generalised to hypergraphs.
Here we shall restrict to 3-uniform hypergraphs and if not mentioned otherwise by a hypergraph
we will mean a 3-uniform hypergraph. Note that in this case, there are at least two natural
concepts of a minimum degree condition and several notions of cycle, and we briefly introduce
some of them below.

For a hypergraph H = (V,E) and a vertex v ∈ V , we denote by NH(v) the neighbourhood
of v and by dH(v) the degree of v defined as

NH(v) = {e ∈ E : v ∈ e} and dH(v) = |NH(v)|.
Let δ(H) = min dH(v) be the minimum vertex degree of H taken over all v ∈ V . Similarly, for
any two vertices u, v ∈ V , we denote by NH(u, v) their pair neighbourhood and by dH(u, v)
their pair degree defined by

NH(u, v) = {e ∈ E : u, v ∈ e} and dH(u, v) = |NH(u, v)|.
Let δ2(H) = min dH(u, v) be the minimum pair degree over all pairs of vertices of H. We will
sometimes skip the subscript and write d(v), N(v), d(u, v) and N(u, v) instead.

An early notion of cycles in hypergraphs appeared in the work of Berge [1] (see also [2]) more
than 40 years ago. More recently, Katona and Kierstead [14] considered the following types of
paths and cycles. A hypergraph P is a tight path of length �, if |V (P )| = � + 2 and there is an
ordering of the vertices V (P ) = {x1, . . . , x�+2} such that a triple e forms a hyperedge of P if
and only if e = {xi, xi+1, xi+2} for some i ∈ [�]. The ordered pairs (x1, x2) and (x�+1, x�+2) are
the end-pairs of P and we say that P is a tight (x1, x2)-(x�+1, x�+2) path. This definition of
end-pairs is not symmetric and implicitly fixes a direction on P and the order of the end-pairs.
Hence, we may refer to (x1, x2) as the starting pair and to (x�+1, x�+2) as the ending pair. All
other vertices of P are called internal. We sometimes identify such a path P with the sequence
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of its vertices x1 . . . x�+2. Moreover, a tight cycle C of length � � 4 consists of a path x1 . . . x�

of length �− 2 and the two additional hyperedges {x�−1, x�, x1} and {x�, x1, x2}. In both cases,
the length of a tight cycle and of a tight path is measured by the number of hyperedges and we
will use the same convention for the length of cycles, paths, and walks in graphs. For simplicity,
we denote edges and hyperedges by xy and xyz instead of {x, y} and {x, y, z}.

Roughly speaking, one may think of tight paths and cycles as ordered hypergraphs such that
‘consecutive’ edges overlap in exactly two vertices. Similarly, one may consider so-called loose
paths and cycles, where the overlap is restricted to one vertex only. Given a hypergraph H,
a cycle, tight or loose, is called Hamiltonian if it is a subhypergraph of H passing through
all the vertices of H. The optimal approximate minimum pair and vertex degree conditions
for the existence of loose Hamiltonian cycles were obtained in [4, 15] and precise versions
for large hypergraphs appeared in [6, 12]. Results on pair degree conditions implying tight
Hamiltonian cycles were obtained in [19, 20]. For minimum vertex degrees, (5/9 − o(1))n2/2
provides a lower bound (see Examples 1.2(i)–(iii)), which was conjectured to be optimal. So
far only suboptimal upper bounds were obtained in [11, 17, 18]. We close this gap here, as
the following result provides an asymptotically optimal minimum vertex degree condition for
tight Hamiltonian cycles.

Theorem 1.1. For every α > 0, there exists an integer n0 such that every 3-uniform

hypergraph H with n � n0 vertices and with minimum vertex degree δ(H) �
(

5
9 + α

)
n2

2
contains a tight Hamiltonian cycle.

A recent result of Cooley and Mycroft [5] establishes the existence of an almost spanning
tight cycle under the same degree condition as in Theorem 1.1. Moreover, both these results
are asymptotically best possible, as the following well-known examples show.

Example 1.2. (i) Consider a partition X ∪· Y = V of a vertex set V of size n with
|X| = �(n + 1)/3� and let H be the hypergraph containing all triples e ∈ V (3) such that
|e ∩X| �= 2. An averaging argument shows that a Hamiltonian cycle in H would need to contain
an edge e with at least two vertices from X. Consequently, e ⊆ X and the cycle could never
‘leave’ X. Therefore, H contains no Hamiltonian cycle (see, for example, [17]). Moreover, we
have δ(H) � (5/9 − o(1))n2/2.

(ii) Similarly, one may consider a partition X ∪· Y = V with |X| = �2n/3� and let H
be the hypergraph consisting of all triples e ∈ V (3) such that |e ∩X| �= 2. Again, H has
δ(H) � (5/9 − o(1))n2/2 and it contains no tight Hamiltonian cycle.

(iii) The last example utilises the fact that every tight Hamiltonian cycle contains a matching
of size 	n/3
. Again, we consider a partition X ∪· Y = V this time with |X| = 	n/3
 − 1 and
let H consist of all triples having at least one vertex in X. Consequently, H contains
no matching of size 	n/3
 and, hence, no tight Hamiltonian cycle. On the other hand,
δ(H) � (5/9 − o(1))n2/2.

We also would like to mention that in addition to the results on Hamiltonian cycles in
3-uniform hypergraphs discussed here, quite a few extensions and related results for k-uniform
hypergraphs already appeared in the literature and we refer to the surveys [16, 22] (and the
references therein) for a more detailed discussion.

Organisation

The proof of Theorem 1.1 is based on the absorption method developed in [19] and we discuss
this approach in Section 2.1. In Section 2.2, we introduce the main concepts and lemmas for
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the proof of Theorem 1.1 and deduce the theorem based on the lemmas. Each of the subsequent
Sections 3–7 is devoted to the proof of one of the main lemmas from Section 2.2.

2. Building Hamiltonian cycles in hypergraphs

2.1. Absorption method

In [19], the absorption method was introduced, which turned out to be a very well-suited
approach for extremal degree-type problems forcing the existence of spanning subhypergraphs.
Our proof is also guided by this strategy, which in the context of Hamiltonian cycles can be
summarised as follows: Construct an almost spanning cycle C that contains a special, so-called
absorbing path PA. The absorbing path has the special property that it can absorb the vertices
outside C in such a way that a Hamiltonian cycle is created.

For example, in the context of graphs, a vertex v outside C could be easily added to C
if it formed a triangle with some edge xy of C, that is, we would replace the edge xy of C
by the path x-v-y of length 2. Obviously, this would have no effect on the remainder of C,
since xy and the path x-v-y have the same end vertices. However, in order to repeat such
a procedure for m vertices outside C, it would be convenient if each such vertex would
form a triangle with at least m mutually disjoint edges in PA ⊆ C. Then, we could absorb
one vertex after another in a greedy manner into PA and its extensions. However, in the
proof, we may not have much control on the set of vertices left out by the almost spanning
cycle C.

In order to prepare for such a scenario, we ensure that PA can absorb any set of vertices,
which is not too large. For this, it would be desirable to know that for every vertex v there
exist many edges that form a triangle with v, that is, there are many v-absorbers. Let us
remark that if one would like to prove an approximate version of Dirac’s theorem for n-vertex
graphs G with δ(G) � (1/2 + α)n, then these edges would exist. Indeed, one can observe that
the degree assumption forces for every vertex v at least αn2/2 triangles containing it. Based
on this fact, one can show that εn edges selected independently at random will contain, with
high probability, at least δn v-absorbers for any vertex v, for some suitably chosen constants
satisfying α > ε > δ > 0. Moreover, the degree condition allows us to put all these edges onto
one path, an absorbing path PA with the desired property. Consequently, the problem of finding
a Hamiltonian cycle reduces to finding an almost spanning cycle C containing PA and covering
all but at most δn vertices of G.

In the context of Dirac’s theorem for graphs, such a ‘reduction’ seems to be somewhat
going overboard, as much simpler proofs even of the exact result are known. However, for
hypergraphs no such simple proof surfaced yet and the absorption method seems to provide
an appropriate approach.

For tight cycles in 3-uniform hypergraphs, the following absorbers were considered in [20]:
two hyperedges xyz and yzw (which themselves form a tight (x, y)-(z, w)-path of length 2) are
a v-absorber if v forms a hyperedge with each of the three consecutive pairs xy, yz and zw.
These three hyperedges allow us to insert v between y and z, leading to a tight path of length
three with the same end-pairs (x, y) and (z, w). It is not hard to show that the minimum pair
degree condition δ2(H) � (1/2 + α)n for an n-vertex hypergraph H guarantees the existence
of Ω(n4)v-absorbers for any vertex v, which is a good starting point for building an absorbing
path in this context. However, for building such a path (and for creating an almost spanning
tight cycle C) we would also need to connect the end-pairs of absorbers (and eventually the
end-pairs of paths to build up C). Again, the minimum pair degree assumption was utilised
for these connections in [20] and it could be shown that any pair of pairs can be connected by
a relatively short tight path.
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For the proof of Theorem 1.1, however, we only have a minimum vertex degree condition
at hand and this calls for more complex v-absorbers and a more complicated connecting
mechanism. In [17, 18], this problem was addressed by removing hyperedges containing
pairs with too small degree, which led to suboptimal minimum degree conditions. For
the asymptotically optimal condition of (5

9 + o(1))n
2

2 , new ideas for the absorbers and the
connectability were required.

Roughly speaking, the absorbers we shall use here consist of two parts. First, we show
that there are Ω(n) vertices z for which there exist Ω(n4) tight paths Pz = xyy′x′, which can
absorb z in the way described above, and we call such vertices z absorbable (see Figure 6.1).
Moreover, for every vertex v and every absorbable vertex z, there are at least Ω(n4) quadruples
(a, b, c, d) such that both vertices v and z form a hyperedge with all three pairs ab, bc and cd.
In particular, abvcd and abzcd form tight paths of length three in H. Consequently, the two-
edge path Pz = xyy′x′ together with the three-edge path abzcd can absorb v without changing
the end pairs of Pz and of abzcd. Indeed, we may replace z in abzcd by v and then include z
between y and y′ in Pz (see Definition 6.1 and Figure 6.1). Most importantly, for every vertex v
such an argument would give rise to Ω(n9) absorbers consisting of a tight path abzcd of length
three and a tight two-edge path Pz, which, in principle, would allow us to apply the absorption
method in a similar manner as in [20].

However, connecting the end-pairs of paths arising in the proof requires more involved
changes. In [20], the minimum pair degree assumption allows a Connecting Lemma which
asserts that for every pair of disjoint pairs of vertices there exists a relatively short tight path
connecting them.

A similar statement in the context of Theorem 1.1 fails to be true. In fact, there might
be pairs of vertices that are not contained in any hyperedge at all. More interestingly, even
when restricting to pairs of degree Ω(n), a corresponding connecting lemma might fail, as the
following example shows.

Similarly, as in Examples 1.2(i) and (ii), consider a hypergraph H = (V,E) with par-
tition X ∪· Y = V , where |X| = ξn for some ξ < 1/3, and with an edge set defined by
E = {e ∈ V (3) : |X ∩ e| �= 2}. For sufficiently large n, such a hypergraph H satisfies the degree
condition in Theorem 1.1, but every tight path P starting with a pair of vertices in X is bound
to stay in X, that is, V (P ) ⊆ X. Owing to such examples we will define a suitable notion of
connectable pairs, that is, pairs of vertices for which a restricted Connecting Lemma can be
proved (see Definition 2.5 and Proposition 2.6 in the next subsection). On the other hand, this
notion must be flexible and general enough, so that we can show that all paths considered in
the proof have such connectable pairs as ends. In fact, this adjustment led to a few, somewhat
technical, problems that we had to address here. In the next section, we present the notion of
connectable pairs and the main lemmas which lead to the proof of Theorem 1.1.

2.2. Outline of the proof

In this section, we present the proof of Theorem 1.1 based on Propositions 2.3, 2.6, 2.7, 2.9
and 2.10. These propositions will be stated here and we defer their proofs to separate later
sections. The interplay of these propositions makes use of some auxiliary constants. For a
simpler presentation, we will note their dependencies along the way by writing a � b to indicate
that b will be chosen sufficiently small depending on a (and other constants appearing to the
left of b).

More precisely, we are first given α > 0 by Theorem 1.1 and without loss of generality, we
may assume that 1 � α. Then, we fix the following auxiliary constants β, ζ∗, ζ∗∗, ϑ∗, ϑ∗∗ > 0
and integers �, n ∈ N obeying the following hierarchy

1 � α � β,
1
�
, ζ∗ � ϑ∗ � ζ∗∗ � ϑ∗∗ � 1

n
. (2.1)
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These constants will be introduced together with the propositions and the quantification of
the propositions will allow us to fix them under the hierarchy given in (2.1).

Theorem 1.1 concerns n-vertex hypergraphs H = (V,E) with minimum vertex degree
δ(H) � (5

9 + α)n
2

2 . This degree condition implies a corresponding edge density of the link
graphs defined below.

Definition 2.1. For a 3-uniform hypergraph H = (V,E) and a vertex v ∈ V , we define the
link graph Lv of v as the graph with vertex set V (Lv) = V and edge set

E(Lv) = {yz : vyz ∈ E(H)}.

Observe that v is an isolated vertex in the link graph Lv and e(Lv) = dH(v) � δ(H). The
minimum degree assumption of Theorem 1.1 implies that every link graph has density at least
5/9 + α and in Section 3 we investigate structural properties of such graphs. In particular, we
shall show that these link graphs contain a ‘well connected’ large subgraph, which will allow
us to build and connect tight paths in the hypergraph (see Proposition 2.6). More precisely,
we consider subgraphs satisfying the following property.

Definition 2.2. A graph R is said to be (β, �)-robust if for any two distinct vertices x
and y of R the number of x-y-paths in R of length � is at least β|V (R)|�−1.

The following proposition, which will be proved in Section 3, asserts that all link graphs
contain a robust subgraph with many vertices and edges. For a graph G and A, B ⊆ V (G), let
eG(A,B) be the number of edges of G with one vertex in A and one in B.

Proposition 2.3 (Robust subgraphs). For every α > 0, there are β > 0 and an odd integer

� � 3 such that for sufficiently large n every n-vertex graph L = (V,E) with |E| � (5
9 + α)n

2

2
contains an induced subgraph R ⊆ L satisfying

(i) |V (R)| � (
2
3 + α

2

)
n,

(ii) eL(V (R), V � V (R)) � αn2/4 and e(R) � (5
9 + α

2 )n
2

2 − (n−|V (R)|)2
2 ,

(iii) and R is (β, �)-robust.

For the proof of Theorem 1.1, we fix for every vertex v ∈ V a (β, �)-robust subgraph Rv ⊆ Lv

as guaranteed by Proposition 2.3. In other words, after α > 0 was revealed in Theorem 1.1, we
use Proposition 2.3 to define constants β > 0 and � ∈ N. We indicate this dependency by

α � β,
1
�
.

Moreover, we may assume that n is sufficiently large, as it will be the last constant to be chosen
in the proof of Theorem 1.1. Consequently, for any given hypergraph H = (V,E) concerned in
Theorem 1.1 we can appeal to Proposition 2.3 and this way we fix a (β, �)-robust subgraph
Rv ⊆ Lv for every vertex v ∈ V . We summarise this in the following setup.

Setup 2.4. Suppose α, β > 0, suppose � � 3 is an odd integer, and suppose H = (V,E)
is a 3-uniform hypergraph with |V | = n sufficiently large, with δ(H) � (5

9 + α)n
2

2 , and with
(β, �)-robust subgraphs Rv ⊆ Lv for every v ∈ V given by Proposition 2.3.

As discussed in Section 2.1, under the degree assumption of Theorem 1.1 it is not necessarily
true that any two pairs of vertices can be connected at all by a tight path, even if we only
consider pairs of high degree. Still there is a reasonably large collection of pairs admitting such
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mutual connections. In fact, pairs that are contained in sufficiently many robust subgraphs can
be connected by tight paths in H. This will be made precise in the definition of connectable
pairs and in the Connecting Lemma stated below.

Definition 2.5. Given Setup 2.4 and ζ > 0, an unordered pair xy of vertices in V is said
to be ζ-connectable if the set

Uxy = {v ∈ V : xy ∈ E(Rv)}
of all vertices v having xy as an edge of their robust subgraph has size |Uxy| � ζ|V |. The
ordered pair (x, y) is called ζ-connectable if xy is.

The Connecting Lemma below asserts that pairs of connectable pairs can be connected by
many tight paths. Section 4 is devoted to the proof of Proposition 2.6.

Proposition 2.6 (Connecting Lemma). Given Setup 2.4 and ζ > 0, there exists ϑ > 0 such
that every two disjoint ζ-connectable ordered pairs (x, y) and (z, w) are connected by at least
ϑn3�+1 tight (x, y)-(z, w)-paths of length 3(� + 1) in H.

The Connecting Lemma plays a crucial rôle in building an absorbing path PA (guaranteed
by Proposition 2.9), as well as in building an almost spanning cycle C (see Proposition 2.10).
For the former application, we shall fix ζ∗ with α � ζ∗ and the Connecting Lemma will yield
some constant ϑ∗ with ζ∗ � ϑ∗. Given ϑ∗, we will then choose ζ∗∗ for the latter application,
obtaining ϑ∗∗ with ζ∗∗ � ϑ∗∗. This gives rise to the hierarchy

α � ζ∗ � ϑ∗ � ζ∗∗ � ϑ∗∗,

as declared in (2.1).
The Connecting Lemma will allow us to connect tight paths that start and end with a

connectable pair. However, in the process of building longer paths, we must not interfere with
already constructed subpaths. For that, we put a small reservoir of vertices aside and in the
proof of Proposition 2.10 connections will only be created by using new vertices from this
reservoir. The existence of such a reservoir set is given by the following proposition and its
probabilistic proof is given in Section 5.

Proposition 2.7 (Reservoir Lemma). Given Setup 2.4 and, in addition, let ϑ∗, ζ∗∗ > 0 and
suppose that ϑ∗∗ = ϑ∗∗(α, β, �, ζ∗∗) > 0 is given by Proposition 2.6.

There exists a reservoir set R ⊆ V with
ϑ2
∗
2 n � |R| � ϑ2

∗n such that for all disjoint pairs of
ζ∗∗-connectable pairs (x, y) and (z, w) there are at least ϑ∗∗|R|3�+1/2 tight (x, y)-(z, w)-paths
of length 3(� + 1) in H whose internal vertices belong to R.

We summarise the situation by the following setup extending Setup 2.4.

Setup 2.8. Let Setup 2.4 and constants as stated in (2.1) be given, where ϑ∗ = ϑ∗(α, β, �, ζ∗)
and ϑ∗∗ = ϑ∗∗(α, β, �, ζ∗∗) are given by Proposition 2.6. In addition, let R ⊆ V be a reservoir
set given by Proposition 2.7.

After these preparatory propositions, we are ready to build a Hamiltonian cycle. As outlined
above, we first create and put aside an absorbing path PA, which at the end of the proof will
allow us to ‘absorb’ an arbitrary (but not too large) set X of leftover vertices into an almost
spanning tight cycle, thus creating a tight Hamiltonian cycle.
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Proposition 2.9 (Absorbing path). Given Setup 2.8, there exists a tight (absorbing)
path PA which is a subhypergraph of H −R and has the following properties:

(i) |V (PA)| � ϑ∗n,
(ii) the end-pairs of PA are ζ∗-connectable, and
(iii) for every set X ⊆ V � V (PA) with |X| � 2ϑ2

∗n there is a tight path in H whose set of
vertices is V (PA) ∪X and whose end-pairs are the same as those of PA.

The proof of Proposition 2.9 is the content of Section 6. The last proposition (see Section 7
for its proof) establishes the existence of an almost spanning tight cycle containing PA and
covering all but at most 2ϑ2

∗n vertices of H.

Proposition 2.10 (Almost spanning cycle). Given Setup 2.8 and a tight absorbing path
PA ⊆ H −R from Proposition 2.9, there exists a tight cycle C ⊆ H containing PA and passing
through at least (1 − 2ϑ2

∗)n vertices.

Finally, we observe that combining Propositions 2.9 and 2.10 implies the existence of a
Hamiltonian tight cycle in H.

Proof of Theorem 1.1. Given α > 0, we choose all auxiliary constants as described above
and assume Setup 2.8. Proposition 2.9 yields an absorbing path PA and then Proposition 2.10
guarantees the existence of an almost spanning cycle C which contains the absorbing path PA

and covers all but at most 2ϑ2
∗n vertices. Property (iii) of the absorbing path PA allows us to

absorb the remaining vertices into the cycle. This concludes the proof of Theorem 1.1. �

It is left to prove Propositions 2.3, 2.6, 2.7, 2.9 and 2.10, which is the content of Sections 3 – 7.

3. Robust subgraphs

In this section, we establish the existence of robust subgraphs within the link graphs of the given
hypergraph H. The proof of Proposition 2.3 splits into two parts. In the first part (rendered
in Lemma 3.2), we establish the existence of a subgraph R satisfying properties (i) and (ii) of
Proposition 2.3, and the following strong connectivity property.

Definition 3.1. A graph R is said to be μ-inseparable if δ(R) � μ|V (R)| and for every
partition X ∪· Y = V (R) into parts of size at least μ|V (R)| we have e(X,Y ) � μ2|V (R)|2.

Lemma 3.2. For every α > 0 and sufficiently large n, every n-vertex graph L = (V,E) with

|E| � ( 5
9 + α)n

2

2 contains an induced subgraph R ⊆ L satisfying

(i) |V (R)| � (
2
3 + α

2

)
n,

(ii) eL(V (R), V � V (R)) � αn2/4 and e(R) � (5
9 + α

2 )n
2

2 − (n−|V (R)|)2
2 ,

(iii) and R is (α/72)-inseparable.

In the second part of the proof, we deduce Proposition 2.3 from Lemma 3.2 and for that we
utilise the inseparability of R to deduce the robustness. We first give the proof of the lemma.

Proof of Lemma 3.2. We may assume α ∈ (0, 4/9], since otherwise no graph L satisfying
the assumption exists. For convenience set

μ =
α

72
(3.1)

and for sufficiently large n let L = (V,E) be an n-vertex graph with e(L) � (5
9 + α)n

2

2 .
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Defining the subgraph R

We fix the maximum t ∈ N for which there exists a partition V1 ∪· . . . ∪· Vt = V with

(a) |V1| � · · · � |Vt| � μn/2 and
(b)

∑
1�i<j�t eL(Vi, Vj) � 2(t− 1)μ2n2.

Since the trivial partition V1 = V satisfies properties (a) and (b) we know t � 1 and from (a)
we infer that t � 2/μ. Moreover, the upper bound on t combined with (b) implies∑

1�i<j�t

eL(Vi, Vj) < 4μn2. (3.2)

Let η ∈ (0, 1] be given by

|V1| = ηn.

It is easy to check that η > 1/3, as otherwise

e(L) =
t∑

i=1

eL(Vi) +
∑

1�i<j�t

eL(Vi, Vj) <
t∑

i=1

|Vi|2
2

+ 4μn2

� n

3

t∑
i=1

|Vi|
2

+ 4μn2 =
(

1
3

+ 8μ
)
n2

2

(3.1)

� 5
9
n2

2

contradicts our assumption on e(L). However, below we even show η > 2/3 and in the proof of
that we will consider a quadratic inequality where the weak bound η > 1/3 from above rules
out one interval of possible solutions. In fact, we have

η2n2

2
� eL(V1) > e(L) − (n− |V1|)2

2
− 4μn2 �

(
5
9

+ α− (1 − η)2 − 8μ
)
n2

2
.

This leads to the quadratic inequality

η2 � 5
9

+ α− (1 − η)2 − 8μ ⇐⇒
(
η − 1

3

)(
η − 2

3

)
� α

2
− 4μ.

Since assuming that η ∈ (1
3 ,

2
3 + 2

3α) would yield(
η − 1

3

)(
η − 2

3

)
<

(
η − 1

3

)
· 2
3
α <

2
3
· 2
3
α =

α

2
− α

18
=

α

2
− 4μ,

we have

|V1| = ηn �
(

2
3

+
2
3
α

)
n and eL(V1) >

2
9
n2 � μn2. (3.3)

Let W = {w1, . . . , wm} ⊆ V1 be a maximal (ordered) subset such that

|NL(wi) ∩ (V1 � {w1, . . . , wi−1})| < μn

for every i ∈ [m]. Owing to the second part of (3.3), we have V1 � W �= ∅. Moreover, by
definition V1 � W induces a subgraph of minimum degree at least μn in L and we set

U = V1 � W and R = L[U ],

and below we verify that R has the desired properties.
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Verifying the properties of R

We first observe that |W | < μn/2. Suppose for a contradiction that there exists a subset
W ′ = {w1, . . . , w�μn/2�} ⊆ W . Then, we can replace the set V1 in the partition V1 ∪· . . . ∪· Vt = V
by W ′ ∪· (V1 � W ′) and obtain a partition into t + 1 parts, which satisfies (a), as

|V1 � W ′| � |V1 � W | = |U | > δ(R) � μn. (3.4)

Moreover, the ordering of the vertices in W yields

eL(W ′, V1 � W ′) �
∑

wi∈W ′
|NL(wi) ∩ (V1 � {w1, . . . , wi−1})| < μn · |W ′| � μ2n2, (3.5)

which shows that the partition W ′ ∪· (V1 � W ′) ∪· V2 ∪· . . . ∪· Vt = V also satisfies (b). Conse-
quently, this partition would contradict the maximal choice of t and, hence, we have indeed
|W | < μn/2.

Property (i) of Lemma 3.2 then follows from

|V (R)| = |U | = |V1 � W | = |V1| − |W |

> |V1| − μ

2
n = (η − μ

2 )n
(3.3)

�
(

2
3

+
2α
3

− μ

2

)
n

(3.1)

�
(

2
3

+
α

2

)
n.

For property (ii), note that

eL(U, V � U) =
t∑

i=2

eL(U, Vi) + eL(U,W )

�
t∑

i=2

eL(V1, Vi) + μn|W |
(b)

� 2(t− 1)μ2n2 + μ2n2 < 4μn2,

where we used t � 2/μ in the last inequality. Consequently, the first inequality of property (ii)
follows from the choice of μ in (3.1). The second inequality is a direct consequence of the first
and the lower bound on e(L) given by the assumption of the lemma

e(R) = e(L) − eL(U, V � U) − eL(V � U) �
(

5
9

+ α

)
n2

2
− α

2
n2

2
− (n− |U |)2

2
.

For property (iii), we first note that we already observed the required minimum degree
condition δ(R) � μ|U | in (3.4). For the second property in Definition 3.1, consider an arbitrary
partition X ∪· Y = U with parts of size at least μ|U | > 2μn/3. We appeal to the maximality of t
and infer from (b) that

eL(X,V1 � X) > 2μ2n2.

Consequently, since V1 � X = Y ∪· W , we have

eR(X,Y ) = eL(X,Y ∪W ) − eL(X,W ) � eL(X,V1 � X) − eL(U,W ) � 2μ2n2 − μ2n2 = μ2n2,

which implies that R is μ-inseparable and this concludes the proof of Lemma 3.2. �

Next we deduce Proposition 2.3 from Lemma 3.2.

Proof of Proposition 2.3. For α ∈ (0, 4/9], set μ = α/72. We set � to be the smallest odd
integer such that

� >
8
μ2

+ 1 and set β =
1

72�

(μ
2

)6�

. (3.6)
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For sufficiently large, n let L = (V,E) be an n-vertex graph with e(L) � (5
9 + α)n

2

2 . Moreover,
let U ⊆ V and R = L[U ] be the induced subgraph guaranteed by Lemma 3.2. In particular,
V (R) = U ,

|U | �
(

2
3

+
α

2

)
n, e(R) �

(
5
9

+
α

2

)
n2

2
− (n− |U |)2

2
, and δ(R) � μ|U |. (3.7)

It remains to show that R is (β, �)-robust for the choice of β and � in (3.6). This proof will
be carried out in three steps. First, we show that for every pair of distinct vertices x, z ∈ V (R),
there exist at least Ω(ns−1) x-z-walks in R of length s = s(x, z) � � (see (3.9)). In the second
step, we ensure that s(x, z) can be chosen to be odd (see (3.12)) and in the last step we show
that we can insist that the walks have length � independent of the pair x and z. Noting that
most of these walks will indeed be paths then concludes the proof. Below we give the details
of each of the three steps.

First step. For an arbitrary vertex x ∈ U and for every integer i � 1, we define

Y i
x = {y ∈ U : there are at least (μ4/4)s|U |s−1 x-y-walks of length s in R for some s � i}.

For every i � 2, we have Y i
x ⊇ Y i−1

x and, consequently,

|Y i
x | � |Y 1

x | � |NR(x)| � δ(R) � μ|U |.
Next we show that for every integer i with 1 � i � 2/μ2 at least one of the following holds:∣∣U � Y i

x

∣∣ < μ|U | or
∣∣Y i+1

x � Y i
x

∣∣ � μ2

2
|U |. (3.8)

If |U � Y i
x | � μ|U |, then the μ-inseparability of R implies

eL
(
Y i
x , U � Y i

x

)
� μ2|U |2.

This means however that at least μ2|U |/2 vertices U � Y i
x have at least μ2|U |/2 neighbours

in Y i
x . For every such vertex in U � Y i

x , at least 1/i � μ2/2 proportion of its neighbours in Y i
x

are connected to x by walks of the same length, which implies |Y i+1
x � Y i

x | � μ2|U |/2 and this
establishes (3.8).

From (3.8), we infer that for j = 	2/μ2
 we have |U � Y j
x | < μ|U |. Since x ∈ U was arbitrary,

the same conclusion holds for every vertex z ∈ U , that is, we also have |U � Y j
z | < μ|U |.

Therefore, at least |U | − 2μ|U | > |U |/2 vertices y are contained in the intersection Y j
x ∩ Y j

z .
Each of these vertices gives rise to constants s1, s2 � j � 2/μ2 such that there are at least
(μ4/4)s1 |U |s1−1 x-y-walks of length s1 and there are at least (μ4/4)s2 |U |s2−1 z-y-walks of
length s2. Consequently, for sy = s1 + s2 � 2 there are at least (μ4/4)sy |U |sy−2x-z-walks of
length sy in R passing through y. Repeating this argument for all vertices y ∈ Y j

x ∩ Y j
z shows

that there is a subset of at least |U |
2 / 4

μ4 vertices yielding the same pair (s1, s2) and, hence, the
same value sy. Consequently, for some s(x, z) with 2 � s(x, z) � 4/μ2 there are at least

μ4

8
|U | ·

(
μ4

4

)s(x,z)

|U |s(x,z)−2 �
(μ

2

)6s(x,z)

|U |s(x,z)−1 (3.9)

x-z-walks of length s(x, z) in R. It will be convenient to define for every pair of vertices x,
z ∈ U the set

Sx,z =
{
s � 2: there are at least (μ/2)6s|U |s−1 x-z-walks in R

}
(3.10)

and (3.9) asserts Sx,z ∩ [2, 4/μ2] �= ∅. This concludes the discussion of the first step.
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Second step. We elaborate on (3.9) and show that we can obtain a similar formula with
the additional restriction that s(x, z) is odd. For that, let x ∈ U be arbitrary and consider the
disjoint sets

Y odd
x ∪· Y even

x ⊆ U

defined through the parity of the integers s(x, y) for which the lower bound in (3.9) holds for
the number of x-y-walks in R, that is,

Y odd
x =

{
y ∈ U : Sx,y ∩ [2, 4/μ2] contains only odd integers

}
and

Y even
x =

{
y ∈ U : Sx,y ∩ [2, 4/μ2] contains only even integers

}
.

Moreover, we consider the set Y flex
x of ‘parity-wise flexible’ vertices covering the remainder

of U , that is,

Y flex
x =

{
y ∈ U : Sx,y ∩ [2, 4/μ2 + 1] contains both odd and even integers

}
.

Owing to the additional ‘+1’ in the definition, the set Y flex
x may not be disjoint from

Y odd
x ∪ Y even

x . However, all three sets together cover U . More importantly, the vertices y ∈ Y flex
x

connect to x by many odd and many even walks of short length, which will allow us to ‘fix’ the
parity for every vertex z ∈ U by first connecting z with some y ∈ Y flex

x and then, depending
on the parity of the z-y-walk, continuing by a walk of different parity to x. Obviously, for such
an approach, it will be useful that Y flex

x indeed contains many vertices and, therefore, below
we show ∣∣Y flex

x

∣∣ � n

36
� |U |

36
. (3.11)

For that, we note that Y odd
x � Y flex

x induces at most μ|U |2 edges, as otherwise some vertex
in y ∈ Y odd

x � Y flex
x would have at least 2μ|U | neighbours in Y odd

x . Any such a neighbour
y′ and its odd x-y′-walks can be used to build even x-y-walks of length at most 4/μ2 + 1
and at least a (2/μ2 + 1)−1 proportion of these walks would have the same length. Conse-
quently, there would be some even integer contained in Sx,y ∩ [2, 4/μ2 + 1], which contradicts
y ∈ Y odd

x � Y flex
x . Applying the same argument to Y even

x � Y flex
x tells us

eR
(
Y odd
x � Y flex

x

)
+ eR

(
Y even
x � Y flex

x

)
� 2μ|U |2.

Since, trivially, eR(Y odd
x � Y flex

x , Y even
x � Y flex

x ) � |U |2/4 and all edges of R not counted so far
are incident with a vertex in Y flex

x , we have

e(R) �
(

1
2

+ 4μ
) |U |2

2
+

∑
v∈Y flex

x

dR(v).

On the other hand, we have

e(R)
(3.7)

�
(

5
9

+
α

2

)
n2

2
− (n− |U |)2

2
.

For � defined by |U | = �n these two estimates on e(R) lead to

2
n
|Y flex

x | � 2
n

∑
v∈Y flex

x

dR(v)
n

�
(

5
9

+
α

2

)
− (1 − �)2 −

(
1
2

+ 4μ
)
�2 � �

(
2 − 3

2
�

)
− 4

9
,

where we used the choice μ = α/72 < α/8 for the last inequality. Since � ∈ (2/3, 1], the right-
hand side is minimised for � = 1 and (3.11) follows.
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Having established (3.11) we shall show that for every vertex z ∈ U there exists some odd
integer s′(x, z) � 8/μ2 + 1 such that there are at least

1
36

(μ
2

)6s′(x,z)+4

|U |s′(x,z)−1 (3.12)

x-z-walks of length s′(x, z) in R. In fact, for every vertex z and every y ∈ Y flex
x we appeal to

(3.10) and obtain many z-y-walks of length s(z, y). Since y ∈ Y flex
x , there is some

s(y, x) ∈ Sy,x ∩ [2, 4/μ2 + 1]

of different parity than s(z, y) and connecting the corresponding walks gives us(μ
2

)6s(z,y)

|U |s(z,y)−1 ×
(μ

2

)6s(y,x)

|U |s(y,x)−1 =
(μ

2

)6s(z,y)+6s(y,x)

|U |s(z,y)+s(y,x)−2

x-z-walks of odd length s(z, y) + s(y, x) � 8/μ2 + 1 passing through y. Similarly as in the first
step, we repeat this argument for all vertices y ∈ Y flex

x and conclude that there must be a
subset of |U |

36 /
8
μ4 vertices y leading to the same pair

(
s(z, y), s(y, x)

)
with odd sum and thus

to odd walks of the same length s′(x, z). Hence, there are at least

|U |
36

· μ
4

8
·
(μ

2

)6s′(x,z)
|U |s′(x,z)−2

x-z-walks of length s′(x, z) in R and (3.12) follows.

Third step. In the last step, we finally show that R is (β, �)-robust. So far we achieved
in the second step that for every pair of vertices there are many short walks of odd length
connecting them. However, so far the length may depend on the pair that is connected and
below we extend many walks so that they all have the same length � independent of the pair.
In fact, we shall show that for every pair of distinct vertices x and z in R there are at least
2β|U |�−1 x-z-walks of length � in R.

For an arbitrary vertex x ∈ U , we consider its neighbourhood NR(x) and let SR(x) be its
second neighbourhood, that is, the set of vertices connected by a walk of length two with x in R.
In particular, NR(x) and SR(x) might not be disjoint. Since δ(R) � μ|U |, we have

|NR(x)| � μ|U | and eR(NR(x), SR(x)) � 1
2
μ|U | · |NR(x)| � μ2

2
|U |2, (3.13)

where the factor 1/2 takes into account that NR(x) and SR(x) may not be disjoint.
Consequently, one can show that there are subsets Nx ⊆ NR(x) and Sx ⊆ SR(x) of size at
least μ2|U |/4 such that for every vertex y ∈ Nx, we have

|NR(y) ∩ Sx| � μ2

4
|U |

and, similarly, |NR(y′) ∩Nx| � μ2|U |/4 for every y′ ∈ Sx. Indeed the sets Nx and Sx exist, as
otherwise we could keep deleting edges incident to vertices of small degree in NR(x) (respec-
tively, SR(x)). More precisely, we consider vertices one by one and if v ∈ Nx (respectively, Sx)
has fewer than μ2|U |/4 neighbours in Sx (respectively, Nx), then we remove the edges between v
and its neighbourhood in Sx (respectively, Nx). However, this way less than

(|NR(x)| + |SR(x)|) · μ
2

4
|U | � μ2

2
|U |2

edges would be deleted altogether, which by (3.13) implies that the procedure ends with a
non-empty subgraph with the required degree condition. Therefore, for every vertex y′ ∈ Sx

and every odd integer s′′, there exist at least (μ2/4)s
′′ |U |s′′ walks of length s′′ that start in y′

and end in Nx ⊆ NR(x).
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Let z ∈ U be distinct from x. For every y′ ∈ Sx, there is an odd integer
s′(z, y′) � 8/μ2 + 1 such that (3.12) holds for the vertex pair (z, y′). Since � and s′(z, y′) are
odd and since s′(z, y′) � 8/μ2 + 1 < �, for the odd integer

s′′ = �− s′(z, y′) − 1 � 1,

there are (μ2/4)s
′′ |U |s′′ walks of length s′′ from y′ to some vertex y ∈ Nx ⊆ NR(x), which then

extends to a z-x-walk of length �. In other words, for every y′ ∈ Sx there are at least

1
36

(μ
2

)6s′(z,y′)+4

|U |s′(z,y′)−1 ×
(
μ2

4

)s′′

|U |s′′ � 1
36

(μ
2

)6�−2

|U |�−2

x-z-walks of length � in R passing through y′. Repeating this argument for every vertex y′ ∈ Sx

leads by our choice of β in (3.6) on first sight to 2β�|U |�−1 x-z-walks of length �. However,
each walk may be counted once for each of its interior vertices. Thus, the total number of
distinct x-z-walks arising this way is at least 2β|U |�−1 and for sufficiently large n at least half
of these walks are indeed paths of length �. Since x and z were arbitrary, this shows that R is
(β, �)-robust and concludes the proof of Proposition 2.3. �

We close this section with the observation that two graphs R and R′ on the same vertex
set, obtained by applications of Proposition 2.3, must share quite a few edges. This will be
essential in the proof of Theorem 1.1 as it asserts that any pair of robust subgraphs from two
link graphs share some edges.

Proposition 3.3. Let V be a set of n vertices and let R = (U,E) and R′ = (U ′, E′) be
graphs on vertex sets U , U ′ ⊆ V . If for some α > 0, we have

|U | �
(

2
3

+
α

2

)
n and |E| �

(
5
9

+
α

2

)
n2

2
− (n− |U |)2

2

and

|U ′| �
(

2
3

+
α

2

)
n and |E′| �

(
5
9

+
α

2

)
n2

2
− (n− |U ′|)2

2
,

then |E ∩ E′| � αn2/2.

Proof. Define the real numbers �, �′ and η by

|U | = �n, |U ′| = �′n, and |E ∩ E′| = η
n2

2
.

The assumptions on the sizes of U and U ′ assert

�, �′ ∈ [
2
3 + α

2 , 1
]
. (3.14)

Similarly, the assumptions on |E| and |E′| and the sieve formula yield

|E ∪ E′| �
(

10
9

+ α− (1 − �)2 − (1 − �′)2 − η

)
n2

2
. (3.15)

On the other hand, we have

|E ∪ E′| �
∣∣∣∣(U2

)
∪
(
U ′

2

)∣∣∣∣ =
(|U |

2

)
+
(|U ′|

2

)
−
(|U ∩ U ′|

2

)
.

Now |U ∩ U ′| � (� + �′ − 1)n and by (3.14) the expression � + �′ − 1 is positive, so

|E ∪ E′| � (
�2 + (�′)2 − (� + �′ − 1)2

)n2

2
.
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Together with (3.15), this gives

�2 + (�′)2 − (� + �′ − 1)2 � 10
9

+ α− (1 − �)2 − (1 − �′)2 − η,

that is,

(�− �′)2 + η � 1
9

+ α.

But (3.14) implies (�− �′)2 < 1/9, and thus we have indeed η � α. �

Corollary 3.4. Given Setup 2.4, we have |E(Ru) ∩ E(Rv)| � αn2/2 for all u, v ∈ V .

Proof. By Proposition 2.3(i) and (ii), the graphs Ru and Rv satisfy the assumptions of
Proposition 3.3. �

4. Connectable pairs

In this section, we establish the Connecting Lemma (Proposition 2.6) and, therefore, justify
the notion of connectable pairs from Definition 2.5 by showing that such pairs indeed can be
connected by tight paths in H.

Proof of Proposition 2.6. Let ζ > 0 be given and set

ϑ =
1
2

(
2
3

)�2−1(
αβζ

2

)�+1

. (4.1)

Let (x, y) and (z, w) be two disjoint ζ-connectable pairs of vertices. We recall Definition 2.5,
set t = �ζn�, and let

{u(1), . . . , u(t)} ⊆ Uxy as well as {v(1), . . . , v(t)} ⊆ Uzw

be arbitrary t-subsets of Uxy and Uzw, respectively.
Let us define

Iab =
{
i ∈ [t] : ab ∈ E(Ru(i)) ∩ E(Rv(i))

}
for any ordered pair (a, b) of vertices from V . Then, double counting shows that

∑
(a,b)∈V 2

|Iab| =
t∑

i=1

∣∣E(Ru(i)) ∩ E(Rv(i))
∣∣ � α

2
n2t, (4.2)

where the last inequality follows from Corollary 3.4. We intend to estimate the number T of
all tight (x, y)-(z, w)-walks of the form

xyu(i1)r1r2u(i2) . . . r�−2r�−1u(i(�+1)/2))abv(j1)s1s2v(j2) . . . s�−2s�−1v(j(�+1)/2))zw, (4.3)

where tight walks are defined similarly like tight paths, but vertices are allowed to repeat. Such
walks can be represented by sextuples

(⇀ı,⇀j,⇀r,⇀s, a, b) ∈ [t](�+1)/2 × [t](�+1)/2 × V �−1 × V �−1 × V × V.

Intuitively, these walks connect (x, y) to (z, w) via an arbitrary ‘middle pair’ (a, b) (see
Figure 4.1). The construction of such walks can be reduced to a 2-uniform problem in link
graphs by demanding that for every k ∈ [(� + 1)/2] we have:
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Figure 4.1 (colour online). Connecting the ζ-connectable pairs (x, y) and (z, w) through middle
pair (a, b) using vertices from the sets Uxy and Uzw.

(a) ik, jk ∈ Iab,
(b) yr1 . . . r�−1a is a path in Ru(ik),
(c) and bs1 . . . s�−1z is a path in Rv(jk).

In other words, if T ∗ denotes the number of sextuples
(
⇀
ı,

⇀
j,

⇀
r,

⇀
s, a, b

)
satisfying the conditions

(a), (b) and (c), then T � T ∗. Note that the hyperedges xyu(i1) and v(j(�+1)/2)zw are not
forced by (a) and (b), but are a direct consequence of u(i1) ∈ Uxy and v(j(�+1)/2) ∈ Uzw.
Similarly, the required hyperedges u(i(�+1)/2)ab and abv(j1) are a consequence of (a). On the
other hand, conditions (a)–(c) imply several additional hyperedges, which are not required for
the (x, y)-(z, w)-walk. Hence, indeed we have T � T ∗. Below we shall show

T ∗ � 2ϑn3�+1. (4.4)

Since at most O(n3�) of the corresponding walks (4.3) can fail to be a path (due to the presence
of repeated vertices), this trivially implies Proposition 2.6.

As a first step towards the proof of (4.4), we will fix for a while the middle vertices a and b
and study the number Tab of possibilities to complete a walk of the desired kind by an
appropriate choice of the 3�− 1 remaining vertices. Evidently

Tab = RabSab, (4.5)

where Rab denotes the number of possibilities to choose i1, . . . , i(�+1)/2 ∈ Iab and vertices
r1, . . . , r�−1 ∈ V such that (b) holds and Sab has a similar meaning with respect to the
numbers jk, the vertices sk, and property (c). Given any sequence ⇀

r = (r1, . . . , r�−1) ∈ V �−1 of
vertices, we set

D(⇀r ) =
{
i ∈ Iab : y⇀

ra is a path in Ru(i)

}
.
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Then,

Rab =
∑

⇀
r∈V �−1

|D(⇀r )|(�+1)/2

and from the (β, �)-robustness of Ru(i) combined with property (i) of Proposition 2.3 applied
for every i ∈ Iab, we infer by means of double counting that

∑
⇀
r∈V �−1

|D(⇀r )| � |Iab| · β
(

2
3
n

)�−1

.

Thus, a standard convexity argument shows

Rab � n�−1|Iab|(�+1)/2β(�+1)/2

(
2
3

)(�2−1)/2

.

Applying this argument also to Sab, using (4.5), and summing over all (a, b) ∈ V 2 we deduce

T ∗ =
∑

(a,b)∈V 2

Tab �
(

2
3

)�2−1

β�+1n2(�−1) ×
∑

(a,b)∈V 2

|Iab|�+1

(4.2)

�
(

2
3

)�2−1

β�+1n2(�−1) ×
(α

2
t
)�+1

n2,

where we used Jensen’s inequality in the last step. Recalling the choice of ϑ in (4.1) and that
t = �ζn� entails (4.4) and this concludes the proof. �

We close this section with the following immediate consequence of Definition 2.5, which we
shall use at several occasions in the subsequent sections.

Fact 4.1. Given Setup 2.4 and ζ > 0, there are at most ζn3 triples (x, y, z) ∈ V 3 with
xy ∈ E(Rz) such that the pair xy fails to be ζ-connectable.

Proof. If an (unordered) pair xy fails to be ζ-connectable, then it follows from Definition 2.5
that |Uxy| � ζn and, hence, xy is an edge in Rz for at most ζ|V | = ζn vertices z ∈ V . Since
there are at most n2 ordered pairs (x, y) ∈ V 2, the fact follows. �

5. Reservoir

In this section, we focus on the Reservoir lemma (Proposition 2.7). The existence of such a
reservoir set is established by a standard probabilistic argument.

Proof of Proposition 2.7. Consider a random subset R ⊆ V with elements included
independently with probability

p =
(

1 − 1
10�

)
ϑ2
∗.

Consequently, |R| is binomially distributed and we infer from Chernoff’s inequality that

P
(|R| < ϑ2

∗n/2
)

= o(1). (5.1)
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Moreover, since ϑ2n � (4/3)
1

3�+1 pn � (1 + c)E[|R|] for some sufficiently small c = c(�) > 0, we
also have

P
(|R| > ϑ2

∗n
)
� P

(
|R| > (4/3)

1
3�+1 pn

)
= o(1). (5.2)

Recall that for every disjoint pair (x, y) and (z, w) of ζ∗∗-connectable pairs Proposition 2.6
ensures the existence of at least ϑ∗∗n3�+1 tight (x, y)-(z, w)-paths of length 3(� + 1) (having
3� + 5 vertices in total). Let X = X((x, y), (z, w)) be a random variable counting the number
of (x, y)-(z, w)-paths with all 3� + 1 internal vertices in R. Consequently,

E[X] � p3�+1 · ϑ∗∗n3�+1. (5.3)

Since including or not including a particular vertex into R affects the random variable X by
at most (3� + 1)n3�, the Azuma–Hoeffding inequality (see, for example, [13, Corollary 2.27])
asserts

P
(
X � 2

3ϑ∗∗(pn)3�+1
) (5.3)

� P
(
X � 2

3E[X]
)

� exp
(
− E[X]2

18 · n · ((3� + 1)n3�)2

)
= exp (−Ω(n)). (5.4)

Since there are at most n4 pairs of ζ∗∗-connectable pairs that we have to consider, in view
of (5.2), the union bound combined with (5.4), implies that a.a.s. the set R has the property
that for every pair of connectable pairs at least ϑ∗∗|R|3�+1/2 tight connecting paths have
all internal vertices in R. In addition, due to (5.1) and (5.2) a.a.s. the set R also satisfies
ϑ2
∗n/2 � |R| � ϑ2

∗n. Consequently, a reservoir set R with all required properties indeed
exists. �

In Section 7, we will frequently need to connect ζ∗∗-connectable pairs through the reservoir.
Whenever such a connection is made, the part of the reservoir that may still be used for further
connections shrinks by 3� + 1 vertices. Although Ω(n) such connections are needed, we shall
be able to keep the reservoir almost intact throughout this process, which in turn guarantees
that there will always be some permissible connections left.

Lemma 5.1. Given Setup 2.8 with a reservoir set R ⊆ V , let R′ ⊆ R be an arbitrary subset
of size at most 2ϑ2

∗∗n. Then, for all disjoint pairs of ζ∗∗-connectable pairs (x, y) and (z, w), there
is a tight (x, y)-(z, w)-path of length 3(� + 1) in H whose internal vertices belong to R � R′.

Proof. Recalling |R| � ϑ2
∗n/2 and the hierarchy (2.1) yields |R′| � 2ϑ2

∗∗n � ϑ∗∗
8� |R|. More-

over, every given vertex in R′ is an internal vertex of at most (3� + 1)|R|3� tight (x, y)-(z, w)-
paths of length 3(� + 1) in H whose internal vertices belong to R. Consequently, there are still
at least

ϑ∗∗
2

|R|3�+1 − |R′| · (3� + 1)|R|3� � ϑ∗∗
2

|R|3�+1 − ϑ∗∗
8�

· (3� + 1)|R|3�+1 > 0

such paths with all internal vertices in R � R′. �

6. Absorbing path

In this section, we prove Proposition 2.9, that is, we establish the existence of an absorbing
path. The following special hypergraph (the so-called v-absorber, see Figure 6.1a) will allow
us to absorb a given vertex v into a path containing a v-absorber (see Figure 6.1b).
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Figure 6.1 (colour online). A v-absorber, where the ζ∗-connectable pairs are indicated in green,
hyperedges used before absorption of v are dark red and hyperedges used after absorption of v
are light red.

Definition 6.1. Given Setup 2.8 and a vertex v ∈ V , a 9-tuple (a, b, c, d, z, x, y, y′, x′) ∈
(V � {v})9 of distinct vertices such that

(i) zab, zbc, zcd, zxy, zyy′, zy′x′, xyy′, yy′x′ ∈ E, and
(ii) the pairs ab, cd, xy and y′x′ are ζ∗-connectable

is called a v-absorber if, in addition, vab, vbc, vcd ∈ E.

An important property of these configurations proved in Lemma 6.7 below asserts that for
every vertex v ∈ V , there exist Ω(n9) such v-absorbers. For standard probabilistic reasons this
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will lead us to a family F of Ω(n) set-wise mutually disjoint 9-tuples containing for each v ∈ V at
least Ω(n) absorbers (see Lemma 6.8). Owing to condition (ii) of Definition 6.1, we may then use
the Connecting Lemma (Proposition 2.6) for connecting them, that is, for producing an absorb-
ing path PA of length Ω(n), which contains for every v-absorber (a, b, c, d, z, x, y, y′, x′) ∈ F
the subpaths abzcd and xyy′x′. If at the end of the proof of Theorem 1.1 the need to absorb v
arises, we shall simply replace in PA, for one such v-absorber, the subpaths abzcd and xyy′x′

by abvcd and xyzy′x′ (see Figure 6.1b).
Towards the goal of estimating the number of v-absorbers from below, we shall at first only

deal with configurations consisting of the five vertices z, x, y, y′ and x′. In the lemma that
follows, we do not pay attention to connectability demands yet. For potential future references,
we point out that its proof requires only a less restrictive minimum degree condition than the
one provided by Theorem 1.1.

Lemma 6.2. For every hypergraph H = (V,E) with n vertices and δ(H) � 6
11 · n2

2 , there
exist at least n5/284 quintuples (x, y, y′, x′, z) ∈ V 5 with the following properties:

(i) xyz, yy′z, x′y′z, xyy′, yy′x′ ∈ E;
(ii) d(y, z) > 5

12n.

Proof. We consider the function f : E → R defined by

f(x, y, z) =
n

d(x, y)
+

n

d(x, z)
+

n

d(y, z)

and note that by double counting we have∑
xyz∈E

f(x, y, z) = n · |∂H| � n3

2
, (6.1)

where ∂H denotes the set of those pairs in V (2) that are contained in at least one edge of H.
An edge e ∈ E(H) is said to be central if f(e) � 28

5 . In view of (6.1), the set C of central edges
satisfies 28

5 |E � C| � n3

2 , that is, |E � C| � 5
56n

3. On the other hand, the minimum degree
condition imposed on H yields |E| � 1

11n
3 and thus we have

|C| = |E| − |E � C| � n3

11
− 5n3

56
=

n3

11 · 56
>

n3

282
. (6.2)

Next we will show the following statement. �

Claim 6.3. If yy′z is a central edge with

d(y, y′) � d(y, z) � d(y′, z), (6.3)

then

|N(y, z) ∩N(y, y′)| � n

28
, |N(y′, z) ∩N(y, y′)| � n

28
, (6.4)

and (ii) of Lemma 6.2 holds.

Proof. Let yy′z be a central edge satisfying (6.3). Due to f(y, y′, z) � 28
5 we have

2n
d(y, y′)

+
n

d(y′, z)
� 28

5
.
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Figure 6.2 (colour online). Quintuple (x, y, y′, x′, z) from Lemma 6.2 with central edge zyy′.

Moreover, the Cauchy–Schwarz inequality yields(
2

d(y, y′)
+

1
d(y′, z)

)
(d(y, y′) + d(y′, z)) � (

√
2 + 1)2 >

29
5
.

Hence,

d(y, y′) + d(y, z) � d(y, y′) + d(y′, z) > 29
28n,

which implies (6.4).
Finally, f(y, y′, z) � 28

5 , d(y, y′) � n, and (6.3) lead to

28
5

� n

d(y, y′)
+

n

d(y, z)
+

n

d(y′, z)
� 1 +

2n
d(y, z)

,

which proves (ii) of Lemma 6.2. �

Having thus established the above claim, we continue with the proof of Lemma 6.2 (see
Figure 6.2). To this end, we remark that for every central edge yy′z satisfying (6.3) the
estimates (6.4) imply that there are at least n

28 choices of x and at least n
28 choices of x′

such that (i) of Lemma 6.2 holds. Applying this argument to all central edges and taking (6.2)
into account, we deduce the existence of at least n5

284 quintuples (x, y, y′, x′, z) ∈ V 5 with the
desired properties. �

Next we prove that there are Ω(n) vertices which are capable of playing the rôle of z in many
absorbers.

Definition 6.4. Given Setup 2.8, a vertex z ∈ V is said to be absorbable if there exist at
least n4

221 quadruples (x, y, y′, x′) ∈ V 4 such that

(a) the five triples xyz, yzy′, zy′x′, xyy′ and yy′x′ belong to E,
(b) and the pairs xy, y′x′ are ζ∗-connectable.

Lemma 6.5. Given Setup 2.8, there exist at least n
221 absorbable vertices.

Proof. Let A ⊆ V 5 denote the set of all quintuples (x, y, y′, x′, z) satisfying the conclusion
of Lemma 6.2, which then states that

|A| � n5

284
.

We intend to show that for ‘most’ of these quintuples the pairs xy and x′y′ are ζ∗-connectable.
This will then imply Lemma 6.5 in view of an easy counting argument.
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As we shall verify below, the following three sets of ‘exceptional’ quintuples are small:

Q1 = {(x, y, y′, x′, z) ∈ A : y �∈ V (Rz)},
Q2 = {(x, y, y′, x′, z) ∈ A : y ∈ V (Rz) but {x, x′, y′} � V (Rz)},
and

Q3 = {(x, y, y′, x′, z) ∈ A : xy, x′y′ ∈ E(Rz) but one of these pairs is not ζ∗-connectable}.
If (x, y, y′, x′, z) ∈ Q1, then by clause (ii) of Lemma 6.2 we have dLz

(y) � 5n
12 =

(
1
3 + 1

12

)
n

and due to |V (Rz)| � 2
3n it follows that y is incident to at least n

12 edges in the link graph Lz

running from V � V (Rz) to V (Rz). Owing to condition (ii) from Proposition 2.3, there are for
each z ∈ V at most 3αn vertices y with this property and, consequently, we have

|Q1| � 3αn5.

Similarly if (x, y, y′, x′, z) ∈ Q2, then at least one of the pairs xy, yy′ or x′y′ connects V (Rz)
to its complement in the link graph Lz, which shows

|Q2| � 6
4αn

5.

Moreover, the case ζ = ζ∗ of Fact 4.1 leads to

|Q3| � 2ζ∗n5.

Finally, taking 1 � α, ζ∗ into account we get

|A � (Q1 ∪Q2 ∪Q3)| �
(

1
284

− 9
2
α− 2ζ∗

)
n5 >

n5

220
.

Definition 6.4 guarantees that for at most n5

221 of the quintuples

(x, y, y′, x′, z) ∈ A � (Q1 ∪Q2 ∪Q3)

the vertex z can fail to be absorbable. Conversely, every absorbable vertex can account for at
most n4 such quintuples. Thus, there are indeed at least n

221 absorbable vertices. �

It remains to consider the other part of our absorbers, that is, the six hyperedges spanned
by a, b, c, d together with v and z (see Figure 6.1).

Lemma 6.6. Given Setup 2.8, for every vertex v ∈ V there are at least α4n5 quintuples
(a, b, c, d, z) ∈ V 5 such that

(i) vab, vbc, vcd, zab, zbc, zcd ∈ E,
(ii) ab and cd are ζ∗-connectable,
(iii) and z is absorbable.

Proof. For every vertex v ∈ V and every fixed absorbable vertex z ∈ V , Corollary 3.4 tells
us |E(Rv) ∩ E(Rz)| � αn2

2 and a result due to Blakley and Roy [3] (asserting the validity
of Sidorenko’s conjecture [9, 21] for paths) entails that there are at least α3n4 quadruples
(a, b, c, d) ∈ V 4 forming a three-edge walk in both graphs Rv and Rz. Together with Lemma 6.5,
this shows that there are at least α3

221n
5 quintuples (a, b, c, d, z) ∈ V 5 satisfying properties (i)

and (iii) of Lemma 6.6, and ab, cd ∈ E(Rv) ∩ E(Rz) instead of property (ii). As a consequence
of Fact 4.1, however, there are at most 2ζ∗n5 such quintuples for which one of these two pairs
fails to be ζ∗-connectable. As 1 � α � ζ∗ implies α3

221 − 2ζ∗ > α4, the lemma follows. �

Lemma 6.6 easily implies that there are Ω(n9)v-absorbers for every vertex v ∈ V . In addition,
we can also ensure that these absorbers are outside the reservoir R.
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Lemma 6.7. Given Setup 2.8, for every v ∈ V the number of v-absorbers in (V � R)9 is at
least α5n9.

Proof. Combining Lemma 6.6 with Definition 6.4, we learn that there are at least α4

221n
9

9-tuples meeting all requirements from that definition except that some of the ten vertices
v, a, . . . , x′ might coincide. However, there can be at most 45n8 such bad 9-tuples. Moreover,
at most 9ϑ2

∗n
9 members of V 9 can use a vertex from the reservoir and, consequently, the

number of desired v-absorbers is at least
(
α4

221 − 45
n − 9ϑ2

∗
)
n � α5n. �

Having established that there are at least Ω(n9) v-absorbers with connectable pairs for every
v ∈ V , we can build the absorbing path by a standard probabilistic argument. First we find a
suitable selection of Ω(n) disjoint 9-tuples that contain many v-absorbers for every v, which
is rendered by the following lemma. In a second step, we utilise the ζ∗-connectable pairs and
connect these 9-tuples to the absorbing path avoiding the reservoir set R.

Lemma 6.8. Given Setup 2.8, there is a set F ⊆ (V � R)9 with the following properties:

(i) |F| � 8α−5ϑ2
∗n,

(ii) all vertices of every 9-tuple in F are distinct and the 9-tuples in F are pairwise disjoint,
(iii) if (a, b, c, d, z, x, y, y′, x′) ∈ F , then abz, bzc, zcd, xyy′, yy′x′ ∈ E and the pairs

ab, cd, xy, x′y′ are ζ∗-connectable,
(iv) and for every v ∈ V there are at least 2ϑ2

∗n many v-absorbers in F .

Proof. Set

γ =
4ϑ2

∗
α5

and consider a random selection X ⊆ (V � R)9 containing each such 9-tuple independently
with probability p = γn−8. Since E[|X |] � pn9 = γn, Markov’s inequality yields

P(|X | > 2γn) � 1
2 . (6.5)

Let us call two distinct 9-tuples from V 9 overlapping if there is a vertex occurring in both.
Evidently, there are at most 81n17 ordered pairs of overlapping 9-tuples. Hence, the random
variable P giving the number of such pairs both of whose components are in X satisfies

E[P ] � 81n17p2 = 81γ2n.

By α � ϑ∗, we have 18γ � ϑ∗ and thus a further application of Markov’s inequality discloses

P
(
P > ϑ2

∗n
)
� P

(
P > 324γ2n

)
� 1

4 . (6.6)

In view of Lemma 6.7 for each vertex v ∈ V , the set Av containing all v-absorbers from
(V � R)9 has the property E[|Av ∩ X |] � α5n9p = α5γn = 4ϑ2

∗n. Since |Av ∩ X | is binomially
distributed, Chernoff’s inequality gives for every v ∈ V

P
(|Av ∩ X | � 3ϑ2

∗n
)
� exp (−Ω(n)) <

1
5n

. (6.7)

Owing to (6.5), (6.6) and (6.7), there is an ‘instance’ F∗ of X satisfying the following:

• |F∗| � 2γn,
• F∗ contains at most ϑ2

∗n overlapping pairs,
• and for every v ∈ V the number of v-absorbers in F∗ is at least 3ϑ2

∗n.

To obtain the desired set F , we delete from F∗ all 9-tuples containing some vertex more
than once, all 9-tuples belonging to an overlapping pair and all 9-tuples violating (iii). Then
(i) is immediate from |F| � |F∗|, (ii) and (iii) hold by construction, and for (iv) we recall that
v-absorbers satisfy (iii) by definition. �



MINIMUM DEGREE CONDITION FOR TIGHT HAMILTONIAN CYCLES IN HYPERGRAPHS 23

Finally, we are ready to build an absorbing path and thus establish Proposition 2.9.

Proof of Proposition 2.9. Let F ⊆ (V � R)9 be as obtained in Lemma 6.8. By condition
(iii) from this lemma for every (a, b, c, d, z, x, y, y′, x′) ∈ F , we may consider the tight paths
abzcd and xyy′x′. By (ii), these paths are mutually vertex-disjoint, and by (i), the set G of all
these paths satisfies |G| = 2|F| � 16α−5ϑ2

∗n.
Using the connecting lemma, we will now prove that there is a path PA ⊆ H −R

(a) containing all members of G as subpaths,
(b) whose end-pairs are ζ∗-connectable,
(c) and whose length is at most (3� + 6)|G|.

Essentially, the reason why such a path exists is that starting with any member of G we can
construct PA by |G| − 1 successive applications of the connecting lemma attaching one further
path from |G| in each step. When carrying this plan out, we need to avoid entering the reservoir
and we need to be careful not to use the same vertex multiple times.

To show that this is possible we consider a maximal subset G∗ ⊆ G such that some path
P ∗
A ⊆ H −R has the properties (a), (b) and (c) enumerated above with G replaced by G∗. As

the end-pairs of members of G are by definition ζ∗-connectable, we have P ∗
A �= ∅. From (c) and

1 � α, �−1 � ϑ∗, we infer

|V (P ∗
A)| � 2 + (3� + 6)|G∗| � 4�|G| � 64�α−5ϑ2

∗n � ϑ
3/2
∗ n (6.8)

and thus our upper bound on the size of the reservoir leads to

|V (P ∗
A)| + |R| � 2ϑ3/2

∗ n � ϑ∗n
2(3� + 1)

. (6.9)

Assume for the sake of contradiction that G∗ �= G. Let (z, w) be the ending pair of P ∗
A and let P

be an arbitrary path from G � G∗ with starting pair (x, y). Since both (z, w) and (x, y) are
ζ∗-connectable, Proposition 2.6 tells us that there are at least ϑ∗n3�+1 tight (z, w)-(x, y)-paths
of length 3(� + 1). By (6.9), at least half of these are internally disjoint from V (P ∗

A) ∪R. In
particular, there is at least one such connection giving rise to a path P ∗∗

A ⊆ H −R starting
with P ∗

A, ending with P and satisfying

|V (P ∗∗
A )| = |V (P ∗

A)| + (3� + 1) + |V (P )| � |V (P ∗
A)| + (3� + 6) � 2 + (3� + 6)(|G∗| + 1).

So P ∗∗
A exemplifies that G∗ ∪ {P} contradicts the maximality of G∗ and this contradiction

proves that we have indeed G∗ = G, that is, that a path PA with the properties (a), (b) and
(c) promised above does really exist.

As proved in (6.8), this path satisfies in particular the above condition (i) of Proposition 2.9.
Moreover, (ii) is the same as (b). To finally establish (iii) of Proposition 2.9, one absorbs the
up to at most 2ϑ2

∗n vertices from X one by one into PA. By the discussion after Definition 6.1,
this is possible due to (a) combined with clause (iv) from Lemma 6.8. �

7. Almost spanning cycle

This section is dedicated to the proof of Proposition 2.10. Most of the work we need to perform
concerns the construction of a long path Q in the induced subhypergraph Ĥ = H − V (PA)
that covers ‘almost all’ vertices, but leaves the reservoir set R ‘almost intact.’ Besides, the
end-pairs of this path should be sufficiently connectable so that it can easily be included into C.
These properties of Q are made precise by the following statement.
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Figure 7.1 (colour online). Segments and pieces of the tight path Q.

Lemma 7.1. Given Setup 2.8 as well as an absorbing path PA as provided by Proposition 2.9,
there is a path Q ⊆ Ĥ = H − V (PA) such that

(i) |V (Ĥ) �
(R∪ V (Q)

)| � ϑ2
∗n,

(ii) |V (Q) ∩R| � ϑ2
∗∗n,

(iii) and the end-pairs of Q are ζ∗∗-connectable.

Before we prove Lemma 7.1, we deduce Proposition 2.10 from the lemma.

Proof of Proposition 2.10. Given the path Q ⊆ H − V (PA) by Lemma 7.1, one simply
connects the end-pairs of PA with the end-pairs of Q through ‘free vertices’ from the reservoir
using Lemma 5.1. The connectability assumption of that lemma is satisfied by condition
(ii) from Proposition 2.9 and by condition (iii) from Lemma 7.1. Each of these connections
uses exactly 3� + 1 vertices of R. Consequently, it follows from Lemma 7.1(ii) that at most
ϑ2
∗∗n + (3� + 1) < 2ϑ2

∗∗n vertices from R need to be avoided and Lemma 5.1 applies. The
resulting tight cycle C contains all but at most ϑ2

∗n vertices from V � R (see Lemma 7.1(i)).
Furthermore, since |R| � ϑ2

∗n (see Setup 2.8 and Proposition 2.7) it follows that C covers all
but at most 2ϑ2

∗n vertices as required by Proposition 2.10. �

It remains to establish Lemma 7.1. This proof will occupy the remainder of this section and,
as explained in Section 2, it completes the proof of our main result. In the proof we make use
of the following extension of the Erdős–Gallai theorem [8] concerning the extremal problem
for long paths. We state the result of Faudree and Schelp [10, p. 151] in a form tailored for
our application.

Theorem 7.2 (Faudree and Schelp). If G = (V,E) is a graph not containing a path of length
λ|V | for λ > 1/2, then |E| � (λ2 + (1 − λ)2)|V |2/2.

Proof of Lemma 7.1. We fix an integer M satisfying the conditions

ϑ∗∗ � 1
M

� 1
n

and M ≡ 2 (mod 3). (7.1)

The desired path Q will consist of many ‘segments’ from Ĥ −R that are connected with
each other through the reservoir R (see Figure 7.1a). For technical reasons, it will be helpful
to assume that every segment F satisfies

|V (F )| ≡ −1 (mod M + 1)
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and that it has ζ∗∗-connectable end-pairs. The former property of these segments allows us
to think of them as being composed of several ‘pieces’ consisting of M vertices each, such
that any two consecutive pieces are connected with each other through one further vertex (see
Figure 7.1b). These pieces will be taken from the set

P =
{
P ⊆ Ĥ −R : P is an M -vertex tight path whose end-pairs are ζ∗∗-connectable

}
.

Roughly speaking, the strategy of the proof below is to show that a path Q of the kind just
described will satisfy the conclusion of Lemma 7.1 as soon as it is ‘maximal’ in the sense we will
make precise next. To formulate this maximality condition, it will be convenient to talk not
only about the path Q itself but also about the set C ⊆ P of pieces used in its construction.
We collect all properties that we require from the pair (C , Q) into the definition that
follows.

Candidates

A pair (C , Q) consisting of a subset C ⊆ P whose members are mutually vertex-disjoint and
a tight path Q ⊆ Ĥ is said to be a candidate if

(a) every P ∈ C is a subpath of Q,
(b) if P ′, P ′′ ∈ C with P ′ �= P ′′ lie on Q in such a way that no P ∈ C lies between them,

then between P ′ and P ′′ there is
(i) either a single vertex
(ii) or there are only vertices from R,

(c) provided C �= ∅, the path Q starts and ends with a path from C ,
(d) and |V (Q) ∩R| � 19α−1�|C |.
For instance, the pair consisting of the empty set and the empty path is a candidate. Now

let (C , Q) be a candidate with |C | as large as possible. Suppose we know that the set

U = V (Ĥ) � (R∪ V (Q)) = V (H − V (PA) −R− V (Q))

of unused vertices outside the reservoir satisfies

|U | � ϑ2
∗n. (7.2)

We claim that then Q would have all the desired properties. Indeed by (7.2), it would satisfy
(i) of Lemma 7.1. Since the members of C are mutually disjoint, we have |C | � n

M so from (d)
and ϑ∗∗, �−1, α � M−1 we get (ii). Moreover, (c) implies part (iii) of Lemma 7.1.

Hence, for the rest of the argument we assume that (7.2) is false and intend to derive a
contradiction by constructing a ‘better’ candidate (C ′, Q′) with a larger family C ′. Obviously,
the path of such a candidate will need to contain some vertices from U and to prepare ourself for
a later stage of the argument we will now deal with the connectability properties of the robust
subgraphs of these vertices. More precisely, for each u ∈ U , we define a subgraph Ru ⊆ Ru with
the same set of vertices by deleting all edges that are not ζ∗∗-connectable. Owing to Fact 4.1,
we have, in particular, ∑

u∈U

(
e(Ru) − e(Ru)

)
� ζ∗∗

2
n3.

Consequently, the set

Ubad =
{
u ∈ U : e(Ru) � e(Ru) − 1

8αn
2
}

satisfies |Ubad| � 8ζ∗∗α−1n and, by ϑ∗, α � ζ∗∗, this leads to

|Ubad| � 1
2
ϑ2
∗n. (7.3)
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For each u ∈ U � Ubad, we introduce the real number ηu ∈ [
2
3 + α

2 , 1
]

by∣∣V (
Ru

)∣∣ = |V (Ru)| = ηun (7.4)

and observe that part (ii) from Proposition 2.3 implies

e
(
Ru

)
� e(Ru) − 1

8
αn2 �

(
5
9

+
α

4
− (1 − ηu)2

)
n2

2
. (7.5)

Useful societies

Let B1, . . . , B|C | be the vertex sets of the paths belonging to C and fix an arbitrary partition

U = B|C |+1 ∪· . . . ∪· Bν ∪· B′,

with

|B|C |+1| = · · · = |Bν | = M and |B′| < M.

The sets belonging to

B = {B1, . . . , Bν}
will be referred to as blocks. The size of their union

B = B1 ∪· B2 ∪· . . . ∪· Bν , (7.6)

in view of candidacy property (b), can be bounded from below by

|B| = Mν � n− |V (PA)| − |R| − |C | − |B′| � (1 − ϑ∗ − ϑ2
∗)n− ν −M,

where we used bounds on |V (PA)| and |R| from Propositions 2.9 and 2.7. Thus, observing that
ν � n/M and recalling that ϑ∗ � M−1, we obtain

|B| � (1 − 2ϑ∗)n. (7.7)

Consequently, by (7.4) and (7.5), recalling that α � ϑ∗, for every u ∈ U � Ubad

|V (
Ru

) ∩B|
Mν

� ηu
1 − 2ϑ∗

� ηu +
α

36
and

eRu
(B)

M2
(
ν
2

) � 5
9

+
2α
9

− (1 − ηu)2, (7.8)

where eG(A) stands for the number of edges in G[A], the subgraph of G induced by a subset
of vertices A ⊆ V (G).

A society is a set of m blocks, where

m = 1 +
⌈

36
α

⌉
. (7.9)

The collection of all
(
ν
m

)
societies will be denoted by S.

Definition 7.3. A society S ∈ S is said to be useful for a vertex u ∈ U � Ubad if for its
union S =

⋃S and the real number τ defined by |S ∩ V (Ru)| = τ |S|,

eRu

(
S ∩ V (Ru)

)
�

(
5
9

+
α

9
− (1 − ηu)(1 + ηu − 2τ)

) |S|2
2

.

The following claim may explain the terminology used in Definition 7.3.

Claim 7.4. If a society S ∈ S is useful for a vertex u ∈ U � Ubad, then the graph Ru

contains a graph path on 2
3 (M + 1)(m + 6) vertices all of which belong to S =

⋃S.
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Proof. Note that by (7.1) the number 2
3 (m + 6)(M + 1) is indeed an integer. Since

αm � 36 + α, it follows from α � M−1 and (7.9) that

6(m + 6)
αm− 36

� M,

whence
2
3
(M + 1)(m + 6) � 2

3
M((m + 6) + (αm− 36)/6) =

(
2
3

+
α

9

)
Mm.

Thus, it suffices to find a path in the graph Ru traversing
(

2
3 + α

9

)
Mm vertices all of which

belong to S =
⋃S. Let us define a real number � by

eRu

(
S ∩ V (Ru)

)
= �

(Mm)2

2
= �

|S|2
2

.

Clearly, τ2 � � and the definitions of τ and � yield

eRu

(
S ∩ V (Ru)

)
=

�

τ2
· |S ∩ V (Ru)|2

2
. (7.10)

Moreover, the usefulness of S implies

τ2 � � � 5
9

+
α

9
− (1 − ηu)(1 + ηu − 2τ), (7.11)

which may be reformulated as

τ

(
τ − 2

3

)
� α

9
+
(
ηu − 2

3

)(
ηu +

2
3
− 2τ

)
. (7.12)

We have defined ηu in (7.4) so that ηu � 2
3 + α

2 . Consequently, if τ < 2
3 + α

9 , then

α

9
+
(
ηu − 2

3

)(
ηu +

2
3
− 2τ

)
>

α

9
> τ

(
τ − 2

3

)
,

a contradiction with (7.12). This proves that

τ � 2
3

+
α

9
. (7.13)

The right-hand side of (7.11) rewrites as 5
9 + α

9 − (1 − τ)2 + (ηu − τ)2, and for this reason, we
have

� � 5
9

+
α

9
− (1 − τ)2. (7.14)

Owing to (7.13), we deduce from Theorem 7.2 (applied with λ = (2/3 + α/9)/τ to the induced
subgraph of Ru on the set S ∩ V (Ru) of size τ |S| = τmM) that the failure of our claim would
imply

�

τ2
· |S ∩ V (Ru)|2

2
(7.10)
= eRu

(
S ∩ V (Ru)

)
�

(( 2
3 + α

9

τ

)2

+
(

1 −
2
3 + α

9

τ

)2
)
|S ∩ V (Ru)|2

2
.

Consequently, we arrive at(
2
3

+
α

9

)2

+
(
τ − 2

3
− α

9

)2

� �
(7.14)

� 5
9

+
α

9
− (1 − τ)2,

whence (
2
3

+
α

9

)2

+
(

1
3
− α

9

)2

� 5
9

+
α

9
,
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that is,

2
27

α +
2
81

α2 � 1
9
α,

contrary to 1 � α. This completes the proof of Claim 7.4. �

A counting argument shows that there exists a society that is useful for many vertices.

Claim 7.5. There is a society S ′ ∈ S useful for at least α
18 |U � Ubad| vertices u ∈ U � Ubad.

Proof. The claim follows by double counting from the assertion that for every u ∈ U � Ubad

the number of useful societies is at least α
18 |S|, which we verify below. For that consider a

vertex u ∈ U � Ubad. Suppose that γ
(
ν
m

)
of all |S| =

(
ν
m

)
societies are useful for u. For i ∈ [ν],

set

|Bi ∩ V (Ru)| = τiM

and for all i and j with 1 � i < j � ν set

eRu

(
Bi ∩ V (Ru), Bj ∩ V (Ru)

)
= �ijM

2.

By Definition 7.3, if the society S = {B1, . . . , Bm} is not useful for u, then∑
1�i<j�m

�ij �
eRu

(S ∩ V (Ru))
M2

<

(
5
9

+
α

9
− (1 − η2

u)
)
m2

2
+ (1 − ηu)m

∑
1�i�m

τi.

If S is useful, we still have the trivial bound∑
1�i<j�m

�ij �
(
m

2

)
.

Summing over all societies, we infer(
ν − 2
m− 2

) ∑
1�i<j�ν

�ij � γ

(
ν

m

)(
m

2

)
+

(
ν

m

)(
5
9

+
α

9
− (1 − η2

u)
)
m2

2

+ (1 − ηu)m
(
ν − 1
m− 1

) ∑
1�i�ν

τi.

Dividing by
(
ν−2
m−2

)(
ν
2

)
=

(
ν
m

)(
m
2

)
, one learns that the set B introduced in (7.6) satisfies

eRu
(B) −∑

1�i�ν eRu
(Bi)

M2
(
ν
2

) � γ +
m

m− 1

(
5
9

+
α

9
− (1 − η2

u)
)

+ 2(1 − ηu)
m

m− 1
|V (Ru) ∩B|

Mν
.

Owing to ∑
1�i�ν eRu

(Bi)

M2
(
ν
2

) �
ν
(
M
2

)
M2

(
ν
2

) � 1
ν − 1

� 2
ν

=
2M
|B|

(7.7)

� 3M
n

� α

108

and (7.8) this yields

5
9

+
2α
9

− (1 − ηu)2 � γ +
α

108
+
(

1 +
1

m− 1

)(
5
9

+
α

9
− (1 − η2

u) + 2(1 − ηu)
(
ηu +

α

36

))
,

whence
α

9
� γ +

α

108
+

α

18
(1 − ηu) +

1
m− 1

.



MINIMUM DEGREE CONDITION FOR TIGHT HAMILTONIAN CYCLES IN HYPERGRAPHS 29

Figure 7.2 (colour online). Tight path T on the graph path W of ζ∗∗-connectable pairs.

Hence, the choice of m in (7.9) and the bound ηu > 2
3 yield indeed that γ � α

18 . �

For the rest of the proof, let S ′ from Claim 7.5 be fixed. By (7.3) and the purported falsity
of (7.2), this means that the set

U ′ = {u ∈ U � Ubad : S ′ is useful for u}

satisfies |U ′| � αϑ2
∗

36 n. Now, we apply Claim 7.4 to each u ∈ U ′. Each time the outcome may
be regarded as a sequence of 2

3 (M + 1)(m + 6) distinct vertices from the set S′ =
⋃S ′. Due

to |S′| = Mm, there are no more than (Mm)! such sequences and thus there is a set U ′′ ⊆ U ′

with

|U ′′| � αϑ2
∗n

36(Mm)!
� 1

3
(M + 1)(m + 6) − 1

such that all graphs Ru with u ∈ U ′′ contain a common path W on 2
3 (M + 1)(m + 6) vertices.

Augmenting Q

Using the vertices of W and 1
3 (M + 1)(m + 6) − 1 arbitrary vertices from U ′′, we obtain a tight

path T ⊆ (Ĥ −R) with |V (T )| = (M + 1)(m + 6) − 1 and every vertex of T with a position
divisible by 3 is a vertex from U ′′ (see Figure 7.2).

Next we split the path T into (m + 6) tight paths P1, . . . , Pm+6 on M vertices each such that
T = P1x1P2x2 . . . xm+5Pm+6 for some x1, . . . , xm+5 ∈ V . In fact, owing to (7.1), the vertices
x1, . . . , xm+5 have a position divisible by 3 on the path T and, therefore, they belong to U ′′.
Consequently, the end-pairs of the paths P1, . . . , Pm+6 consist of consecutive vertices from W
and, hence, they are ζ∗∗-connectable. (This is the reason why we passed from the graphs Ru

to the graphs Ru in the beginning of the argument.) In other words,

P1, . . . , Pm+6 ∈ P.

Now let C− be the collection of those paths from C whose vertex sets belong to the society S ′,
that is, the paths from C− ⊆ C are blocks from the society S ′, and put

C 0 = (C � C−) ∪ {P1, . . . , Pm+6}.
Since |C−| � |S ′| = m, we have |C 0| � |C | + 6 and thus to derive the desired contradiction it
is enough to construct a path Q0 such that (C 0, Q0) is a candidate. The idea for doing so is to
take the subpaths into which the removal of C− splits Q as well as the path T and to connect
all of them by means of Lemma 5.1. Of course, we may also need to remove several vertices of
the type mentioned in condition (b)(i) and in case C− should contain the initial or terminal
part of Q we might also need to disregard some R-vertices in order to achieve that Q0 satisfies
(c). The things that remain to be checked are
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(1) that we still have enough space in the reservoir to create the desired connections by
applications of Lemma 5.1

(2) and that the new pair (C 0, Q0) will again obey condition (d).

Since |C−| � m at most m + 1 successive applications of Lemma 5.1 are required to connect
all pieces for building Q0. Since (C , Q) satisfies (d), we know

|V (Q) ∩R| � 19�|C |
α

� 19�n
αM

� ϑ2
∗∗n− (3� + 1)m

and, hence, there arises no problem with (1).
Utilising the same condition (d) more carefully, we obtain

|V (Q0) ∩R| � |V (Q) ∩R| + (3� + 1)(m + 1) � 19�|C |
α

+ (3� + 1)(m + 1).

So our choice of m in (7.9) and 1 � α, �−1 lead to

|V (Q0) ∩R| � 19�|C |
α

+ (3� + 1)
(

36
α

+ 3
)

� 19�
α

(|C | + 6).

In the light of |C 0| � |C | + 6, this shows that (C 0, Q0) obeys condition (d) and, hence, it is
indeed a candidate. As it contradicts the maximality of (C 0, Q0), we have thereby proved the
validity of (7.2) and as said above Lemma 7.1 is thereby proved as well.
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4. E. Buß, H. Hàn and M. Schacht, ‘Minimum vertex degree conditions for loose Hamilton cycles in 3-
uniform hypergraphs’, J. Combin. Theory Ser. B 103 (2013) 658–678. MR3127586.

5. O. Cooley and R. Mycroft, ‘The minimum vertex degree for an almost-spanning tight cycle in a 3-
uniform hypergraph’, Discrete Math. 340 (2017) 1172–1179. MR3624602.

6. A. Czygrinow and T. Molla, ‘Tight codegree condition for the existence of loose Hamilton cycles in
3-graphs’, SIAM J. Discrete Math. 28 (2014) 67–76. MR3150175.

7. G. A. Dirac, ‘Some theorems on abstract graphs’, Proc. Lond. Math. Soc. (3) 2 (1952) 69–81. MR0047308
(13,856e).
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17. V. Rödl and A. Ruciński, ‘Families of triples with high minimum degree are Hamiltonian’, Discuss. Math.
Graph Theory 34 (2014) 361–381. MR3194042.



MINIMUM DEGREE CONDITION FOR TIGHT HAMILTONIAN CYCLES IN HYPERGRAPHS 31
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Department of Mathematics and Computer

Science
Emory University
Atlanta, GA 30322
USA

rodl@mathcs.emory.edu

Andrzej Ruciński
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