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Abstract

We determine Turán numbers for the family of

3‐uniform minimal paths of length four for all n. We

also establish the second‐ and third‐order Turán

numbers and use them to compute the corresponding

Ramsey numbers for up to four colors.
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1 | INTRODUCTION

Turán‐type problems concern the maximum number of edges in a (hyper)graph without certain
forbidden substructures. They are central to extremal combinatorics and have a long and
influential history initiated by Turán in 1944 [24] who solved the problem for all complete
graphs. A few years later Erdős and Stone [5] determined asymptotically the Turán numbers for
all nonbipartite graphs. Such questions for hypergraphs are, however, notoriously difficult in
general, and several natural problems are wide open, most notably Turán's conjecture for the
tetrahedron. And, again, asymptotic results are perhaps a little easier to obtain. For a com-
prehensive survey on Turán numbers for hypergraphs see [16].

Similar stature and even longer history are enjoyed by Ramsey Theory, started by Ramsey's
paper [23] and developed in the mid‐30s of the 20th century by Erdős and Szekeres [4]. Here the
object of interest is the smallest order of a complete (hyper)graph which, when edge‐partitioned
into a given number of colors, possesses a desired substructure entirely in one color. When the
substructure is itself complete, an exact solution of this problem is still beyond our reach already for
graphs and becomes hopeless for hypergraphs, except for some very small cases.

The two problems are immanently related by a (trivial) observation that if the number of
edges of one color exceeds the Turán number for the target substructure, then there is a
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monochromatic copy of it in that color. However, since one is typically interested in a small
number of colors (as we are), the corresponding Turán numbers should also be known for
small number of vertices.

In general, both, Turán and Ramsey problems are more difficult for dense hypergraphs.
Consequently, the area of research interest has broadened to include sparser structures like
paths and cycles. In this paper we focus on a particular family of 3‐uniform hypergraphs,
minimal paths of length four, for which the Turán numbers have been already determined for
large n in [7]. We compute them for all n and, consequently, obtain the corresponding Ramsey
numbers for up to four colors.

1.1 | Basic definitions

For k 2≥ , a k‐graph (k‐uniform hypergraph) is an ordered pair H V E= ( , ), whereV V H= ( ) is

a finite set (of vertices) and E E H= ( ) is a subset of the set ( )V

k
of k‐element subsets ofV (called

edges). If ( )E =
V

k
, we call Hcomplete and denote by Kn

k( ), where n V H= ( )∣ ∣.

For k‐graphs H′ and H we say that H′ is a sub‐k‐graph of H and write H H′ ⊆ if
V H V H( ′) ( )⊆ and E H E H( ′) ( )⊆ . Given a family of k‐graphs  , we call a k‐graph H  ‐free
if for all F ∈ we have F H⊈ , that is, no sub‐k‐graph of H is isomorphic to F . Given a family
of k‐graphs  and an integer n 1≥ , the Turán number for  and n is defined as

n E H V H n Hex ( ; ) := max{ ( ) : ( ) = and is ‐free}.k  ∣ ∣ ∣ ∣

Every n‐vertex  ‐free k‐graph with exactly nex ( ; )k  edges is called extremal for  . We denote
by nEx ( ; )k  the family of all n‐vertex k‐graphs which are extremal for  . In the case when

F= { } , we will often write n Fex ( ; )k for n Fex ( ; { })k and n FEx ( ; )k for n FEx ( ; { })k .
Let  be a family of k‐graphs and r 2≥ be an integer. The Ramsey number R r( ; ) is the

smallest integer n such that every r‐edge‐coloring of the complete k‐graph Kn
k( ) yields a

monochromatic copy of a member of  . The relationship between Turán and Ramsey numbers
allured to above is best exemplified by the following implication:

r

n

k
n R r n

1
> ex ( ; ) ( ; ) .k  ⎜ ⎟

⎛
⎝

⎞
⎠ ⇒ ≤ (1)

As mentioned earlier, we shall consider the Turán problem for a special family of 3‐uniform
paths. At this point the reader should be alerted that there are several other notions of paths
and cycles in k‐graphs (e.g., Berge, loose, linear, and tight) and that authors take a great liberty
in using those names (except for Berge). In this paper we restrict our attention to minimal paths
and cycles defined as follows.

Given k, 2ℓ ≥ , a k‐uniform minimal ℓ‐path (a.k.a. loose) is a k‐graph with edge set
a a a{ , , …, }0 1 −1ℓ such that a ai j∩ ≠ ∅ if and only if i j− 1∣ ∣ ≤ , while a k‐uniform minimal
ℓ‐cycle is a k‐graph with edge set a a a{ , , …, }0 1 −1ℓ such that a ai j∩ ≠ ∅ if and only if
i j− 1 (mod )∣ ∣ ≤ ℓ . So, minimal paths and cycles form special subclasses of, respectively, Berge
paths and cycles (see, e.g., [19]), with no redundant edge intersections. Put another way, the
minimality manifests itself by no vertex belonging to more than two edges.

We write k( )ℓ for the family of all k‐uniform minimal ℓ‐paths and k( )ℓ for the family of all
k‐uniform minimal ℓ‐cycles (see Figure 1 for all 3‐uniform minimal 4‐paths). Note that the
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longest path in k( )ℓ has k( − 1) + 1ℓ vertices. It is called linear (a.k.a. loose), since edges
intersect pairwise in at most one vertex, and denoted by P k( )

ℓ . For convenience, in what follows
we shall write 4 instead of 4(3) . For k = 2 the families (2)ℓ and (2)ℓ each consists of a single
graph, the ordinary (graph) path and cycle, which will be denoted by, respectively, P(2)

ℓ andC (2)
ℓ .

1.2 | Main results

Mubayi and Verstraëte [19] showed that ( )nex ( ; ) =k
k n

k3
( ) − 1

− 1
 for all n k2≥ and

( )nex ( ; )
n

3
(3) 5 − 1

6

− 1

2
 ≤ℓ

ℓ for all n 3( + 1) 2≥ ℓ ∕ . Füredi, Jiang, and Seiver [7] proved that, for

k t3, 1≥ ≥ , and for sufficiently large n,

( ) ( )n
n

k

n t

k
n

n

k

n t

k
ex ; = −

−
and ex ; = −

−
+ 1,k t

k
k t

k
2 +1
( )

2 +2
( ) ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ (2)

and that the unique extremal k‐graph consists of all k‐tuples intersecting a given set T of t
vertices plus, for even ℓ, one extra edge disjoint from T . Note that for t = 1, the above ex-

pressions become, respectively, ( )n

k

− 1

− 1
and ( ) + 1

n

k

− 1

− 1
.

In fact, in [7] the authors focused on linear paths and determined Turán numbers

n Pex ( ; )k
k( )
ℓ for large n and k 4≥ , while Kostochka, Mubayi, and Verstraëte [17] did the same

for large n and 4ℓ ≥ . The remaining case of k= = 3ℓ was also implicit in their proof, but

again for large n. In [14], it was proved for all n 7≥ that ( ) ( )n Pex ; =
n

3 3
(3) − 1

2
. As for the other

3‐minimal path, called messy by Bohman and Zhu in [2] and defined as M abc bcd def= { , , }3 , it

was proved therein that ( )n Mex ( ; ) =
n

3 3
− 1

2
for all n 6≥ .

In this paper we similarly extend (2) in the smallest open case, that is, we determine the
Turán numbers nex ( ; )3 4 for all n. All special 3‐graphs appearing in Theorem 1.1, as well as in
Theorems 1.3–1.5 in Section 1.3, are defined, for clarity of exposition, only in Section 2.

Theorem 1.1. For n 1≥ ,

{ }
{ }

{ }

n

n
n K n

n K K n

n S SP SK n

n
n S n

ex ( ; ) =

3
and Ex ( ; ) = { } for 6,

20 and Ex ( ; ) = for = 7,

22 and Ex ( ; ) = , , for = 8,

− 1

2
+ 1 and Ex ( ; ) = for 9.

n

n

3 4

3 4

3 4 6
(3)

1

3 4 8
+1

8 8

3 4
+1











⎜ ⎟

⎜ ⎟

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

≤

∪

≥

(Note that for n = 8, we have ( ) + 1 = 22
n − 1

2
).

FIGURE 1 All 3‐uniform minimal 4‐paths from 4(3) [Color figure can be viewed at wileyonlinelibrary.com]
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At this point it is worth looking at the current ‘Turán status’ of the four individual members
of the minimal family 4 , pictured in Figure 1. For the one on top left, the linear 4‐path P4, it

was shown in [17] that, for large ( )n n P n, ex ( ; ) = + − 3
n

3 4
− 1

2
. For the one on top right,

called the (2, 1)‐path and denoted by P (2, 1) by Füredi, Jiang, Kostochka, Mubayi, and Ver-

straëte in [6], it was shown only that ( )n P o nex ( ; (2, 1)) = + ( )
n

3
− 1

2
2 . Seemingly symmetrical

3‐graph on the bottom left, called the (1, 2)‐path and denoted by P (1, 2), turned out to be
harder. It was predicted in [6], as a special case of a more general conjecture, that the same
asymptotic formula as for P (2, 1) holds also for P (1, 2). Very recently, this prediction
was confirmed by Füredi and Kostochka in [8]. In fact, they showed that

( )n P O nex ( ; (1, 2)) = + ( )
n

3
− 1

2
. The last of the minimal 4‐paths, the one on the bottom right

in Figure 1, let us call M4, extends the messy 3‐path mentioned above by one edge. So far we
have no tools to approach the problem of finding the Turán number for M4.

As an immediate consequence of Theorem 1.1 and the relation (1), plugging n r= 3 + 1, we
infer that, for r R r r3, ( ; ) 3 + 14≥ ≤ . On the other hand, a simple construction originated
in [10] (see Section 7 for more details) yields a lower bound R r r( ; ) + 64 ≥ for all r 1≥ . Using
Theorem 1.1 along with some more technical results from Section 1.3, we confirm that, at least
for up to four colors, the lower bound is, indeed, the correct value.

Theorem 1.2. For r 4≤ , we have R r r( ; ) = + 64 .

1.3 | Turán numbers of higher orders

To calculate Ramsey numbers based on Turán numbers, it is sometimes necessary to consider
Turán numbers of higher orders (see, e.g., [15]), which can be defined iteratively as follows. The
Turán number of the first order is the ordinary Turán number. For a family of k‐graphs  and
integers s n, 1≥ , the Turán number of the s( + 1)st order is defined as

{
}

n E H V H n H

H n n H H

ex ( ; ) = max ( ) : ( ) = , is ‐free, and

′ Ex ( ; ) Ex ( ; ), ′ ,

k
s

k k
s

( +1)

(1) ( )

 

 

∣ ∣ ∣ ∣

∀ ∈ ∪ ⋯ ∪ ⊈

if such a k‐graph H exists. An n‐vertex  ‐free k‐graph H is called (s+ 1)‐extremal for if

E H n( ) = ex ( ; )k
s( +1) ∣ ∣ and H n n H H′ Ex ( ; ) Ex ( ; ), ′k k

s(1) ( ) ∀ ∈ ∪ ⋯ ∪ ⊈ ; we denote by

nEx ( ; )k
s( +1)  the family of n‐vertex k‐graphs which are s( + 1)‐extremal for  .

A historically first example of a Turán number of the second order is due to Hilton and
Milner [12] who determined the maximum size of a nontrivial intersecting k‐graph, that is, one
which is not a star (see the definition in Section 2). Recall that a 3‐graph is intersecting if and

only if it is M2‐free and that, by Erdős–Ko–Rado theorem [3], ( )n Mex( , ) =
n

2
− 1

2
for n 6≥ ,

while for n 7≥ the only extremal 3‐graph is a full star. Hilton and Milner proved that

Theorem 1.3 (Hilton and Milner [12]). For n 7≥ we have n M nex ( ; ) = 3 − 83
(2)

2 .
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In [11] the authors determined n Mex ( ; )k
k(3)

2
( ) for all k; in [22] the complete hierarchy of

3‐uniform Turán numbers n M sex ( ; ), = 1, …, 6s
3
( )

2 , has been found (for s 7≥ they do not
exist).

In this paper we determine for 4 the Turán numbers of the second‐ and third‐order.

Theorem 1.4. For n 9≥ ,

n

n n SP n

n
n CB n

ex ( ; ) =

5 − 18 and Ex ( ; ) = { } for 11,

− 3

2
+ 7 and Ex ( ; ) = { } for 12.

n

n
3
(2)

4

3
(2)

4

3
(2)

4




⎜ ⎟

⎧
⎨⎪
⎩⎪

⎛
⎝

⎞
⎠

≤

≥

Theorem 1.5. For n 9≥ ,

n

n n SK n

n
n CB n

n n SP n

n SP B n

n
n B n

ex ( ; ) =

4 − 10 and Ex ( ; ) = { } for 10,

− 3

2
+ 7 = 35 and Ex ( ; ) = { } for = 11,

5 − 18 = 42 and Ex ( ; ) = { } for = 12,

47 and Ex ( ; ) = { , } for = 13,

− 4

2
+ 11 and Ex ( ; ) = { } for 14.

n

n

n

n n

n

3
(3)

4

3
(3)

4

3
(3)

4

3
(3)

4

3
(3)

4

3
(3)

4













⎜ ⎟

⎜ ⎟

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

≤

≥

Note that for n = 13 we have ( )n5 − 18 = + 11 = 47
n − 4

2
.

1.4 | Notation

For a k‐graph H and a vertex v V H( )∈ , the link graph of v in H is the k( − 1)‐graph on the
vertex set V H( ) and the edge set

L v e v v e H( ) = { { } : }.H ⧹ ∈ ∈

The degree of v in H is defined as v L vdeg ( ) = ( )H H∣ ∣, while maximum and minimum degrees in
H are denoted by HΔ ( )1 and δ H( )1 , respectively. For k = 2, we obtain the ordinary notions of
degrees and maximum and minimum degrees in a graph. Also, in the case k = 2, the link graph
is just a set of singletons and coincides with the standard notion of the neighborhood N v( )G .
The subscript 1 in HΔ ( )1 and δ H( )1 is often omitted.

For a 3‐graph H on V , the set of neighbors of a pair x y V, ∈ in H is defined as

N x y z x y z H( , ) = { : { , , } }.H ∈

The number x y N x ydeg ( , ) = ( , )H H∣ ∣ is called degree of the pair of vertices x y, and we set
H x yΔ ( ) = max deg ( , )x y V H2 , ∈ for the maximum pair degree in H .
We identify a k‐graph H with its edge set E H( ). Throughout the paper we will use the name

“edge” for both, the edges of a 3‐graph (triples) and the edges of a 2‐graph (pairs). It will always
be clear from the context which one is meant. For a k‐graph H with vertex set V we write

V H h[ ] := h H⋃ ∈

for the set of all nonisolated vertices, that is, vertices v with vdeg ( ) > 0H . GivenW V⊆ we write

H W h H h W[ ] := { : }∈ ⊆
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for the sub‐k‐graph of H induced byW .
For simplicity, if there is no danger of confusion, we sometimes denote edges x y{ , } of

graphs and edges x y z{ , , } of 3‐graphs by xy and xyz, respectively. Also, if f x y= { , } is a pair of
vertices and v V∈ is a single vertex, we may write fv for the edge x y v H{ , , } ∈ .

Notation f f f1 2 ⋯ ℓ will represent a minimal path with edges f f f, , …,1 2 ℓ in this order and,
likewise, notation v v vm1 2 ⋯ will represent a minimal path with vertices v v v, , …, m1 2 in this
order. The same shorthand notation may apply to cycles as well.

For two k‐graphs G H, , let G H∪ denote the disjoint union of them. If H is a k‐graph on
V v V, ∈ , and e H∈ is an edge of H , then we denote by H v− the k‐graph obtained from H by
deleting vertex v together with all edges containing it, whereas by H e− we mean the k‐graph
obtained from H by deleting the single edge e. For a k‐graph H , by Hc we mean the complement of

H , that is, ( )H H=c V

k
⧹ .

1.5 | Organization

The rest of the paper is organized as follows. In Section 2 we construct 3‐graphs which play a
special role in the statements and proofs of our results. In Section 3 we introduce several
lemmas and use them to deduce Theorems 1.1, 1.4, and 1.5. The proofs of these lemmas
are presented in Sections 4–6. We prove Theorem 1.2 in Section 7. This proof relies only on the
statements of Theorems 1.1, 1.4, and 1.5, and thus can be understood without reading the
earlier sections. Finally, Section 8 contains a couple of open problems.

2 | SPECIAL 3 ‐GRAPHS

In this section we define 3‐graphs which play a special role in the paper, either as tools in the
proofs or as extremal 3‐graphs. By default, we drop the superscript (3).

The (unique) 6‐vertex minimal 4‐cycle C4 is a 3‐graph with

V C x x y y z z E C x y y y y x x z z z z x( ) = { , , , , , } and ( ) = { , , , }4 1 2 1 2 1 2 4 1 1 2 1 2 2 2 1 2 1 2 1

(see Figure 2A). Further, let K K:= 4 stand for the complete 3‐graph on four vertices and
let P P:= 2 denote the minimal 2‐path with five vertices, that is, two edges sharing one
vertex.

For s 2≥ , let Ms stand for the matching of size s, that is, a 3‐graph consisting of s disjoint
edges.

(A) (B) (C)

FIGURE 2 Four‐cycle C SP, n4 , and SKn: (A) C4, (B) SPn, and (C) SKn [Color figure can be viewed at
wileyonlinelibrary.com]
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2.1 | Stars

A star is a 3‐graph S with a vertex v (called sometimes the center) contained in all the edges of S. A

star is full if it consists of all sets in ( )V

3
containing v, that is, if ( )vdeg ( ) =S

V −1

2

∣ ∣ . Normally, we

write Sn for the full star with n vertices, but if we want to specify the vertex set and the star center,

we may sporadically use symbol SV
v instead. By Sn

+1 we denote the unique (up to isomorphism)

n‐vertex 3‐graph obtained from the full star Sn by adding one extra edge. We call Sn
+1 a starplus.

2.2 | F ‐stars

For a set V of n 6≥ vertices, a subset A V⊂ , and a vertex v V A∈ ⧹ , let S v A S S( , ) = V
v

V A
v⧹ ⧹ be

the star obtained from the full star SV
v by deleting all edges disjoint from A. In other words,

S v A( , ) consists of all triples containing v and at least one vertex of A.
Given a 3‐graph F , we define the F ‐star by SF F S v V F: = ( , ( ))n ∪ , where V V⊃

F V n( ), =∣ ∣ , and v V V F( )∈ ⧹ . We will focus on two instances of F ‐stars: with F P= and
F K= (see Figure 2B,C). It is easy to check that both, SKn and SPn, are M{ , }4 3 ‐free and contain
a copy of C4. Moreover, SK n= 4 − 10n∣ ∣ and SP n= 5 − 18n∣ ∣ . Notice that for n = 8 these two
expressions are equal to each other.

2.3 | Balloons

Finally, we define two more deformations of stars. For n 9≥ , let Bn be a 3‐graph on n vertices,
called the balloon, obtained from the full star Sn−3 with center x by selecting three vertices
y y y V S x, , ( ) { }n1 2 3 −3∈ ⧹ , adding three new vertices z z z, ,1 2 3, and adding eleven new edges:

y y y z z z{ , , }, { , , }1 2 3 1 2 3 , and all nine edges of the form x y z i j{ , , }, , = 1, 2, 3i j (see Figure 3A).

Note that the balloon Bn is 4 ‐free, contains M3, and has ( ) + 11
n − 4

2
edges.

For n 8≥ , let CBn be a 3‐graph on n vertices, called the compact balloon, obtained from the
full star Sn−2 with center x by selecting two vertices y y V S x, ( ) { }n1 2 −2∈ ⧹ , adding two new
vertices z z,1 2, and adding seven new edges: y y z y y z{ , , }, { , , }1 2 1 1 2 2 , all four edges of the form

(A) (B)

FIGURE 3 Balloons. The green pairs form 3‐edges with the vertex x : (A) balloon Bnand (B) compact balloon
CBn [Color figure can be viewed at wileyonlinelibrary.com]
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x y z i j{ , , }, , = 1, 2i j , and the edge x z z{ , , }1 2 (see Figure 3B). Note that the compact balloonCBn is

4 ‐free, is not a sub‐3‐graph of the starplus Sn
+1, and has ( ) + 7

n − 3

2
edges.

3 | TURÁN NUMBERS

The goal of this section is to prove Theorems 1.1, 1.4, and 1.5. To do this we divide the family of
all 4 ‐free 3‐graphs into some special subfamilies and then count the maximum number of
edges within them separately (see Figure 4).

Next, we compare to each other bounds obtained in Lemmas 3.2–3.6. For n 14≥ we have

n n
n n n

4 − 10 < 5 − 18 <
− 4

2
+ 11 <

− 3

2
+ 7 <

− 1

2
+ 1,⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ (3)

whereas for n [8, 14]∈ we gather these bounds in Table 1.
However, before we do this precisely, we need one more piece of notation. A 3‐graph H is

said to be connected if for every partition of the vertex setV H U W( ) = ⊍ , there is an edge in H
with nonempty intersection with both subsets, U and V .

A forced presence of a sub‐k‐graph can be expressed in terms of conditional Turán num-
bers, introduced in [14]. For a k‐graph F , an F ‐free k‐graph G, and an integer n G≥ ∣ ∣, the
conditional Turán number is defined as

n F G E H V H n H F H Gex ( ; ) = max{ ( ) : ( ) = , is ‐free, and }.k ∣ ∣ ∣ ∣ ∣ ⊇

Every n‐vertex F ‐free k‐graph H with n F Gex ( ; )k ∣ edges and such that H G⊇ is called
G‐extremal for F . We denote by n F GEx ( ; )k ∣ the family of all n‐vertex k‐graphs which are

FIGURE 4 Division of the family of 4 ‐free 3‐graphs. The gray blocks contain 3‐graphs not appearing in extremal
families of the first three orders. For n 14≥ the red, green, and blue block represent, respectively, the first‐, second‐,
and third‐order Turán number for 4 [Color figure can be viewed at wileyonlinelibrary.com]
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G‐extremal for F . For k = 3 we drop the subscript3. The conditional Turán number of the sth order
is defined in a similar way as the ordinary Turán number of the sth order (see Section 1.3). Finally,
for k = 3, if in the above definition one restricts oneself to connected 3‐graphs, we add the
subscript conn and denote the corresponding extremal numbers and families, respectively, by

n F G n F G n F Gex ( ; ), Ex ( ; ), ex ( ; )conn conn conn
s( )∣ ∣ ∣ , and n F GEx ( ; )conn

s( ) ∣ .
Now let us state a few lemmas from which Theorems 1.1, 1.4, and 1.5 follow. The case n = 7

is treated separately.

Lemma 3.1. { }K Kex(7; ) = 20, Ex(7; ) =4 4 6
(3)

1  ∪ .

Lemma 3.2. Let H be a C M{ , , }4 4 3 ‐free connected 3‐graph on n 8≥ vertices. If
H S H SP,n n

+1⊈ ⊈ , and H CBn⊈ then

H n
n

max 4 − 11,
− 4

2
+ 10 .⎜ ⎟

⎧⎨⎩
⎛
⎝

⎞
⎠

⎫⎬⎭∣ ∣ ≤

Lemma 3.3. For ( )n n M9, ex ( ; ) = + 11conn
n

4 3
− 4

2
≥ ∣ and the balloon Bn is the only

extremal 3‐graph.

Lemma 3.4. For n 8≥ ,

n M C n

n M C
SP SK n

SP n

ex ( ; { } ) = 5 − 18,

Ex ( ; { } ) =
{ , } for = 8,

{ } for 9.

conn

conn
n

4 3 4

4 3 4
8 8




⎧⎨⎩

∪ ∣

∪ ∣
≥

Lemma 3.5. For n 9≥ ,

n M C n

n M C SK

ex ( ; { } ) = 4 − 10,

Ex ( ; { } ) = { }.

conn

conn n

(2)
4 3 4

(2)
4 3 4





∪ ∣

∪ ∣

Lemma 3.6. If H is a disconnected 4 ‐free 3‐graph on n vertices, with δ H( ) 11 ≥ , then

TABLE 1 The Turán numbers for 4 and n [9, 14]∈ of the first, second‐ and third‐order

Sn
+1 SPn SKn CBn Bn max n{4 − 11, Disconn.

n ( ) + 1
n− 1

2 n5 − 18 n4 − 10 ( ) + 7
n− 3

2 ( ) + 11
n− 4

2 }( ) + 10
n− 4

2 Lemma 3.6

8 22 22 22 17 17 21 11

9 29 27 26 22 21 25 21

10 37 32 30 28 26 29 24

11 46 37 34 35 32 33 30

12 56 42 38 43 39 38 40

13 67 47 42 52 47 46 39

14 79 52 46 62 56 55 48
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( )
( )
( )

H

n

n

n

+ 1 for 6 9,

+ 20 for 10 12,

+ 3 for 13.

n

n

n

− 3

3

− 6

3

− 4

2

⎧

⎨
⎪⎪

⎩
⎪⎪

∣ ∣ ≤

≤ ≤

≤ ≤

≥

Proof. Let H1 be a connected component of H with the smallest number of vertices. Set
H H H n V H i= , = [ ] , = 1, 2i i2 1⧹ ∣ ∣ . Clearly n n n n n3 = − − 31 2 1≤ ≤ ≤ .

We argue by induction on n. For the base case n6 9≤ ≤ , we use the fact that

( )H K i= , = 1, 2i n
n(3)
3i

i∣ ∣ ≤ ∣ ∣ . Therefore, a simple optimization shows

H H H
n n n

= +
3

+
3

1 +
− 3

3
,1 2

1 2⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠∣ ∣ ∣ ∣ ∣ ∣ ≤ ≤

as required.
For the induction step assume n 10≥ and that Lemma 3.6 is true for all disconnected

4 ‐free 3‐graphs with less than n vertices and δ H( ) 11 ≥ . Then, as n n − 32 ≤ we are in a
position to apply the induction hypothesis to H2 in case it is disconnected. For H1, as well
as, for connected H2 we apply Lemmas (3.1)–(3.4). Altogether, we claim that, for i = 1, 2,

( )

( )
H

n

n

n

for 6,

19 for = 7,

+ 1 for 8.

i

n
i

i

n
i

3

− 1

2

i

i

⎧
⎨
⎪⎪

⎩
⎪⎪

∣ ∣ ≤

≤

≥

(4)

Indeed, for n 6i ≤ clearly ( )H Ki n
n(3)
3i

i∣ ∣ ≤ ∣ ∣ ≤ , whereas for n = 7i H 19i∣ ∣ ≤ follows from

Lemma 3.1 combined with δ H( ) 11 ≥ . Finally, to show that ( )H + 1i
n − 1

2
i∣ ∣ ≤ for n 8i ≥ ,

in view of Lemmas 3.2, 3.3, 3.4, and 3.6 (see also Figure 4) it is enough to observe that

{ }

( )
( )

( ) ( )

n

n

n

n n

− 1

2
+ 1 >

+ 1 for 10,

+ 20 for 8 14,

max + 7, + 11, 5 − 19 for 8.

n

n

n n

− 3

3

− 6

3

− 3

2

− 4

2

⎜ ⎟
⎛
⎝

⎞
⎠

⎧

⎨
⎪⎪

⎩
⎪⎪

≤

≤ ≤

≥

(5)

In particular, for ( )n n8, + 1 > 4 − 11
n − 1

2
≥ , as well as, ( ) n+ 1 5 − 18

n − 1

2
≥ .

Now we use (4) to bound the number of edges in H . Considering separately cases
n n= 3, 4, …, 21 ⌊ ∕ ⌋ one gets,

( )
( )

( )
( )

H

n

n

n

n

max{1 + 19, 4 + 20, 10 + 10} = + 20 for = 10,

max{1 + 22, 4 + 19, 10 + 20} = + 20 for = 11,

max{1 + 29, 4 + 22, 10 + 19, 20 + 20} = + 20 for = 12,

max{1 + 37, 4 + 29, 10 + 22, 20 + 19} = + 3 for = 13.

n

n

n

n

− 6

3

− 6

3

− 6

3

− 4

2

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

∣ ∣ ≤
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Therefore it remains to take care of n 14≥ . If n 61 ≤ , then n 82 ≥ and thus

( ) ( )H H, + 1
n n

1 3 2
− 1

2
1 2∣ ∣ ≤ ∣ ∣ ≤ , yielding

H
n n n n

n

max
− 4

2
+ 2,

− 5

2
+ 5,

− 6

2
+ 11,

− 7

2
+ 21

=
− 4

2
+ 2.

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎧⎨⎩
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎫⎬⎭
⎛
⎝

⎞
⎠

∣ ∣ ≤

For n H= 7, 191 1∣ ∣ ≤ and hence

( )
( ) ( )

H
n

n

19 + 19 < + 3 for = 14,

+ 20 < + 3 for 15.

n

n n

− 4

2

− 8

2

− 4

2

⎧
⎨⎪
⎩⎪

∣ ∣ ≤
≥

Finally, if n 81 ≥ , then also n 82 ≥ and thus ( )H i+ 1, = 1, 2i
n

2
i∣ ∣ ≤ . But then, clearly

H H H
n n n

= +
− 1

2
+

− 1

2
+ 2 <

− 4

2
+ 3.1 2

1 2⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠∣ ∣ ∣ ∣ ∣ ∣ ≤

□

Now we are ready to prove Theorems 1.1, 1.4, and 1.5.

Proof of Theorem 1.1. We argue by induction on n. For the base case n 6≤ the
assumption easily follows from the fact that every minimal 4‐path has at least 7 vertices,
whereas for n = 7 we use Lemma 3.1.

Next, we let n 8≥ and observe that as Sn
+1 is a 4 ‐free 3‐graph with ( ) + 1

n − 1

2
edges,

we get

n
n

ex( ; )
− 1

2
+ 1.4 ⎜ ⎟

⎛
⎝

⎞
⎠≥

To obtain the reverse bound on nex( ; )4 we let H to be a 4 ‐free 3‐graph on n 8≥

vertices and with at least ( ) + 1
n − 1

2
edges. We argue that H S= n

+1 for n 9≥ , whereas for

n H S= 8, = n
+1 or H SP SK{ , }8 8∈ , which will end the proof. To this end we consider

separately connected and disconnected 4 ‐free 3‐graphs. In the former case Lemma 3.3

together with ( ) ( )+ 11 < + 1
n n− 4

2

− 1

2
tells us that M H3 ⊈ . Further, as for n 8≥ we have

( )n5 − 18 + 1
n − 1

2
≤ with the equality only for n = 8, in view of Lemma 3.4 we learn that

for n H9,≥ is C4‐free, whereas for n = 8 the only possibility to have C H4 ⊆ is
H SP SK{ , }8 8∈ . Finally we use Lemma 3.2 to deduce that the only C M{ , , }4 4 3 ‐free 3‐graph

with at least ( ) + 1
n − 1

2
edges is Sn

+1, as required (see Figure 4, Table 1, and Equation 3).

Now, to exclude the disconnected case we first assume that δ H( ) 11 ≥ and use
Lemma 3.6 combined with (5). Finally, if H contains an isolated vertex v, then we can apply
the induction hypothesis to H v− , obtaining

H H v n
n

= − ex( − 1; ) <
− 1

2
+ 1,4 ⎜ ⎟

⎛
⎝

⎞
⎠∣ ∣ ∣ ∣ ≤

which ends the proof. □
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Proof of Theorem 1.4. The proof is similar to the proof of Theorem 1.1. Let H be a 4 ‐
free 3‐graph on the set of verticesV V n, = 9∣ ∣ ≥ with H n= ex ( ; )(2)

4∣ ∣ . Moreover, as we
are computing the second‐order Turán number and n SEx( ; ) = { }n4

+1 for n 9≥ , we may
assume that H Sn

+1⊈ . Because both 3‐graphs SPn and CBn are 4 ‐free and are not
contained in Sn

+1, we have the lower bound

( )H n n
n n n

n
= ex ( ; ) max 5 − 18,

− 3

2
+ 7 =

5 − 18 for 11,

+ 7 for 12.
n

(2)
4 − 3

2

 ⎜ ⎟
⎪

⎪⎧⎨⎩
⎛
⎝

⎞
⎠

⎫⎬⎭
⎧
⎨
⎩

∣ ∣ ≥
≤

≥

(6)

We argue that H SP= n for n 11≤ and H CB= n for n 12≥ . The proof is by induction
on n.

First assume that H is connected and notice that since ( ) ( )+ 11 < + 7
n n− 4

2

− 3

2
for

n 9≥ , Lemma 3.3 yields M H3 ⊈ . Therefore, since n n4 − 11 < 5 − 18, in view of

Lemmas 3.2 and 3.4 combined with H Sn
+1⊈ , either H SP= n or H CB= n, as required

(see Figure 4, Table 1, and Equation 3).
In the disconnected case Lemma 3.6 tells us that δ H( ) = 01 , because clearly

( ) ( )+ 3 < + 7
n n− 4

2

− 3

2
and for n 12≤ the bound obtained in this lemma is smaller

than n5 − 18 (see Table 1). Thus we let v be an isolated vertex of H . For the base case,
n = 9 we use Theorem 1.1, getting

H H v n= − ex(8, ) = 22 < 27 = 5 − 18.4∣ ∣ ∣ ∣ ≤

For the induction step assume n 10≥ and that Theorem 1.4 is true for n − 1 in place of n.
Now observe, that because H Sn

+1⊈ , we also have H v S− n−1
+1⊈ , and consequently,

( )H H v n
n n

n
= − ex ( − 1, ) =

5 − 23 for 12,

+ 7 for 13,
n

(2)
4 − 4

2

 ⎪

⎪⎧⎨
⎩

∣ ∣ ∣ ∣ ≤
≤

≥

contradicting (6). □

The proof of Theorem 1.5 is very similar to the one of Theorem 1.4, and therefore we left it
to the Reader (see Figure 4, Table 1, and Equation 3).

4 | SEVEN VERTICES—PROOF OF LEMMA 3.1

4.1 | Two‐colored graphs without a forbidden pattern

In the whole subsection we consider only ordinary 2‐graphs, therefore for simplicity of notation
we omit the superscript(2) here. We prove two lemmas needed in the proof of Lemma 3.1,
where link graphs, R and B, of two given vertices are considered. However, before we state
them, one more piece of notation is needed. Let two graphs, R and B, on the same vertex set be
given. We define an rr‐bb‐path PRB4 = to be a subgraph of R B∪ consisting of 4 edges,
r r R,1 2 ∈ and b b B,1 2 ∈ , such that r r b b1 2 1 2 is the 4‐edge path P4. By T e{ }∪ we denote a graph
on five vertices consisting of a complete graph on three vertices T K= 3 and a single edge e,
disjoint from V T[ ]. We start with two technical facts used in further proofs.
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Fact 4.1. Let R and B be two graphs on the same 5‐vertex set, such that PRB R B4 ⊈ ∪ .
If K R2,3 ⊆ , then B 4∣ ∣ ≤ and either B T e{ }⊆ ∪ or R B+ 11∣ ∣ ∣ ∣ ≤ .

Proof. We let K R2,3 ⊆ and B T e{ }⊈ ∪ , since otherwise B 4∣ ∣ ≤ , and the assertion
follows. Note that due to PRB R B4 ⊈ ∪ , whenever K B = 12,3∣ ∩ ∣ , then four pairs of ( )V

2
,

shown in Figure 5A with dashed lines, are forbidden for B. In particular K B 12,3∣ ∩ ∣ ≤

causes B T e{ }⊆ ∪ , and thus we may assume K B 22,3∣ ∩ ∣ ≥ . Further, M K B2 2,3⊆ ∩

entails B 3∣ ∣ ≤ (see Figure 5B) and B = 3∣ ∣ yields R 8∣ ∣ ≤ (see Figure 5C). Therefore in this
case, either B T e{ }⊆ ∪ or R B+ 11∣ ∣ ∣ ∣ ≤ , as required. Finally, if P K B2 2,3⊆ ∩ , then
B T e{ }⊆ ∪ (see Figure 5D), and the assertion follows again. □

Fact 4.2. Let R and B be two graphs on the same 5‐vertex set, such that PRB R B4 ⊈ ∪ .
If C R5 ⊆ and R 6∣ ∣ ≥ , then B 4∣ ∣ ≤ .

Proof. We let C R5 ⊆ . Now, if C B = 15∣ ∩ ∣ then C B 3c
5∣ ∩ ∣ ≤ and thus B 4∣ ∣ ≤ , as

required (see Figure 5E). Further, for C B 25∣ ∩ ∣ ≥ we have B 3∣ ∣ ≤ (see Figure 5F) and we
are done again. Finally, let C B =5 ∩ ∅, that is, B Cc

5⊆ . Then B 5∣ ∣ ≥ entails B C= c
5 (see

Figure 5G). This, in turn, due to the symmetry, yields R C= 5, contradicting R 6∣ ∣ ≥ . □

It turns out that if two graphs, R and B, on the same 5‐vertex set do not contain PRB4,
then R B+ 13∣ ∣ ∣ ∣ ≤ .

Lemma 4.3. Let R and B be two graphs on the same vertex set V v a b x y= { , , , , }, such
that PRB R B4 ⊈ ∪ . Then R B+ 13∣ ∣ ∣ ∣ ≤ and, if R B R B+ 12,∣ ∣ ∣ ∣ ≥ ∣ ∣ ≥ ∣ ∣, then up to the
isomorphism one of the following holds (see Figure 6):

(A) R K V ab B T ab[ ] − { }, { }5⊆ ⊆ ∪ , where T K v x y vx vy xy= [{ , , }] = { , , }3 ;
(B) R K V B ab xy= [ ], = { , }5 ;
(C) R B K a b x y= = [{ , , , }]4 , where K4 is a complete graph on the vertex set a b x y{ , , , };
(D) R S ab xy B S ax by= { , }, = { , }5 5∪ ∪ , where S va vb vx vy= { , , , }5 .

Proof. Let two graphs, R and B, on the same vertex set V v a b x y= { , , , , }, with
PRB R B4 ⊈ ∪ be given. Moreover, let R B R B+ 12,∣ ∣ ∣ ∣ ≥ ∣ ∣ ≥ ∣ ∣, and thereby

(A) (B) (C) (D)

FIGURE 6 All R B∪ on 5 vertices and with R B+ 12∣ ∣ ∣ ∣ ≥ , such that PRB R B4⊈ ∪ [Color figure can be
viewed at wileyonlinelibrary.com]

(A) (B) (C) (D) (E) (F) (G)

FIGURE 5 The illustration to the proofs of Facts 4.1 and 4.2 [Color figure can be viewed at
wileyonlinelibrary.com]
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B R2 10≤ ∣ ∣ ≤ ∣ ∣ ≤ and R 6∣ ∣ ≥ . We will show that one of (A)–(D) occurs. In what follows
we assume that B M2⊈ , because otherwise (B) holds.

First observe that R 8∣ ∣ ≥ entails K R2,3 ⊆ . Then Fact 4.1 combined with R B+ 12∣ ∣ ∣ ∣ ≥

tells us that B T e{ }⊆ ∪ . Moreover, B M2⊈ yields B T 2∣ ∩ ∣ ≥ . But R 8∣ ∣ ≥ and thus there
are at least 4 edges of R betweenV T[ ] and e. Therefore, to avoid PRB R B4 ⊆ ∪ , we have
e R∉ , and hence (A) follows.

Further, for R 7∣ ∣ ≤ we have B 5∣ ∣ ≥ and thus Facts 4.1 and 4.2 yield that R contains
neither K2,3 nor C5. If K R4 ⊆ , then to avoid PRB4 in R B∪ , every edge e B∈ with
e V K[ ] = 14∣ ∩ ∣ is an isolated edge in B (see Figure 7A), entailing B 4∣ ∣ ≤ . Therefore
B K4⊆ and hence, using again PRB R B4 ⊈ ∪ , also R K4⊆ , yielding (C).

Now, as every 5‐vertex graph with at least 7 edges contains at least one of the graphs,
K C,2,3 5, or K4, as a subgraph, we may assume that R 6∣ ∣ ≤ and thereby B R= = 6∣ ∣ ∣ ∣ . First
consider RΔ( ) = 4 and let vdeg ( ) = 4R . Note that P B V v[ { }]2 ⊈ ⧹ (see Figure 7B). Thus
B V v[ { }] 2∣ ⧹ ∣ ≤ , and B = 6∣ ∣ entails S B5 ⊆ , where S va vb vx vy= { , , , }5 , and
B V v M[ { }] = 2⧹ (see Figure 7C). By the symmetry, R V v M[ { }] 2⧹ ⊆ and, to avoid a
copy of PRB R B V v4, [ { }] =∩ ⧹ ∅, yielding (D).

Finally we let RΔ( ) 3≤ and R B= = 6∣ ∣ ∣ ∣ . The only (up to the isomorphism)
K C K S{ , , , }2,3 5 4 5 ‐free graphG ab by xy ax bx yv= { , , , , , } with six edges on the vertex setV is
given in Figure 7D. Observe that any two edges of one of the triangles abx xyv, , or byv
given in Figure 7E–G in blue, create, together with R, a copy of PRB4. Therefore B 5∣ ∣ ≤ ,
a contradiction. □

Lemma 4.4. Let R and B be two graphs on the same 5‐vertex set, such that
PRB R B4 ⊈ ∪ . If R BΔ( ), Δ( ) 3≤ , and at least three vertices of both R and B have
degree at most 2, then R B+ 10∣ ∣ ∣ ∣ ≤ .

Proof. For the sake of contradiction assume that R B+ 11∣ ∣ ∣ ∣ ≥ and let R 6∣ ∣ ≥ . Owing to
the degree restriction we also have R Bmax{ , } 6∣ ∣ ∣ ∣ ≤ , so B R5 = 6≤ ∣ ∣ ≤ ∣ ∣ . There are
exactly two 5‐vertex graphs with the degree sequence (2, 2, 2, 3, 3): a pentagon C5 with
one diagonal, and K2,3. But then, in view of Facts 4.1 and 4.2, B 4∣ ∣ ≤ , a contradiction. □

4.2 | Proof of Lemma 3.1

Let H be a 4 ‐free 3‐graph on a 7‐vertex set V and with at least 20 edges. We will show that
H K K= 6

(3)
1∪ , which will end the proof of Lemma 3.1. To this end pick two vertices, x y V, ∈ ,

with the largest pair degree x y Hdeg ( , ) = Δ ( )H 2 and set Z V x y= { , }⧹ . We let

R L x Z B L y Z= ( )[ ] and = ( )[ ]H H

(A) (B) (C) (D) (E) (F) (G)

FIGURE 7 The illustration to the proof of Lemma 4.3 [Color figure can be viewed at wileyonlinelibrary.com]
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be the link graphs of x and y, respectively, induced on Z . Then,

H x y R B H Z= deg ( , ) + + + [ ] 20.H∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ≥ (7)

Moreover we have x y3 deg ( , ) 5H≤ ≤ . Indeed, the upper bound is a trivial consequence of
Z = 5∣ ∣ , while the lower bound follows from x y Hdeg ( , ) = 3 60

x y V H,
∑ ∣ ∣ ≥

∈
.

We start with estimating the number of edges in the 3‐graph H Z[ ] induced on Z .

Claim 4.5.

(i) If x ydeg ( , ) = 5H , then H Z[ ] 2∣ ∣ ≤ .
(ii) If x ydeg ( , ) = 4H , then H Z[ ] 4∣ ∣ ≤ . Moreover, if additionally H Z[ ] = 4∣ ∣ , then

H Z K N x y[ ] = [ ( , )]H4
(3) is a complete 3‐graph on the vertex set N x y( , )H .

(iii) If x ydeg ( , ) = 3H , then H Z[ ] 6∣ ∣ ≤ .

Proof. Clearly, if H Z[ ] 3∣ ∣ ≥ , then there are in H Z[ ] two edges sharing two vertices, say,
abc and bcd. Set z for the unique element of Z a b c d{ , , , }⧹ . Observe that if both z and a
are common neighbors of x y, , then the sequence zxyabcd is a minimal 4‐path in H (see
Figure 8A). As for x ydeg ( , ) = 5H each vertex of Z is a common neighbor of x y, , the
above observation establishes (i).

For the proof of (ii), instead of looking at edges e H Z[ ]∈ , we will look at their
complement edges e Z e=c ⧹ in Z (e.g., the green 2‐edges in Figure 8B are complement
edges of the 3‐edges abc bcd H Z, [ ]∈ in Figure 8A). In view of this definition, the above
observation reads as follows. If there are two adjacent complement edges of H Z[ ] such
that at least one of them is contained in N x y( , )H , then H contains a minimal 4‐path (see
Figure 8A,B). Therefore if H Z[ ] 4∣ ∣ ≥ , then all complement edges contain the unique
vertex of Z N x y( , )H⧹ (see Figure 8C) and thereby H Z K N x y[ ] = [ ( , )]H4

(3) is a complete
3‐graph on the vertex set N x y( , )H .

Finally, to prove (iii) note that (7) together with x y Hdeg ( , ) = Δ ( ) = 3H 2 entails

H Z R B H Z a b H17 + 2 [ ] + + 3 [ ] = deg ( , )
5

2
Δ ( ) = 30.

a b Z

H

,

2⎜ ⎟
⎛
⎝

⎞
⎠∑∣ ∣ ≤ ∣ ∣ ∣ ∣ ∣ ∣ ≤ ⋅

∈ □

Having established Claim 4.5 we proceed with the proof of Lemma 3.1. To this end look at
the link graphs R and B, and observe that the 4 ‐freeness of H entails PRB R B4 ⊈ ∪ (see
Figure 9A).

First assume x y Hdeg ( , ) = Δ ( ) = 3H 2 . This implies that in each graph, R and B, the vertices
z z z N x y, , ( , )H1 2 3 ∈ have degree at most 2, while the remaining two vertices of Z have degree at
most 3. Hence, by Lemma 4.4, R B+ 10∣ ∣ ∣ ∣ ≤ . On the other hand, Claim 4.5(iii) together with
(7) tell us that R B+ 11∣ ∣ ∣ ∣ ≥ , a contradiction.

(A) (B) (C)

FIGURE 8 The illustration to the proof of Claim 4.5 [Color figure can be viewed at wileyonlinelibrary.com]
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Preparing for the remaining two cases, we make the following observation due to the

4 ‐freeness of H . Suppose there is a 3‐edge h H Z[ ]∈ and two 2‐edges, f R∈ and g B∈ such
that f h f N x y= , ( , )H∩ ∅ ∩ ≠ ∅, and g h⊂ . Then, for any vertex z f N x y( , )H∈ ∩ , 3‐edges
fx zxy yg h, , , form a minimal 4‐path in H , a contradiction (see Figure 9B). Note further that in
the above argument one can exchange the graphs R and B.

Next, let x ydeg ( , ) = 5H . Then (7) and Claim 4.5(i) entails R B+ 13∣ ∣ ∣ ∣ ≥ . Consequently, in

view of Lemma 4.3, H Z[ ] = 2∣ ∣ and R B+ = 13∣ ∣ ∣ ∣ , and thereby there is a 2‐edge ( )e
Z

2
∈ such

that, R K Z e B K Z e e= [ ] − , = [ ]5
(2)

3
(2) ⧹ ∪ , because all the other graphs described in (A)–(D)

satisfy R B+ 12∣ ∣ ∣ ∣ ≤ (see Figure 9A). Now writing Z a b c e= { , , } ∪ , we let h ea f bc= , = ,
and g e= , which satisfy the assumptions in the previous paragraph and thus yield a
contradiction.

Finally, let x ydeg ( , ) = 4H , and write N N x y: = ( , )H . In view of (7) combined with Claim
4.5(ii), H Z[ ] 4∣ ∣ ≤ and R B+ 12∣ ∣ ∣ ∣ ≥ . Then again, Lemma 4.3 tells us that one of (A)–(D) holds.
Moreover the condition H x yΔ ( ) = deg ( , ) = 4H2 entails that only the unique vertex of Z N⧹ can

have degree 4 in R, and thus the cases R K Z= [ ]5
(2) and R K Z e= [ ] −5

(2) are excluded. Note that
all the remaining 2‐graphs R B∪ with R B+ 12∣ ∣ ∣ ∣ ≥ , described in Lemma 4.3, namely

R K V e e B T e= [ ] − { , ′}, =5
(2) ∪ , (C), and (D), satisfy R B+ = 12∣ ∣ ∣ ∣ , implying that

H Z[ ] = 4∣ ∣ and thus H Z K N[ ] = [ ]4
(3) . Moreover, they have the property that every 3‐vertex set

h Z⊂ contains an edge of both 2‐graphs R and B (see Figure 9A,C,D), and, as x ydeg ( , ) = 4H ,

every edge of R B∪ intersects N . Therefore, if R B K N[ ]4∪ ⊈ , one can take f g( , ) ∈

R B B R( , ) ( , )∪ with f N⊈ and h Z f H Z g h= [ ],⧹ ∈ ⊆ , yielding a contradiction with the

4 ‐freeness of H (see Figure 9B). Thus, we conclude that R B K N[ ]4
(2)∪ ⊆ and R B+ = 12∣ ∣ ∣ ∣

implies that R B K N= = [ ]4
(2) . Altogether H K K= 6

(3)
1∪ , as required.

5 | PROOFS OF LEMMAS 3.2 AND 3.3

5.1 | Structure of 4 ‐free 3‐graphs

In this subsection we gather some basic information about the structure of connected 4 ‐free
3‐graphs. We begin by showing that such 3‐graphs may contain at most three disjoint edges. To
this end, let us make the following observations.

Fact 5.1. For every connected 4 ‐free 3‐graph H the following holds.

(A) (B) (A) (B) (C) (D)

FIGURE 9 The illustration to the proof of Lemma 3.1 [Color figure can be viewed at wileyonlinelibrary.com]
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(i) If e e H,1 2 ∈ are disjoint, then there exists an edge f H∈ intersecting both e1 and e2.
(ii) If e e H,1 2 ∈ are disjoint and f h H, ∈ are such that f e ,1∩ ≠ ∅

f e h e, =2 1∩ ≠ ∅ ∩ ∅, and h e2∩ ≠ ∅, then f h∩ ≠ ∅.
(iii) If e e e f h H, , , ,1 2 3 ∈ are such that e e e, ,1 2 3 are pairwise disjoint, f e f,1∩ ≠ ∅ ∩

e f e, =2 3≠ ∅ ∩ ∅, h e2∩ ≠ ∅, and h e3∩ ≠ ∅, then h e1∩ ≠ ∅.
(iv) If e e e H, ,1 2 3 ∈ are pairwise disjoint, then there exists an edge intersecting all the

three edges e e,1 2, and e3.

Proof. To prove (i) observe that in a connected 3‐graph every pair of disjoint edges, e1

and e2, is connected by a minimal path P. If additionally there is no edge in H

intersecting both e1 and e2, then P consists of at least four edges.
For the proof of (ii) note that otherwise e fe h1 2 would form a minimal 4‐path in H .

Next, to show (iii) observe that h e =1∩ ∅ together with (ii) entails f h∩ ≠ ∅ and, since
f e e fhe= ,3 1 3∩ ∅ is a minimal 4‐path in H , a contradiction.

Finally, to deduce (iv) we apply (i) twice getting two (not necessarily different) edges
f h H, ∈ , such that f intersects e1 and e2, while h intersects e2 and e3. If, additionally,
f e3∩ ≠ ∅, we are done. Otherwise (iii) yields h e1∩ ≠ ∅, which concludes the proof. □

Now we are ready to prove the promised, crucial fact.

Lemma 5.2. If H is a connected 4 ‐free 3‐graph, then ν H( ) 3≤ .

Proof. Suppose that ν H( ) 4≥ and fix four disjoint edges e e e e H, , ,1 2 3 4 ∈ . Double
application of Fact 5.1(iv) entails the existence of two edges, f h H, ∈ , such that f

intersects e e e, ,1 2 3, while h intersects e e e, ,2 3 4. Clearly h e =1∩ ∅ and thus, due to Fact
5.1(ii), f h∩ ≠ ∅. But then e fhe1 4 is a minimal 4‐path in H , a contradiction. □

As a preparation towards the proofs of Lemmas 3.2 and 3.3, we now make an attempt to
characterize all connected 4 ‐free 3‐graphs with at least two disjoint edges. As an exception, in
this section, to distinguish between ordinary graphs (2‐graphs) and 3‐graphs, we will use
notation  , with subscripts, for single 3‐graphs rather than families of 3‐graphs. (But we keep
H unchanged, as it clearly associates itself with hypergraphs).

To this end, recall that a hypergraph  is intersecting if f f ′∩ ≠ ∅ for every f f, ′ ∈ .
Similarly, a pair ( , ′)  of hypergraphs is called cross‐intersecting, if for all f f, ′ ′ ∈ ∈ we
have f f ′∩ ≠ ∅. It turns out that every connected 4 ‐free 3‐graph H with ν H( ) {2, 3}∈ , can be
described as follows.

Lemma 5.3. Every 4 ‐free connected 3‐graph H with ν H( ) = 2 on the set of vertices V ,
can be partitioned into three edge‐disjoint 3‐graphs H = 1 2 12  ⊍ ⊍ , such that

(i) V V[ ] [ ] =1 2 ∩ ∅,
(ii) the 3‐graphs 1 and 2 are nonempty intersecting families,
(iii) 12 ≠ ∅,
(iv) the pair ( , )1 2 12  ⊍ is cross‐intersecting.

Lemma 5.4. Every 4 ‐free connected 3‐graphH with ν H( ) = 3 on the set of verticesV , can be
partitioned into five edge‐disjoint 3‐graphs H = 1 2 3 12 123    ⊍ ⊍ ⊍ ⊍ , such that
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(i) the sets V V[ ], [ ]1 2  , and V [ ]3 are pairwise disjoint, and V V[ ] [ ] =12 3 ∩ ∅,
(ii) the 3‐graphs ,1 2  , and 3 are nonempty intersecting families,
(iii) 123 ≠ ∅,
(iv) the pairs ( , )1 2 3 12 123    ⊍ ⊍ ⊍ and ( , )1 2 12  ⊍ are cross‐intersecting.

Proof of Lemmas 5.3 and 5.4. Let H be a given 4 ‐free connected 3‐graph on V , and let
k ν H k= ( ), = 2, 3. Fix a largest matching M e e H= { , …, }k k1 ⊂ . Now, for each
I k[ ], I⊆ is defined to be the set of all edges of H that intersect every e i I,i ∈ ,
and none of e j k I, [ ]j ∈ ⧹ . Clearly e , =i i{ } ∈ ∅∅ and

H = .
I k

I
[ ]
⊍

⊆

For simplicity of notation, we write 123 instead of ,{1,2,3} 12  instead of {1,2} , and
so forth.

First note that in view of Fact 5.1(iii), for k = 3 at most one of , ,12 13 23   , say 12 , is

nonempty. Now, if for some vertex v V e( )i k i[ ]∈ ⧹ ⋃∈ there are two edges f h H, ∈ such

that v f h f, i∈ ∩ ∈ and h i j k, { , , } = {1, 2, 3}j jk ∈ ∪ , then e fhei j is a minimal

4‐path in H . But H is 4 ‐free and thus the sets V V[ ], [ ]1 2  , and V [ ]3 are pairwise
disjoint, and V V[ ] [ ] =12 3 ∩ ∅, establishing (i). Consequently, as ν H k( ) = and
ei i∈ for each i k[ ]∈ , every i is a nonempty intersecting family, and thus (ii) follows.

Further, 12 ≠ ∅ and 123 ≠ ∅ result from Fact 5.1(i) and (iv), respectively. Finally,
Fact 5.1(ii) tells us that the pairs ( , )1 2 12  ⊍ and ( , )1 2 3 12 123    ⊍ ⊍ ⊍ (for
k = 3), are cross‐intersecting. □

5.2 | Proof of Lemma 3.2

Let H be a C M{ , , }4 4 3 ‐free connected 3‐graph on the set of vertices V V n, = 8∣ ∣ ≥ , and let
H S H SP,n n

+1⊈ ⊈ , and H CBn⊈ . We are to show that

H n
n

max 4 − 11,
− 4

2
+ 10 .⎜ ⎟

⎧⎨⎩
⎛
⎝

⎞
⎠

⎫⎬⎭∣ ∣ ≤ (8)

To prove this observe that because H Sn⊈ , if ν H( ) = 1, then in view of Theorem 1.3,
H n n3 − 8 < 4 − 11∣ ∣ ≤ , and we are done. Therefore, as H is M3‐free, we may assume
ν H( ) = 2 and take a partition

H = 1 2 12  ⊍ ⊍

guaranteed by Lemma 5.3. Recall that both 1 and 2 are nonempty intersecting families,

12 ≠ ∅, and the pair ( , )1 2 12  ⊍ is cross‐intersecting. For i = 1, 2, let S V ( )i i⊆ be the set
of vertices s that lie in all edges of i . Clearly, s S: =i i∣ ∣ satisfies s0 3i≤ ≤ and without loss of
generality we may assume s s0 32 1≤ ≤ ≤ .

Set V V V V V= [ ], =1 1 2 1 ⧹ , and note that V V[ ]2 2 ⊆ . A pair p of vertices in Vi is called a
2‐cover of i if it intersects every edge of i , that is, p f∩ ≠ ∅ holds for all f i∈ . Denote by

( )Pi
V

2
i⊆ the collection of all 2‐covers of i . Now (8), and thereby Lemma 3.2, is a straight-

forward consequence of the following claim.
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Claim 5.5.

(i) If s s 21 2≥ ≥ , then H n4 − 11∣ ∣ ≤ .
(ii) If s s H S= 3, = 1, n1 2

+1⊈ , and H SPn⊈ , then H n4 − 11∣ ∣ ≤ .

(iii) If s s= 2, = 11 2 , and H CBn⊈ , then { }( )H nmax 4 − 11, + 10
n − 4

2
∣ ∣ ≤ .

(iv) If s s= = 11 2 , then { }( )H nmax 4 − 11, + 10
n − 4

2
∣ ∣ ≤ .

(v) If s = 02 , then { }( )H nmax 4 − 11, + 10
n − 4

2
∣ ∣ ≤ .

Proof. Let us start with the proof of (i), that is s s 21 2≥ ≥ . To this end, for each i = 1, 2

pick an edge ei i∈ , and setW V e e W n= ( ), = − 61 2⧹ ∪ ∣ ∣ . Then for every z W∈ ,

zdeg ( ) 1
1 2  ≤∪ (9)

follows from s s, 21 2 ≥ and V V[ ] [ ] =1 2 ∩ ∅.
Now, let u w W, ∈ in the case n = 8, and u w v W, , ∈ otherwise, be vertices with the

largest degrees in 12 , such that

u w vdeg ( ) deg ( ) deg ( ).
12 12 12  ≥ ≥

We may assume that wdeg ( ) 2
12

≥ . Otherwise, as H H e e uˆ = [ { }]1 2∪ ∪ has no isolated
vertices, Lemma 3.1 tells us Ĥ 19∣ ∣ ≤ , and by (9) for n 8≥ we have

( )H H z z n n= ˆ + deg ( ) + deg ( ) 19 + 2( − 7) 4 − 11.
z W u{ }

1 2 12  ∑∣ ∣ ∣ ∣ ≤ ≤
∈ ⧹

∪

We contend

u w vdeg ( ) + deg ( ) 10 and deg ( ) 3,H H 12
≤ ≤ (10)

which ends the proof. Indeed, observe that the absence of C4 in H entails
H e e[ ] 111 2∣ ∪ ∣ ≤ , because, the set of edges of K6

(3) can be partitioned into 10 pairs of
disjoint edges, and any two of these pairs form C4. Therefore (10) combined with (9)
tells us

( )H H e e u w z z

n

= [ ] + deg ( ) + deg ( ) + deg ( ) + deg ( )

4 − 11.

H H

z W u w

1 2

{ , }
1 2 12  ∑∣ ∣ ∣ ∪ ∣

≤

∈ ⧹

∪

To show (10), instead of looking at the degrees of u w, , and v it is more convenient
for us to look at their link graphs in 12 ,

R L u B L w G L v= ( ), = ( ), and = ( ).
12 12 12  

Because every edge of 12 intersects both e1 and e2, actually R B G K e e, , [ ]3,3
(2)

1 2⊆ ⊍ .
We first note that the C{ , }4 4 ‐freeness of H entails some forbidden configurations

of edges of R B, , and G. In particular, there are no two distinct vertices
x y e i, , = 1, 2i∈ , such that x ydeg ( ), deg ( ) 2R B ≥ (see Figure 10A,B, similar with G

in place of R or B). This immediately entails that if for some i = 1, 2, there are two
distinct vertices x y e, i∈ with
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x y z e zdeg ( ) 2 and deg ( ) 2 then for all deg ( ) 1.R R i B≥ ≥ ∈ ≤ (11)

In particular, whenever R 6∣ ∣ ≥ , then B is a matching and thus B 3∣ ∣ ≤ . Moreover, as there
are no three disjoint edges in K e e[ ]3,3

(2)
1 2⊍ , such that at least two of them are in R and at

least two of them are in B (see Figure 10C,D), because B w= deg ( ) 2
12

∣ ∣ ≥ , we have
R 7∣ ∣ ≤ and if R = 7∣ ∣ then B = 2∣ ∣ . Indeed, otherwise R = 7∣ ∣ and B = 3∣ ∣ yields either two
disjoint edges in R B∩ (see Figure 10C), or three disjoint edges, two in B and one in R

and one edge in R connecting the R‐edge with the B‐edge, entailing the existence of a
minimal 4‐path in H (see Figure 10E).

Further, repeated applications of (11) tell us that R B= = 5∣ ∣ ∣ ∣ is possible only when
R B= = . But then R B∩ contains two disjoint edges, contradictingC4‐freeness of H (see
Figure 10C). For the same reason G 3∣ ∣ ≤ . Indeed, otherwise R B G 4∣ ∣ ≥ ∣ ∣ ≥ ∣ ∣ ≥ and all of
these three graphs have the same two vertices of degree larger than one. Thus R B G, , ⊆

(each of them misses at most one edge) and hence the intersection of some two of them
contains two disjoint edges, again arriving at a contradiction. Summarizing all these
observations so far, we obtain

R B v G+ 9 and deg ( ) = 3.
12

∣ ∣ ∣ ∣ ≤ ∣ ∣ ≤ (12)

Therefore to establish (10) it remains to show that u wdeg ( ) + deg ( ) 10H H ≤ .
To this end, assume for the sake of a contradiction that u wdeg ( ) + deg ( ) 11H H ≥ .

Then (12) combined with (9) tells us that

u w R Bdeg ( ) = deg ( ) = 1 and + = 9.
1 2 1 2    ∣ ∣ ∣ ∣∪ ∪

Without loss of generality we may assume that the edge f 1 2 ∈ ∪ with w f∈ belongs
to 1 . Recalling that s 21 ≥ we infer e f = 21∣ ∩ ∣ . Now, as every edge of 12 intersects each
one of e e f, ,1 2 , we actually have R K e f e[( ) ]2,3

(2)
1 2⊆ ∩ ⊍ and thus R 6∣ ∣ ≤ . Therefore,

because R B+ = 9∣ ∣ ∣ ∣ entails R 5∣ ∣ ≥ , for x y e f{ , } = 1 ∩ we have xdeg ( ) 2R ≥ and
ydeg ( ) 2R ≥ . Hence (11) tells us B 3∣ ∣ ≤ and if R B= 6, = 3∣ ∣ ∣ ∣ , then R B∩ contains two

disjoint edges, a contradiction (see Figure 10C).
Before we move to the proof of (ii)–(v) let us show a few simple facts. First note, that

for i = 1, 2,

v v V Sdeg ( ) 3 for all .P i ii
≤ ∈ ⧹ (13)

Indeed, because v is not a 1‐cover of i , there exists an edge f i∈ with v f∉ . On the
other hand, all 2‐covers in Pi intersect f . Hence N v f( )Pi ⊆ and v fdeg ( ) = 3Pi

≤ ∣ ∣ follows.
Moreover, as for every edge h i∈ we have f h 2∣ ⧹ ∣ ≤ , one can also deduce that if v h∈ ,
then N v h( ) 2Pi∣ ⧹ ∣ ≤ . Thus, in view of (13),

(A) (B) (C) (D) (E)

FIGURE 10 Forbidden configurations of edges of R and B [Color figure can be viewed at wileyonlinelibrary.com]

s

V s

V s

7 for = 0,

+ 3 for = 1,

2 − 2 for = 2.

i

i i

i i

Pi

⎧
⎨⎪
⎩⎪

∣ ∣ ≤ ∣ ∣

∣ ∣

(14)
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To see this, take any edge h i∈ and consider neighborhoods in Pi of vertices of h.

Clearly, as every 2‐cover in Pi intersects h, we have { }( )P p p h:i
V

2
⊆ ∈ ∩ ≠ ∅ . For

s = 0i observe that if there is at most one 2‐cover in Pi entirely contained in h, then there
are at most six 2‐covers in Pi that contain exactly one vertex with h. Similarly, when h

contains two 2‐covers (they share a vertex), the number of 2‐covers in Pi that contain
exactly one vertex with h is at most five; and when h contains three 2‐covers, this number
is at most three. For s = 1i we let h s v w= { , , }, where s is the unique 1‐cover of i .
Now, because s v s w P s V v{ , }, { , } , deg ( ) − 1, deg ( ) 3i P i Pi i

∈ ≤ ∣ ∣ ≤ , and wdeg ( ) 3Pi
≤ , we

actually have P V( − 1) + 2 + 2i i∣ ∣ ≤ ∣ ∣ . For s = 2i similar analysis implies Pi∣ ∣ ≤

V V( − 1) + ( − 2) + 1i i∣ ∣ ∣ ∣ .
Next observe that, as each edge h 12∈ intersects every edge of 1 2 ∪ and

V V[ ] [ ] =1 2 ∩ ∅, we have h s p= ∪ , where s S p P i j, , { , } = {1, 2}i j∈ ∈ . Therefore

we can split =12 12 12  ⊍◃ ◃ , where

s p s S p P p s p P s S= { : , } and = { : , }.12 12 1 2 12 12 1 2   ∪ ∈ ∈ ∈ ∪ ∈ ∈ ∈◃ ◃

Using the absence of C4 and a member of 4 in H , one can prove the following fact.
Denote by B P i, = 1, 2i i⊆ , the set of 2‐covers of i with at least two neighbors in

12 . □

Fact 5.6. For i B= 1, 2, i is an intersecting family. In particular,

P s B P s P

P s B P s P

+ ( − 1) + ( − 1) max{3, Δ( )} and

+ ( − 1) + ( − 1) max{3, Δ( )}.

12 2 1 2 2 1 2

12 1 2 1 1 2 1





≤ ∣ ∣ ⋅ ∣ ∣ ≤ ∣ ∣ ⋅

≤ ∣ ∣ ⋅ ∣ ∣ ≤ ∣ ∣ ⋅

◃

◃
(15)

Proof. Suppose two 2‐covers p q B, i∈ of i are disjoint and recall that s 3i ≤ . Then H

contains either a member of 4 (see Figure 11A) or C4 (see Figure 11B), a contradiction.
To see (15) recall that the only 2‐uniform intersecting families are the triangle and the
star, and thus consist of at most Pmax{3, Δ( )}i edges. The inequality p sdeg ( ) i12

≤ follows
from N p S( ) i12 ⊆ for every p P i j, { , } = {1, 2}j∈ . □

For V i= 4, = 1, 2i∣ ∣ , every pair of vertices ofVi is a 2‐cover of i and thereby P K V= [ ]i i4
(2) ,

yielding P = 6i∣ ∣ and PΔ( ) = 3i . Thus, in this case (15) reads as,

V s s iIf = 4 then 3 + 3 or 3 + 3 for = 1, 2, respectively .i 12 2 12 1 ∣ ∣ ∣ ∣ ≤ ∣ ∣ ≤◃ ◃ (16)

Now observe that for V i= 5, = 1, 2i∣ ∣ , each 3‐edge of i is disjoint from exactly one pair
of vertices of Vi (see Figure 11C). Therefore, for all distinct x y V, i∈ either x y P{ , } i∈ or
V x y{ , }i i⧹ ∈ , and hence

(A) (B) (C) (D) (E) (F) (G)

FIGURE 11 The illustration of the proofs of Fact 5.6 and Claim 5.5(ii) [Color figure can be viewed at
wileyonlinelibrary.com]

HAN ET AL. | 21

http://wileyonlinelibrary.com


V PIf = 5 then + =
5

2
= 10.i i i ⎜ ⎟

⎛
⎝

⎞
⎠∣ ∣ ∣ ∣ ∣ ∣ (17)

Combining this equality with PΔ( ) 42 ≤ and P s+ 4( − 1)12 2 1∣ ∣ ≤ ∣ ∣◃ ensured by (15), one gets

V s sIf = 5 and 1 then + 4 + 6.2 1 2 12 1 ∣ ∣ ≥ ∣ ∣ ∣ ∣ ≤◃ (18)

For the rest of the proof we assume s 12 ≤ and if s = 12 , denote by s the unique element of
S2.

Proof of (ii). We let s = 31 and thereby = 11∣ ∣ and V n= − 3 52∣ ∣ ≥ . As H Sn
+1⊈ and

H SPn⊈ , there are at least two edges h h, ′ 12∈ ◃ disjoint from s. Further, if possible, we choose
such h h, ′ so that p h V: = 2∩ and q h V: = ′ 2∩ are distinct.

First observe, that p q≠ . Indeed, otherwise, by our choice of h and h′, all edges in s−12 ◃

share the same pair p V s{ }2⊆ ⧹ . This implies that p B2∈ and s− 312∣ ∣ ≤◃ . By (13), s p∉ and
B2 is intersecting, the former implies that B p− 22∣ ∣ ≤ . Thus, the number of edges in 12 ◃ that
contain s is at most V s B p n( − 1) + ( − 1) −2 1 2∣ ∣ ∣ ∣ ≤ , implying that n + 312∣ ∣ ≤◃ . As every
edge of 2 intersects both s and p, one can estimate

V n2( − 3) + 1 = 2 − 11.2 2∣ ∣ ≤ ∣ ∣

Putting everything together, we obtain for n 8≥ ,

H n n n n= + + + 1 + 3 + (2 − 11) + ( + 3) = 3 − 4 < 4 − 11.1 12 2 12   ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ≤◃ ◃

Now we proceed by induction on n 8≥ and first consider the base case n = 8. For the sake
of contradiction suppose H 22∣ ∣ ≥ . Since by Fact 5.6 B2 is intersecting, B 42∣ ∣ ≤ and thus,

H P s B B= + + + 1 + 3 + + + ( − 1) = 14 + 2 22,1 12 2 12

(15)

2 2 1 2
(17)

2    ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ≤ ∣ ∣ ∣ ∣ ⋅ ∣ ∣ ∣ ∣ ≤▹ ◃

where we used 312∣ ∣ ≤◃ . Therefore the equalities go through meaning B= 3, = 412 2∣ ∣ ∣ ∣◃ ,
and rdeg ( ) = 3

12
for every r B2∈ . This, in turn, entails that the link graph of s in 12 is a

complete bipartite graph K V V s[ { }]3,4
(2)

1 2⊍ ⧹ and B2 is a star with center s. But then, as p q≠ , no
matter where the edges h h s, ′ −12∈ ◃ are, H contains a minimal 4‐path, a contradiction (see
Figure 11D–G).

Next suppose n 9≥ and we shall find a vertex of degree at most four so that we could apply
induction and conclude the proof. If there are two edges f f,1 2 2∈ with f f s= { }1 2∩ , set
U f f:= 1 2∪ . Otherwise, K e= −2 4

(3) and we define U V:= [ ]2 . Clearly U 5∣ ∣ ≤ and thus we
can take a vertex v V U2∈ ⧹ . Now every 2‐cover p P s−2∈ of 2 is entirely contained inU and
therefore the only neighbor in P2 of v is s, yielding v N sv Sdeg ( ) = ( ) = 31

12 12 ∣ ∣ ≤ ∣ ∣◃ ◃ . Moreover,
because every edge f 2∈ contains s and intersects both 2‐covers p q P s, −2∈ , we have

vdeg ( ) 1
2

≤ . As v vdeg ( ) = deg ( ) = 0
12 1 
◃ , altogether we obtain vdeg ( ) 4H ≤ and we are done.

Proof of (iii). Let s = 21 and s = 12 , yielding V V V4, 4, − 21 2 1 1∣ ∣ ≥ ∣ ∣ ≥ ∣ ∣ ≤ ∣ ∣ , and

( )V
2

−1

2
2∣ ∣ ≤

∣ ∣ . Moreover, in view of (14) one gets P s P V= 2 − 212 1 2 1 1∣ ∣ ≤ ∣ ∣⋅ ∣ ∣ ≤ ∣ ∣◃ . Now, if
there exists an edge h 12∈ ◃ disjoint from S2, then because each edge of 2 contains s and
intersects h, we have V V2( − 3) + 1 = 2 − 52 2 2∣ ∣ ≤ ∣ ∣ ∣ ∣ . Further, applying (14) combined to-
gether with (15) yields,

P s P V V V+ ( − 1) max{3, Δ( )} ( + 3) + ( − 1) = 2 + 2.12 2 1 2 2 2 2∣ ∣ ≤ ∣ ∣ ⋅ ≤ ∣ ∣ ∣ ∣ ∣ ∣◃

Summarizing,
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H V V V V

n V n

= + + + ( − 2) + (2 − 2) + (2 − 5) + (2 + 2)

= 4 − − 7 4 − 11.

1 12 2 12 1 1 2 2

1

   ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ≤ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ≤

◃ ◃

Otherwise s is contained in all edges of 12 ◃ (so in fact in all edges of 12 2 ∪ ) and thus
V2( − 1)12 2∣ ∣ ≤ ∣ ∣◃ . Because H CBn⊈ , we have V 51∣ ∣ ≥ , entailing V n − 52∣ ∣ ≤ . Then,

H V V
V

V
V

n

n

( − 2) + (2 − 2) +
− 1

2
+ 2( − 1) =

− 2

2
+ 3 − 8

− 4

2
+ 10.

1 1
2

2
2⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∣ ∣ ≤ ∣ ∣ ∣ ∣
∣ ∣

∣ ∣
∣ ∣

≤

Before we proceed observe that for i j{ , } = {1, 2} and each s S H V s′ , [ { ′}]j i∈ ∪ is an in-
tersecting family. Indeed, this follows from that H V= [ ]i i is intersecting, the pair ( , )i 12  is
cross‐intersecting, and each edge h H V s[ { ′}]i∈ ∪ with s h′ ∈ is in 12 . Therefore the cele-
brated Erdős–Ko–Rado theorem [3] tells us, that for V 5i∣ ∣ ≥ ,

H V s
V

[ { ′}]
2

.i
i⎜ ⎟⎛

⎝
⎞
⎠∣ ∪ ∣ ≤

∣ ∣
(19)

Moreover, if there is an edge h H V s[ { ′}]i∈ ∪ such that h S =i∩ ∅, then for V 5i∣ ∣ ≥ ,

H V s V[ { ′}] 3 − 5.i i∣ ∪ ∣ ≤ ∣ ∣ (20)

For V = 5i∣ ∣ the above bound follows from (19), whereas for V 6i∣ ∣ ≥ one can use Hilton–Milner
theorem (Theorem 1.3), as V s[ { ′}]i i12 ∪ ∪ is a nontrivial intersecting family. This is because
only vertices of Si belong to all edges of i and i ≠ ∅, but h S =i∩ ∅.

Proof of (iv). We let s s= = 11 2 , which entails V 4i∣ ∣ ≥ . Observe, that

H V S H V S[ ] = and [ ] = .1 2 1 12 2 1 2 12   ∪ ∪ ∪ ∪◃ ◃

Therefore, as clearly for V = 4i∣ ∣ we have ( )H V S i j[ ] = 10, { , } = {1, 2}i j
5

3
∣ ∪ ∣ ≤ , in view

of (19),

H
V V n

max 10,
2

+ max 10,
2

− 4

2
+ 10,1 2⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎧⎨⎩
⎛
⎝

⎞
⎠

⎫⎬⎭
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭
⎛
⎝

⎞
⎠∣ ∣ ≤

∣ ∣ ∣ ∣
≤

for n 9≥ ,1 whereas for n = 8 one gets H 10 + 10 4 8 − 11∣ ∣ ≤ ≤ ⋅ .

Proof of (v). Let s = 02 and thereby =12 ∅◃ yielding H = 1 2 12  ⊍ ⊍ ◃ . Moreover, V 42∣ ∣ ≥

and since s= , 112 12 1  ≠ ∅ ≥◃ , which implies ( )V
1

−1

2
1∣ ∣ ≤

∣ ∣ . If V = 42∣ ∣ , then

V n= − 4 41∣ ∣ ≥ entailing s 21 ≤ , and therefore (16) tells us 912∣ ∣ ≤◃ . Thus, for n 8≥ we have

H
n n

= + +
− 5

2
+ 4 + 9

− 4

2
+ 10.1 2 12   ⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠∣ ∣ ∣ ∣ ∣ ∣ ≤ ≤◃

Now, let V 52∣ ∣ ≥ , and pick any s S′ 1∈ . In view of S =2 ∅, (20) tells us,
H V s V[ { ′}] 3 − 52 2∣ ∪ ∣ ≤ ∣ ∣ . Moreover, by the definition of B2, (13), (14), and Fact 5.6 we have

s P B− ′ + 7 + 3 = 1012 2 2∣ ∣ ≤ ∣ ∣ ∣ ∣ ≤◃ . Summarizing,

1In particular, when V V, 51 2∣ ∣ ∣ ∣ ≥ , the inequality can be checked using ( ) ( )V V n4( − 5) − − 10
n n

1 2 2

− 4

2
∣ ∣∣ ∣ ≥ ≥ .
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H
V

V n
n− 1

2
+ (3 − 5) + 10 max 4 − 11,

− 4

2
+ 10 ,1

2⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎧⎨⎩
⎛
⎝

⎞
⎠

⎫⎬⎭∣ ∣ ≤
∣ ∣

∣ ∣ ≤

where H n4 − 11∣ ∣ ≤ can be checked for V3 51≤ ∣ ∣ ≤ , and ( )H + 10
n − 4

2
∣ ∣ ≤ for V 61∣ ∣ ≥ .2

5.3 | Proof of Lemma 3.3

Let H be a connected 4 ‐free 3‐graph on the set of vertices V V n, = 9∣ ∣ ≥ , with ν H( ) = 3.
Lemma 3.3 follows from

H
n − 4

2
+ 11,⎜ ⎟

⎛
⎝

⎞
⎠∣ ∣ ≤ (21)

with the equality achieved if and only if H is the balloon Bn. To prove this inequality we let

H = 1 2 3 12 123    ⊍ ⊍ ⊍ ⊍

to be a partition guaranteed by Lemma 5.4. Set V V V V= [ ], = [ ]1 1 3 3  , and
V V V V= ( )2 1 3⧹ ∪ , and recall

(i) V V V V[ ] , =2 2 1 3 ⊂ ∩ ∅, and V V[ ] =12 3 ∩ ∅,
(ii) the 3‐graphs ,1 2  , and 3 are nonempty intersecting families,
(iii) 123 ≠ ∅,
(iv) the pairs ( , )1 2 3 12 123    ⊍ ⊍ ⊍ and ( , )1 2 12  ⊍ are cross‐intersecting.

Further, for each i = 1, 2, 3 pick an edge ei i∈ and split the set of edges of 12 into two
subsets, =12 12

in
12
out  ⊍ , where

f f e e f f e f e= { : } and = { : = = 1}.12
in

12 1 2 12
out

12 1 2   ∈ ⊂ ∪ ∈ ∣ ∩ ∣ ∣ ∩ ∣

Because every edge of 12 intersects both e1 and e2, we have

H = .1 2 3 12
in

12
out

123     ⊍ ⊍ ⊍ ⊍ ⊍ (22)

The proof of (21) mainly relies on two technical claims enabling us to bound the number of
edges in 12 123 ∪ . In the first of them we estimate the size of 123 12

in ∪ .

Claim 5.7. + 18123 12
in ∣ ∣ ∣ ∣ ≤ . Moreover, if + = 18123 12

in ∣ ∣ ∣ ∣ then 123 12
in ∪ is a star.

Proof. As every edge h 123∈ intersects each one of e e,1 2, and e3, we trivially have
27123∣ ∣ ≤ , but this estimate can be improved. Let G K e e[ ]3,3

(2)
1 2⊆ ∪ be an auxiliary

bipartite graph with vertex classes e1 and e2, consisting of all pairs u v e e{ , } ×1 2∈ for
which there exists a vertex w e3∈ such that uvw 123∈ . It turns out that the number of
edges in 123 can exceed G∣ ∣ only by at most 6,

G + 6.123∣ ∣ ≤ ∣ ∣ (23)

2The inequality holds for V = 52∣ ∣ . For V 62∣ ∣ ≥ , we have ( ) ( )( ) ( ) n V− = − 3( − 6) 3
n V n n V− 4

2

−1

2

− 4

2

− −1

2 2
1 2 ≥ ≥ ∣ ∣

∣ ∣ ∣ ∣ .
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Indeed, clearly any edge ofG can be extended to at most 3 edges of 123 (see Figure 12A).
However, due to the 4 ‐freeness of H , there can be no two disjoint edges f f G,1 2 ∈ and
three different vertices w w w e, ,1 2 3 3∈ , such that f w f w f w f w, , ,1 1 1 2 2 2 2 3 are all edges in

123 , as they would form a minimal 4‐path in H (see Figure 12B). Similarly, there are no
disjoint edges f f f G, ,1 2 3 ∈ and vertices w w e,1 2 3∈ with f w f w f w f w, , ,1 1 2 1 2 2 3 2 123∈ (see
Figure 12C). To avoid such structures, any two disjoint edges in G can be extended, in
total, to at most 4 edges of 123 , and any three disjoint edges of G can be extended, in
total, to at most 5 edges of 123 . Therefore, to conclude (23) it is enough to observe, that
the set of edges of K3,3

(2) can be partitioned into three disjoint matchings M3
(2), say

MR, MG, MB (see Figure 12D). Now, for each i R G B G{ , , }, M i∈ ∩ can be extended
to at most G M + 2i∣ ∩ ∣ edges of 123 .

Next, let us note that

G 4 entails 6.12
in∣ ∣ ≥ ∣ ∣ ≤ (24)

To show this, recall that every edge f 12
in∈ intersects each uvw 123∈ and thereby also

every uv G∈ . As there are only five pairwise non‐isomorphic subgraphs of K3,3
(2) with four

edges (all listed in Figure 13A–E), a simple case analysis enables us to establish (24).
Finally observe that

G Gentails 7, and 5 yields 5.12
in

12
in ≠ ∅ ∣ ∣ ≤ ∣ ∣ ≥ ∣ ∣ ≤ (25)

Indeed, as G( 2, )12
in is cross‐intersecting, the existence of any edge in 12

in forbids two
pairs fromG (see Figure 13F). Moreover, among every 5 edges of 12

in there are two, f f,1 2,
sharing at most one vertex. Therefore, as every edge g G∈ intersects both f1 and f2, out of
all 9 edges of K3,3

(2) at least four are forbidden for G, yielding G 5∣ ∣ ≤ (see Figure 13G,H).
Now we are ready to finish the proof of Claim 5.7. To this end assume

+ 18123 12
in ∣ ∣ ∣ ∣ ≥ (26)

and note that, in view of (23), this entails G + 1212
in∣ ∣ ∣ ∣ ≥ . Combining this estimate with

(24) and (25) one can conclude that G 3∣ ∣ ≤ . Indeed, as G 9∣ ∣ ≤ we have 12
in ≠ ∅ and thus

G 7∣ ∣ ≤ . Next, assuming G 4∣ ∣ ≥ we get 612
in∣ ∣ ≤ and G 5∣ ∣ ≤ , implying G + 1112

in∣ ∣ ∣ ∣ ≤ .

(A) (B) (C) (D) (E) (F) (G) (H) (I)

FIGURE 13 All 4‐edge subgraphs of K3,3
(2) and forbidden edges of G and Fin12 [Color figure can be viewed at

wileyonlinelibrary.com]

(A) (B) (C) (D)

FIGURE 12 Extensions of edges ofG and decomposition of K3,3
(2) into matchings [Color figure can be viewed

at wileyonlinelibrary.com]
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To exclude G 2∣ ∣ ≤ let us recall again that G( , )12
in is cross‐intersecting, and observe

that because every edge ofG is disjoint from four edges of in12 (see Figure 13I), G = 1∣ ∣

results 18 − 4 = 1412
in∣ ∣ ≤ . Similarly, G = 2∣ ∣ entails 1112

in∣ ∣ ≤ . As every edge of G can
be extended to at most 3 edges of 123 , in both cases + 17123 12

in ∣ ∣ ∣ ∣ ≤ . But this, together
with G ≠ ∅ guaranteed by (iii), contradicts (26). Thus, G = 3∣ ∣ and thereby 912

in∣ ∣ ≥ . A
quick inspection shows that this is possible only when both G and 12

in are stars with the
same center. □

Our next goal is to bound the number of edges in 12
out .

Claim 5.8. If there exists a vertex v V e e e( )1 2 3∈ ⧹ ∪ ∪ with vdeg ( ) 4
12

≥ ,
then ( )H + 10

n − 4

2
∣ ∣ ≤ .

Proof. We let v V e e e( )1 2 3∈ ⧹ ∪ ∪ to be a vertex with vdeg ( ) 4
12

≥ . Split the vertex set
V R S V= 3⊍ ⊍ , where

R e e v S V R V= { }, = ( ),1 2 3∪ ∪ ⧹ ∪

and R V =3∩ ∅ follows from (i).
We begin by proving, that every vertex w S∈ satisfies

wdeg ( ) 7.H ≤ (27)

Indeed, we let h 123∈ to be an edge guaranteed by (iii), and set
x h e i{ } = , = 1, 2, 3i i∩ . Now (iv) tells us, that every edge f 12∈ intersects h and thus
contains at least one of the vertices x x,1 2. This entails wdeg ( ) 5

12
≤ (see Figure 14A), and

therefore it remains to show that wdeg ( ) 2
1 2  ≤∪ .

For this purpose, recall that in view of (i) every vertex w S∈ can have positive degree
only in one of the graphs ,1 2  , say 1 . Next observe, that there exists an edge f 12∈
disjoint from x w{ , }1 , because only three out of at least four edges of 12 containing v can
be incident to x1 (see Figure 14B). Now, repeated application of (iv) tells us that every
edge e 1∈ intersects both h and f , and thereby contains x1 and one of two vertices of
f e2⧹ . Clearly w is contained in at most two of such edges (see Figure 14C).

Further we claim that

3,123∣ ∣ ≤ (28)

because every edge h′ 123∈ contains both x1 and x2. Indeed, if not, let h x x x′ = ′ ′ ′1 2 3 and

say x x ′2 2≠ . Then, as in view of (iv), every edge of 12 intersects both h and h′, either

N v x e( ) { } ×12 1 2 ⊆ if x x= ′1 1, or { }N v x x x x( ) ′ , ′1 2 1 212 ⊆ otherwise, contradicting

vdeg ( ) 4
12

≥ .

(A) (B) (C) (D)

FIGURE 14 Possible neighbors of w S∈ in 12 and 1 . The link graphs of w and v are denoted by red and
blue 2‐edges, respectively [Color figure can be viewed at wileyonlinelibrary.com]
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Now we are ready to finish the proof of Claim 5.8. To this end denote V t=3∣ ∣ , and
thereby S n t= − 7 −∣ ∣ , as clearly R = 7∣ ∣ . Moreover, we let

H h H h S= { : },S ∈ ∩ ≠ ∅

and observe that (i) entails

H H R H= [ ] .S3 123 ⊍ ⊍ ⊍

Next note, that Lemma 3.1 combined with 4 ‐freeness of H tells us H R[ ] 19∣ ∣ ≤ , and (iv)

yields x f3 ∈ for each f 3∈ , causing ( )t
3

− 1

2
∣ ∣ ≤ . Altogether, in view of (27) and (28),

for n 8≥ ,

H H R H
t

n t

n

= + + [ ] +
− 1

2
+ 3 + 19 + 7( − 7 − )

− 4

2
+ 10,

S3 123  ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ≤

≤

as the left‐hand side of the last inequality achieves its maximum for either t = 3 or
t n= − 6. □

Having established the above claims we proceed with the proof of (21). To this end, recall
that (iii) combined with (iv) entail, that for each i = 1, 2, 3, i is a star, and thus

( )i
V −1

2
i∣ ∣ ≤

∣ ∣ . Therefore, in view of (i), by simple optimization,

n
+ +

− 7

2
+ 2,1 2 3   ⎜ ⎟

⎛
⎝

⎞
⎠∣ ∣ ∣ ∣ ∣ ∣ ≤

with the equality achieved if and only if one of the 3‐graphs i, = 1, 2, 3i is a full star on
n − 6 vertices, whereas two remaining 3‐graphs each consists of a single edge. Further, we may
assume that each vertex v V e e e( )1 2 3∈ ⧹ ∪ ∪ satisfies vdeg ( ) 3

12
≤ , and thereby

n3( − 9)12
out∣ ∣ ≤ , since otherwise Claim 5.8 tells us that ( )H + 10

n − 4

2
∣ ∣ ≤ , and (21) follows

without the equality. Combining these observations together with (22) and Claim 5.7 one gets

( )H
n

n

n

= ( + + ) + + +
− 7

2
+ 2 + 18 + 3( − 9)

=
− 4

2
+ 11,

1 2 3 123 12
in

12
out      ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ≤

as required. It remains to show that the equality in the above bound is achieved if and only if H
is a balloon.

Indeed, clearly if ( )H = + 11
n − 4

2
∣ ∣ , then equalities in the above formula go through. In

particular, if n = 9, then i= , , = 1, 2, 3i12
out ∅ , is a single edge and 123 12

in ∪ is a star
with center in e e1 2∪ . It is easy to see that H B= 9.

Now assume n n10, = 3( − 9)12
out≥ ∣ ∣ and thus V n[ ] = − 312∣ ∣ yielding, in view of (i),

V = 33∣ ∣ . Therefore, as ( )+ + = + 2
n

1 2 3
− 7

2
  ∣ ∣ ∣ ∣ ∣ ∣ , without loss of generality we may as-

sume that 1 is a full star on n − 6 4≥ vertices, whereas = = 12 3 ∣ ∣ ∣ ∣ . Let c e1∈ be the

center of 1 . As the pair ( , )1 12 123  ∪ is cross‐intersecting and 123 12
in ∪ is a star, the center
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of 123 12
in ∪ must also be c as for any vertex v c≠ , the full star 1 contains an edge not

containing v. Finally, since 123 contains all possible 9 edges containing c and the pair

( , )123 12  is cross‐intersecting, every edge of 12
out contains c as well. Altogether

1 12 123  ∪ ∪ is a star, whereas 2 and 3 are single edges, and thereby H B= n.

6 | PROOFS OF LEMMAS 3.4 AND 3.5

Let H be a connected M{ }4 3 ∪ ‐free 3‐graph on the set of n vertices V n, 8≥ , such that
C H4 ⊆ . Denote by

C x y y x z z x y y x z z= { , , , }1 1 2 1 1 2 2 1 2 2 1 2

a copy of C4 contained in H , and set V C Z x x y y z z W V Z[ ] = = { , , , , , }, =1 2 1 2 1 2 ⧹ .
Lemmas 3.4 and 3.5 are straightforward consequences of the following two lemmas.

Lemma 6.1. If there exist two vertices u w W, ∈ with degree in H at least 5, and
moreover either

(i) H Z u w[ { , }] 22∣ ∪ ∣ ≥ or
(ii) there is a further vertex v W u w{ , }∈ ⧹ with vdeg ( ) 5H ≥ ,

then H SPn⊆ .

Lemma 6.2. If there exist two vertices u w W, ∈ , such that

(i) H Z u w[ { , }] 22∣ ∪ ∣ ≥ and
(ii) wdeg ( ) 4H ≤ ,

then H SKn⊆ .

Indeed, assume first that there are two vertices u w W, ∈ , such that H u w{ , } 22∣ ∪ ∣ ≥ .
Then, either u wdeg ( ), deg ( ) 5H H ≥ and thus, in view of Lemma 6.1, H SPn⊆ , or the degree in H
of one of these vertices, say w, is at most 4. Then Lemma 6.2 tells us that H SKn⊆ .

So let for every pair of vertices u w W H Z u w, , [ { , }] 21∈ ∣ ∪ ∣ ≤ . If there are three vertices
u w v W, , ∈ , with the degree in H at least 5, then due to Lemma 6.1, H SPn⊆ . Otherwise
choose u w W, ∈ in such a way, that for all v W u w v{ , }, deg ( ) 4H∈ ⧹ ≤ . Then,

H H Z u w v n= [ { , }] + deg ( ) 4 − 11.
v W u w

H

{ , }

∑∣ ∣ ∣ ∪ ∣ ≤
∈ ⧹

Altogether, either H SP H SK,n n⊆ ⊆ , or H n4 − 11∣ ∣ ≤ . Now, as SK SP ,n n⊈ ∣

SP n= 5 − 18n∣ , and SK n= 4 − 10n∣ ∣ , Lemmas 3.4 and 3.5 follows from

n n n5 − 18 4 − 10 > 4 − 11,≥

for n 8≥ , with the equality only for n = 8.
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6.1 | Preliminaries

We begin with a series of technical results which will be helpful in the proofs of Lemmas 6.1
and 6.2. Throughout, we denote by u and w arbitrary vertices ofW . The M{ }4 3 ∪ ‐freeness of H
implies that for all edges h H∈

h Z h Z y y h Z z z2, { , }, { , }.1 2 1 2∣ ∩ ∣ ≥ ∩ ≠ ∩ ≠ (29)

Let us partition H into four edge‐disjoint sub‐3‐graphs,

H H H H H= ,Z
0 1 2∪ ∪ ∪

where H H Z= [ ]Z and, for i = 0, 1, 2,

H h H H h x x i= { : { , } = }.i
Z 1 2∈ ⧹ ∣ ∩ ∣

The first inequality in (29) implies that the link graph L w( )H of every vertex w W∈ is entirely
contained in ( )Z2 . Moreover, the above partition of H induces a corresponding partition
of L w( )H ,

L w H w H w H w( ) = ( ) ( ) ( ),H
0 1 2∪ ∪

where H w L w e L w e x x i( ) = ( ) = { ( ) : { , } = }i
H H 1 2i ∈ ∣ ∩ ∣ . Observe, that

H w H w H w( ) 4, ( ) 8, and ( ) 1,0 1 2∣ ∣ ≤ ∣ ∣ ≤ ∣ ∣ ≤ (30)

where the first inequality holds, because in view of (29), y y z z L w{ , }, { , } ( )H1 2 1 2 ∉ , and thus
H w( )0 is a subgraph of the 4‐cycle y z y z1 1 2 2.

Our first result describes the structure of H w( )1 and, as a consequence, halves the upper
bound on H w( )1∣ ∣.

Fact 6.3. For every w W H w, ( )1∈ is either a star (with the center at x1 or x2) or a
subgraph of one of the 4‐cycles: C x y x y=y 1 1 2 2 or C x z x z=z 1 1 2 2. In particular, H w( ) 41∣ ∣ ≤ .

Proof. If there were two disjoint edges in H w( )1 , one contained in Cy and the other in
Cz, say x y{ , }1 2 and x z{ , }2 1 , then y y x wx z z1 2 1 2 1 2 would form a minimal 4‐path in H , a
contradiction (see Figure 15). So, either all edges of H w( )1 are contained in one of the
cycles, Cy or Cz, or they form a star. □

It is convenient to break the 3‐graph HZ into three further sub‐3‐graphs,

H H H H H h H h x x i i= , where = { : { , } = }, = 0, 1, 2.Z Z Z Z Z
i

Z
0 1 2

1 2∪ ∪ ∈ ∣ ∩ ∣

Note that ( ) ( )C H H H, = 4, 2 = 12Z Z Z
1 0 4

3
1 4

2
⊆ ∣ ∣ ≤ ∣ ∣ ≤ , and ( )H = 4Z

2 4

1
∣ ∣ ≤ .

FIGURE 15 A minimal 4‐path y y x wx z z1 2 1 2 1 2 in H and all possible edges of link graphs H w( )1 [Color figure
can be viewed at wileyonlinelibrary.com]
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The next result lists several basic observations on the above‐defined subgraphs, all stem-
ming from the 4 ‐freeness of H .

Fact 6.4. Let h h C, ′ ∈ be disjoint and let, for some vertex w W∈ , an edge e H w( )1∈

be contained in h. Then there is no edge f H w−∈ disjoint from e and intersecting both
h and h′. Consequently, for any two distinct vertices u w W, ∈ , the following
properties hold,

(i) if e H u( )1∈ and e H w′ ( )1∈ are disjoint, then there exist disjoint h h C, ′ ∈ such
that e h⊂ and e h′ ′⊂ ;

(ii) the pair of 2‐graphs H u H w( ( ), ( ))0 1 is cross‐intersecting;
(iii) if e H w( )1∈ and f H H f C,Z Z

0 1∈ ∪ ∉ , then e f∩ ≠ ∅;
(iv) if H w( )1 ≠ ∅ then H 10Z

1∣ ∣ ≤ ;
(v) if H u H w( ) ( ) 21 1∣ ∪ ∣ ≥ then H 9Z

1∣ ∣ ≤ and H 15Z∣ ∣ ≤ ;
(vi) if H u H w( ) ( ) 31 1∣ ∪ ∣ ≥ then H 8Z

1∣ ∣ ≤ and H 13Z∣ ∣ ≤ ;
(vii) if H w( ) = 41∣ ∣ then H 12Z∣ ∣ ≤ ;
(viii) if H u H w( ) ( ) 71 1∣ ∪ ∣ ≥ then H 8Z∣ ∣ ≤ ;
(ix) if H w( )1 is a star with four edges and the center x1 or x2, then H SPn⊆ .

Proof. Suppose that h h C w W e H w, ′ , , ( )1∈ ∈ ∈ , and f H w−∈ are such that
h h e h′ = ,∩ ∅ ⊂ , and f h h e=∩ ⧹ and f h′∩ ≠ ∅. Then, regardless of the location of
f , the 3‐edges we h f, , , and h′ form a minimal 4‐path in H (see Figure 16), contradicting
the 4 ‐freeness of H . So the main statement is proved, and consequently, (i)–(iii) follow.
Indeed, if (i), (ii), or (iii) were not true, then we would be looking at the forbidden
configurations in Figure 16A,B or 16C,D, respectively.

In turn, (iii) implies (iv)–(viii). Indeed, (iv) follows from the bound H 12Z
1∣ ∣ ≤ as, in

view of (iii), H w( )1 ≠ ∅ excludes two edges from HZ
1 . Similarly, in (v), considering five

different cases with respect to the location of the two edges of H u H w( ) ( )1 1∪ , we may
exclude (by applying [iii]) at least 3 edges of HZ

1 and at least 5 edges of H HZ Z
0 1∪ . By the

same token, in (vi), we exclude at least 4 edges of HZ
1 and at least 7 edges of H HZ Z

0 1∪ . For
the proof of (vii), recall that Fact 6.3 tells us that H w( )1 is either a 4‐arm star or one of the
cycles Cy or Cz. In both cases, via (iii), it wipes out at least 4 edges of HZ

1 and at least 8
edges of H HZ Z

0 1∪ . We leave case (viii) for the Reader.
Finally, to prove (ix), assume, without loss of generality, that H w( )1 is a 4‐edge star

with the center x1. Now observe that by (i)–(iii) every edge of H , except for x y y2 1 2 and
x z z2 1 2 (which form P P= 2

(3) disjoint from x{ }1 ), contains both x1 and a member of
V P y y x z z[ ] = { , , , , }1 2 2 1 2 , entailing H SPn⊆ . Indeed, (ii) yields that H u( ) =0 ∅ and

(A) (B) (C) (D)

FIGURE 16 Illustration to the proof of Fact 6.4 [Color figure can be viewed at wileyonlinelibrary.com]
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H u H w( ) ( )1 1⊆ holds by (i). Moreover (iii) tells us that H =Z
0 ∅ and whenever

f H C x f,Z
1

1∈ ⧹ ∈ . □

Corollary 6.5. For all distinct u w W, ∈ ,

(i) H u H w( ) ( ) 21 0≠ ∅ ⇒ ∣ ∣ ≤ ;
(ii) H u H w( ) ( ) 20 1≠ ∅ ⇒ ∣ ∣ ≤ .

Proof. Observe that for any edge e H u( )1∈ , there exist at most two edges in H w( )0

which intersect e. Similarly, by Fact 6.3, for any edge e H u( )0∈ there are at most two
edges in H w( )1 sharing a vertex with e. Consequently, by Fact 6.4(ii), both assertions
follow. □

Corollary 6.6. If there is a vertex u W∈ with udeg ( ) 6H ≥ , then the degree of every vertex
w W u{ }∈ ⧹ is at most 3. Moreover, if additionally wdeg ( ) = 3H , then H w( ) = 12∣ ∣ , that
is, wx x H1 2 ∈ .

Proof. Let udeg ( ) 6H ≥ and let w W u{ }∈ ⧹ . By (30) and Fact 6.3, both sets, H u( )0 and
H u( )1 , must be nonempty and at least one of them of size at least three, say H u( ) 31∣ ∣ ≥ .
But then, by Corollary 6.5(ii), H w( ) 21∣ ∣ ≤ and H w( ) =0 ∅. Hence,

w L w H w H w H wdeg ( ) = ( ) = ( ) + ( ) + ( ) 0 + 2 + 1 = 3H H
0 1 2∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ≤

and if wdeg ( ) = 3H , then H w( ) = 12∣ ∣ . □

Fact 6.7. If ux x wx x H,1 2 1 2
2∈ and e H w( )0∈ , then there is no f H V x x u w[ { , , , }]1 2∈ ⧹

with f e∩ ≠ ∅. It follows that H =Z
0 ∅. Moreover, if H w( ) 20∣ ∣ ≥ , then for every

v W u w{ , }∈ ⧹ , we have H v( ) =0 ∅.

Proof. To prove the first statement, it is enough to observe that whenever
ux x x x w H e H w, , ( )1 2 1 2

0∈ ∈ , and f H V x x u w f e[ { , , , }],1 2∈ ⧹ ∩ ≠ ∅, then edges

ux x x x w we, ,1 2 1 2 , and f form a minimal 4‐path in H . As e uses two of the four

vertices of V HZ
0⎡⎣ ⎤⎦, there is no room for an f HZ

0∈ with f e =∩ ∅, and so H =Z
0 ∅.

Furthermore, if H w( ) 20∣ ∣ ≥ and e H v′ ( )0∈ then f e v H V x x u w= ′ [ { , , , }]1 2∈ ⧹ and there

exists e H w( )0∈ such that f e e e= ′∩ ∩ ≠ ∅, a contradiction. □

FIGURE 17 A minimal 4‐paths with edges fu (blue) and fw (green) [Color figure can be viewed at
wileyonlinelibrary.com]
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Fact 6.8. If ux x H1 2
2∈ and H w( )0 ≠ ∅, then H H+ 4Z Z

0 2∣ ∣ ∣ ∣ ≤ .

Proof. Let f ux x H=u 1 2
2∈ and f H w f,w w

0∈ ∈ . Without loss of generality we may
assume that f wy z=w 2 1. Observe that H HZ Z

0 2∪ can be partitioned into four pairs of edges,

x x y y y z x x y y z z x x z y y z x x z y z z{ , }, { , }, { , }, { , },1 2 1 1 2 1 1 2 2 1 1 2 1 2 1 1 2 2 1 2 2 2 1 2

such that each of them, together with edges fu and fw, forms a minimal 4‐path in H (see
Figure 17). Consequently, from each of these pairs only one edge may belong to HZ . □

Fact 6.9. If ux x H1 2
2∈ and H w( ) 20∣ ∣ ≥ , then H H8, 2Z Z

1 2∣ ∣ ≤ ∣ ∣ ≤ and H 12Z∣ ∣ ≤ .

Proof. Let f ux x H=u 1 2
2∈ and e e H w, ′ ( )0∈ . Regardless of whether e e′ =∩ ∅ or not,

every f HZ
1∈ intersects at least one of e or e′. Suppose that there is f HZ∈ , disjoint from

exactly one of the edges e and e′, say e. Then f f e w, , ′u , and we form a minimal 4‐path in
H , a contradiction. Since there are exactly two edges of HZ

1 disjoint from e and two other
edges of HZ

1 disjoint from e′, we have H 12 − 4 = 8Z
1∣ ∣ ≤ . In view of Fact 6.8, this

implies that

H H H H= + + 8 + 4 = 12.Z Z Z Z
1 0 2∣ ∣ ≤

Similarly, there exists in HZ
2 at least one edge intersecting e and disjoint from e′ and at

least one edge intersecting e′ and disjoint from e, implying H 4 − 2 = 2Z
2∣ ∣ ≤ . □

Fact 6.10. If H u( ) 30∣ ∣ ≥ and H w( ) 30∣ ∣ ≥ , then H 13Z∣ ∣ ≤ .

Proof. Observe that, if e H w( )0∈ and e H u H w′ ( ) ( )0 0∈ ∩ are two disjoint edges, then
there is no f HZ∈ with f e′ =∩ ∅, because otherwise edges f ew we, , ′, and e u′

would form a minimal 4‐path in H . As there are exactly four triples in ( )Z3 disjoint from
e′, the presence of such e e, ′ eliminates 4 edges from HZ (see Figure 18A,B).

Further note, that since H u H w( ) 3, ( ) 30 0∣ ∣ ≥ ∣ ∣ ≥ , and both H u H w( ), ( )0 0 are

subgraphs of the cycle y z y z1 1 2 2, there are at least two edges e e H u H w, ′ ( ) ( )0 0∈ ∩ . If

e e′ =∩ ∅, then every triple in ( )Z3 disjoint from e′ intersects e and vice versa (see

Figure 18C). Therefore, H 20 − 2 4 = 12Z∣ ∣ ≤ ⋅ , better than needed. Otherwise e and e′

share a vertex, and there are two further edges e e H u H wˆ, ˆ′ ( ) ( )0 0∈ ∪ , such that
e ê =∩ ∅ and e e′ ˆ′ =∩ ∅ (see Figure 18D). Hence, we can apply the above elimination

(A) (B) (C) (D)

FIGURE 18 (A,B) A minimal 4‐path f ew we e u{ , , ′, ′ }and (C,D) e e H u H w, ( ) ( )′ 0 0∈ ∩ [Color figure can be
viewed at wileyonlinelibrary.com]
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scheme to these two pairs. As there is exactly one triple in ( )Z3 disjoint from both e and

e′, by sieve principle, we eliminate from HZ exactly 4 + 4 − 1 = 7 edges, leading to the
required bound H 20 − 7 = 13Z∣ ∣ ≤ . □

Fact 6.11. If S L w( )H4
(2) ⊆ , then H 14Z∣ ∣ ≤ .

Proof. Recall that ( )L w( )H
Z

2
⊆ . Let uv uv uv{ , , }1 2 3 be in L w( )H and set

Z u v v v x y{ , , , } = { , }1 2 3⧹ (see Figure 19A). If for some i f xyv H[3], =i i Z∈ ∈ , then
none of the six triples f Z⊂ , such that u f∉ and f f = 2i∣ ∩ ∣ , can belong to HZ , since
otherwise the edges f f uwv uwv i j k, , , , { , , } = {1, 2, 3}i j k , would form a minimal 4‐path,
contradicting the 4 ‐freeness of H . Thus, H 20 − 6 = 14Z∣ ∣ ≤ (see Figure 19B). Therefore,
assume now that f f f H, , Z1 2 3 ∉ . Again by the 4 ‐freeness of H , from each of the three
disjoint sets of triples,

uv x v v x v v y uv x v v x v v y uv x v v x v v y{ , , }, { , , }, { , , },1 2 3 2 3 2 1 3 1 3 3 1 2 1 2

at most two triples may belong to HZ and, consequently, H 20 − 3 − 3 = 14Z∣ ∣ ≤ (see
Figure 19C). □

Fact 6.12. If L w S( ) =H 5
(2) is a star with the center in y y z z{ , , , }1 2 1 2 and H 14Z∣ ∣ ≥ ,

then H SKn⊆ .

Proof. Without loss of generality we may assume that y1 is the center of the star L w( )H .
Thus, L w y v v A( ) = { : }H 1 ∈ , where A x x z z= { , , , }1 2 1 2 . Let us denote by KA the complete
3‐graph on A. We will prove that

H K S y A SK( , ) = ,A n1⊆ ∪

which boils down to showing that for each edge f H∈ with f A⊈ we have f A∩ ≠ ∅

and y f1 ∈ .
Recall that each f H∈ satisfies f Z 2∣ ∩ ∣ ≥ and f Z y y{ , }1 2∩ ≠ . Therefore, for all f H∈ ,

we have f A∩ ≠ ∅. Consequently, we only need to show that if f A⊈ , then y f1 ∈ .
Let us begin with f HZ∈ . By Fact 6.4(iii), for all ( )f H H CZ Z

0 1∈ ∪ ⧹ we have
f x y{ , }1 1∩ ≠ ∅ and f x y{ , }2 1∩ ≠ ∅, and thus, y f1 ∈ . So, we are done with HZ , except
that we still need to rule out the presence of the edge x x y1 2 2 in H .

(A) (B) (C)

FIGURE 19 (A) A star in H w( )and (B,C) minimal 4‐paths in H [Color figure can be viewed at
wileyonlinelibrary.com]
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The above established fact that y f1 ∈ for all ( )f H H CZ Z
0 1∈ ∪ ⧹ implies that H 3Z

0∣ ∣ ≤

and H 8Z
1∣ ∣ ≤ , and, in turn, H H H H= − − 14 − 3 − 8 = 3Z Z Z Z

2 0 1∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ≥ . But triples
x x y x x z wy z, ,1 2 2 1 2 1 1 1, and wy z1 2 form a minimal 4‐path, and the same is true with

x x z1 2 1 replaced by x x z1 2 2 and the last two edges reversed. Thus, to satisfy H 3Z
2∣ ∣ ≥ , we

must have x x y HZ1 2 2
2∉ , while x x z x x z H, Z1 2 1 1 2 2

2∈ .
Turning to the edges of H HZ⧹ , recall that all edges of H containing w contain also y1.

Next, fix an arbitrary vertex u V Z w( { })∈ ⧹ ∪ , and observe, that x x z HZ1 2 1
2∈ entails

ux x H1 2 ∉ , and thus H u( ) =2 ∅, because otherwise H would contain a minimal 4‐path
consisting of edges ux x x x z wy z, ,1 2 1 2 1 1 1, and wy z1 2. Finally, note that, by Fact 6.4(ii),
all edges of H u( )0 intersect x y{ , }1 1 and x y{ , }2 1 , while all edges of H u( )1 intersect y z{ , }1 1

and y z{ , }1 2 . This implies that for all e L u H u H u( ) = ( ) ( )H
0 1∈ ∪ , the condition y e1 ∈

holds. In summary, for all f H HZ∈ ⧹ , we have y f1 ∈ , which ends the proof. □

6.2 | Proofs of Lemmas 6.1 and 6.2

Proof of Lemma 6.1. Assume, for the sake of a contradiction, that the assumptions of
Lemma 6.1 are satisfied, but H SPn⊈ . Let u w W, ∈ be two vertices with degree in H at
least 5. In view of Corollary 6.6, we actually have

u wdeg ( ) = deg ( ) = 5.H H

Then Corollary 6.5 combined with (30) and Fact 6.3 tells us that this is possible only if
H u H w( ) = ( ) = 12 2∣ ∣ ∣ ∣ and one of the followings is true:

(i) H u H w( ) = ( ) = 40 0∣ ∣ ∣ ∣ ;
(ii) H u H w( ) = ( ) = 41 1∣ ∣ ∣ ∣ ;
(iii) H u H u H w H w( ) = ( ) = ( ) = ( ) = 20 1 0 1∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ .

Case (i) is impossible—otherwise, the vertices y z uy z wx x1 2 2 1 1 2 would form a minimal 4‐path
in H .

If we are in case (ii), then because H SPn⊈ , Fact 6.3 together with Fact 6.4(ix), ensures
that both H u( )1 and H w( )1 are 4‐cycles, either C x y x y=y 1 1 2 2 or C x z x z=z 1 1 2 2. Now, Fact
6.4(i) entails, that exactly one of them, say H u( )1 , equals Cy, whereas the other one
H w C( ) = z

1 . But then H u H w( ) ( ) 71 1∣ ∪ ∣ ≥ , and thus, in view of Fact 6.4(viii), H 8Z∣ ∣ ≤

yielding

H Z u w H u w[ { , }] = + deg ( ) + deg ( ) 8 + 5 + 5 = 18 < 22.Z H H∣ ∪ ∣ ∣ ∣ ≤

Therefore there exists a vertex v W u w{ , }∈ ⧹ , with vdeg ( ) 5H ≥ . Another application of
Corollary 6.5(ii) with v in place of u says, that H v( ) =0 ∅, again by Facts 6.3 and 6.4(ix),
either H v C( ) = y

1 or H v C( ) = z
1 . But, because already H u C( ) = y

1 and H w C( ) = z
1 , in

view of Fact 6.4(i) this is impossible, namely, we arrive at a contradiction. Finally, in case
(iii), one can observe that, by Fact 6.9, H 8Z

1∣ ∣ ≤ and H 2Z
2∣ ∣ ≤ , while, by Fact 6.7, H =Z

0 ∅ and
for every v W u w H v{ , }, ( ) =0∈ ⧹ ∅. Altogether, we get H 10Z∣ ∣ ≤ and, consequently,
H Z u w[ { , }] 20∣ ∪ ∣ ≤ . Hence there is a vertex v W u w{ , }∈ ⧹ with vdeg ( ) 5H ≥ . Now,
Corollary 6.5(ii) says H v( ) 21∣ ∣ ≤ , and so v H v H v H vdeg ( ) = ( ) + ( ) + ( ) 3H

0 1 2∣ ∣ ∣ ∣ ∣ ∣ ≤ ,
yielding a contradiction with vdeg ( ) 5H ≥ . □
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Proof of Lemma 6.2. Let u w W, ∈ be two vertices, such that

(i) H Z u w[ { , }] 22∣ ∪ ∣ ≥ and
(ii) wdeg ( ) 4H ≤ .

We will show that H SKn⊆ , which will end the proof. Set H H Z u wˆ = [ { , }]∪ . Because

( )L u( )H
Z

2
⊆ , the connectivity of H implies H Z u K K[ { }] 6

(3)
1∪ ≠ ∪ , and thereby, in view

of Lemma 3.1, H Z u[ { }] 19∣ ∪ ∣ ≤ . Consequently, wdeg ( ) 3H ≥ , yielding that at least one
of the graphs, H w( )0 or H w( )1 , is not empty. Hence, by (30), Fact 6.3 and Corollary 6.5,

udeg ( ) 4 + 2 + 1 = 7H ≤ . Similarly, udeg ( ) 3H ≥ . Suppose that udeg ( ) 6H ≥ . Then, in
view of the bound wdeg ( ) 3H ≥ , Corollary 6.6 tells us that wdeg ( ) = 3H and so
H w( )2 ≠ ∅. In addition, as H u H u( ) + ( ) 50 1∣ ∣ ∣ ∣ ≥ , either H u( ) 20∣ ∣ ≥ or H u( ) = 41∣ ∣ ,
implying, together with Facts 6.9 (with u and w swapped) and 6.4(vii), that H 12Z∣ ∣ ≤ .
Therefore (i) entails, that udeg ( ) = 7H which, in turn, results H u( ) 20∣ ∣ ≥ and
H u( )2 ≠ ∅. But then Facts 6.9 and 6.7 yield that H H8, 2Z Z

1 2∣ ∣ ≤ ∣ ∣ ≤ , and H =Z
0 ∅.

Consequently,

H H H H u wˆ = + + + deg ( ) + deg ( ) 0 + 8 + 2 + 7 + 3 = 20,Z Z Z H H
0 1 2∣ ∣ ≤

contradicting (i).
Hence, from now on, we assume that udeg ( ) 5H ≤ . Then, in view of (i) and (ii), it

follows that H 22 − 5 − 4 = 13Z∣ ∣ ≥ , implying, via Fact 6.4(vii), that both H u( ) 31∣ ∣ ≤ and
H w( ) 31∣ ∣ ≤ . We split the proof into three cases according to the emptiness of H u( )2 and
H w( )2 . In particular we will show that if at least one of these graphs is not empty, then
Ĥ 21∣ ∣ ≤ , contradicting (i).

Case 1. H u( ) ≠2 ∅ and H w( ) ≠2 ∅. If, in addition, H u H w( ) = ( ) =0 0 ∅, then either
H u H w( ) ( ) = 21 1∣ ∪ ∣ and so, by Fact 6.4(v),

H H u wˆ = + deg ( ) + deg ( ) 15 + 3 + 3 = 21,Z H H∣ ∣ ∣ ∣ ≤

or H u H w( ) ( ) 31 1∣ ∪ ∣ ≥ . Then, in view of Fact 6.4(vi), H 13Z∣ ∣ ≤ and, again,
Ĥ 13 + 4 + 4 = 21∣ ∣ ≤ .

Therefore we may assume, that H u H w( ) ( )0 0∪ ≠ ∅ yielding, together with Fact 6.7,
H =Z

0 ∅. Moreover, since H 13Z∣ ∣ ≥ , Fact 6.9 tells us that both H u( ) 10∣ ∣ ≤ and
H w( ) 10∣ ∣ ≤ . Finally, by Fact 6.4(iv)–(vi), either H u H w( ) ( ) = 11 1∣ ∪ ∣ and thus
H H u H w10, ( ) ( ) = 2Z

1 1 1∣ ∣ ≤ ∣ ∪ ∣ , entailing H 9Z
1∣ ∣ ≤ , or H u H w( ) ( ) 31 1∣ ∪ ∣ ≥ and then

H 8Z
1∣ ∣ ≤ . That is, H H u H w+ ( ) + ( ) 14Z

1 1 1∣ ∣ ∣ ∣ ∣ ∣ ≤ and the equality holds only if
H u H w( ) = ( ) = 31 1∣ ∣ ∣ ∣ . Altogether, in all of these cases, as H 4Z

2∣ ∣ ≤ , and
H u H u H w H w( ) + ( ) + ( ) + ( ) 40 2 0 2∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ≤ ,

( )H H H H H u H w H u H u H w

H w

ˆ = + + + ( ) + ( ) + ( ) + ( ) + ( )

+ ( ) 21,

Z Z Z
0 2 1 1 1 0 2 0

2

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ≤

unless H u H w( ) = ( ) = 31 1∣ ∣ ∣ ∣ , in which case Ĥ 21∣ ∣ ≤ by using u wdeg ( ) + deg ( ) 9H H ≤

and H 8Z
1∣ ∣ ≤ .

Case 2. H u( ) ≠2 ∅ and H w( ) =2 ∅ (the proof of the case H u( ) =2 ∅ and H w( )2 ≠ ∅

is similar). Recall, that H w( ) 31∣ ∣ ≤ and H 13Z∣ ∣ ≥ which implies, together with Fact 6.9,
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that H w( ) 10∣ ∣ ≤ . Therefore, wdeg ( ) 3H ≤ , because otherwise, H w( ) = 31∣ ∣ and
H w( ) = 10∣ ∣ . But then, by Facts 6.4(vi) and 6.8, H 8Z

1∣ ∣ ≤ and H H+ 4Z Z
0 2∣ ∣ ∣ ∣ ≤ ,

contradicting H 13Z∣ ∣ ≥ . Hence, u wdeg ( ) + deg ( ) 8H H ≤ from which we infer that
H 14Z∣ ∣ ≥ and, consequently, by Fact 6.4(vi), H w( ) 21∣ ∣ ≤ . Thus, H w( ) = 10∣ ∣ and
H w( ) = 21∣ ∣ . But then, again by Facts 6.4(v) and 6.8, H 9 + 4 < 14Z∣ ∣ ≤ , a contradiction.

Case 3.H u H w( ) = ( ) =2 2 Æ. First observe, that (30), Fact 6.3, and Corollary 6.5 tell us
u wdeg ( ), deg ( ) 4H H ≤ and, consequently, (i) yields H 14Z∣ ∣ ≥ . Thus, by Fact 6.4(vi),

H u H w( ) ( ) 2.1 1∣ ∪ ∣ ≤

Note also that both

H u H w( ) 2 and ( ) 2,0 0∣ ∣ ≤ ∣ ∣ ≤

because otherwise Corollary 6.5 and u wdeg ( ), deg ( ) 3H H ≥ entail, that H u( ) 30∣ ∣ ≥ and
H w( ) 30∣ ∣ ≥ . This, however, together with Fact 6.10 implies H 13Z∣ ∣ ≤ , a contradiction.

Now, in view of Fact 6.12, to finish the proof it is enough to show that at least one of
the graphs L u( )H or L w( )H , is a star S5

(2) with the center in y y z z{ , , , }1 2 1 2 . To this end
observe, that if H u H w( ) ( ) = 21 1∣ ∪ ∣ and either H u H w( ) = ( ) = 10 0∣ ∣ ∣ ∣ or
H u H w( ) = ( ) = 11 1∣ ∣ ∣ ∣ , then u wdeg ( ) = deg ( ) = 3H H and, in view of Fact 6.4(v),
H 15Z∣ ∣ ≤ , yielding Ĥ 15 + 3 + 3 = 21∣ ∣ ≤ , a contradiction with (i).

Otherwise there exists an edge e H u H w( ) ( )1 1∈ ∩ , and at least one of the graphs,
H u( )0 or H w( )0 , say H w( )0 , has two edges. We let v e y y z z{ } = { , , , }1 2 1 2∩ and note, that
due to Fact 6.4(ii), every edge of H u H w( ) ( )0 0∪ contains v. Therefore S L w( )H4

(2) ⊆

entailing, together with Fact 6.11, H 14Z∣ ∣ ≤ , and thereby u wdeg ( ) = deg ( ) = 4H H . In
particular, H w( )0 has two edges both containing v. Finally, a repeated application of Fact
6.4(ii) reviles, that L u( )H is a star S5

(2) with the center v, as required. □

7 | RAMSEY NUMBERS

7.1 | Shorter paths

Before we turn to proving Theorem 1.2, let us briefly discuss Ramsey numbers for 3‐uniform
minimal paths of shorter length. Observe that the family 2 consists of two 3‐graphs, each being
a pair of overlapping edges, either in one (a bow) or two vertices (a kite). Therefore, 2 ‐free
3‐graphs are necessarily matchings, that is, consist of disjoint edges only. Consequently,

n nex ( ; ) = 33 2 ⌊ ∕ ⌋, and, by (1),

( )
R r n

n
r( ; ) = min :

3
> ,

n

2
3



⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪⌊ ∕ ⌋

or, asymptotically, R r r( ; ) ~ 22 , as r → ∞. For small r , in particular, R ( ; 2) =2
R ( ; 3) = 42 , while R ( ; 4) = 52 . In [1], the two 3‐graphs belonging to 2 were considered
separately. It was shown there that R bow r r( ; ) ~ 6 , while R kite r r r r( ; ) { + 1, + 2, + 3}∈

depending on the divisibility of r by 6. It is, perhaps, interesting to see the drop from r6 to r2

when the bow is accompanied by the kite.
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The family 3 also consists of two 3‐graphs, among them the linear path P3. For the latter, an
easy lower bound by a construction of Gyárfás and Raeisi [10] says that R P r r( ; ) + 63 ≥ . It was
proved in a series of papers [13,15,21,20] that, indeed, R P r r( ; ) = + 63 for r 10≤ . The trivial
upper bound, R P r r( ; ) 33 ≤ , stemming from (1) was improved down to R P r r( ; ) < 1.983 in [18].

Turning to minimal paths of length 3, there is a similar lower bound R r r( ; ) + 53 ≥ .
Using the known value of ex (7; ) = 153 3 determined in [19], it follows by (1) that indeed
R ( ; 2) = 73 . With a bit more effort, observing that a connected 3 ‐free 3‐graph must be
intersecting and using the Hilton–Milner Theorem 1.3, one can also show that R r r( ; ) = + 53
for r 7≤ . The range of r , for which R r r( ; ) = + 53 is certainly wider, but to prove it one
would need more sophisticated tools, like the third‐order Turán number nex ( ; )3

(3)
3 .

7.2 | Proof of Theorem 1.2

Let us start with a general lower bound on R r( ; )4 based on the slightly modified construction
given by Gyárfás and Raeisi in [10]. We let

s s
k

r t t
t

r= max :
2

− 1 and = max :
3

.r

k

s

r

=6

 ⎜ ⎟
⎪ ⎪
⎪ ⎪

⎜ ⎟
⎧
⎨
⎩

⎛
⎝

⎞
⎠

⎫
⎬
⎭

⎧⎨⎩
⎛
⎝

⎞
⎠

⎫⎬⎭∑∈ ≤ ∈ ≤

Proposition 7.1. For all r 1≥ ,

R r r s t r r( ; ) + max{ , } + 1 + 6 + 1.r r4
3 ≥ ≥

Note, that

s

r

r

r

r

r

t

r

r

r

r

r

R r

r r

r r

r r

r r

r r

=

5 for 1 15,

6 for 16 36,

7 for 37 64,

8 for 65 100,

9 for 101 145,

=

3 for 1 3,

4 for 4 9,

5 for 10 19,

6 for 20 34,

7 for 35 55,

and thus ( ; )

+ 6 for 1,

+ 7 for 16,

+ 8 for 35,

+ 9 for 56,

+ 10 for 84,

r r 4

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

≤ ≤

≤ ≤

≤ ≤

≤ ≤

≤ ≤
⋯

≤ ≤

≤ ≤

≤ ≤

≤ ≤

≤ ≤
⋯

≥

≥

≥

≥

≥

≥
⋯

In particular, for r 20≥ we have t sr r≥ .

Proof. Set m s t= max{ , }r r and let ( )V K r m= {1, 2, …, + }r m+
(3) . If m s= r , for

i r= 1, …, − 1, color every edge of Kr m+
(3) whose minimum vertex is i by color i. In

addition, apply different colors from r{1, …, − 1} to all edges with minimum vertex in the set
r r r m{ , + 1, …, + − 6}. Note that there are exactly ( ) r − 1

k

m k

=6 2
∑ ≤ such edges. Moreover,

the edges of color i form a starplus, so no monochromatic copy of a minimal 4‐path has been
created in any of the first r − 1 colors. The remaining uncolored edges form a complete
3‐graph K6

(3) on the last 6 vertices r m r m+ − 5, …, + and we color them by color r . As a
minimal 4‐path has at least 7 vertices, there is no member of 4 in color r as well.

HAN ET AL. | 37



If m t= r , the construction is even simpler. For i r= 1, …, , color every edge of Kr m+

whose minimum vertex is i by color i. In addition, apply different colors from r{1, …, } to
all ( ) r

m

3
≤ edges spanned on the vertices r r m+ 1, …, + . Again, each color is a starplus,

so no monochromatic copy of a minimal 4‐path has been created. □

Proof of Theorem 1.2. In view of Proposition 7.1, we only need to show the upper bound
on R r( ; )4 . For r = 1 there is nothing to prove so let us begin with r = 2 and n = 8. For
this purpose observe that in every 2‐coloring of K8

(3) at least one color takes at least

( ) 2 = 28 > 22 = ex(8; )
8

3 4∕ edges, and so, due to Theorem 1.1, contains a member of

4 . Moreover, the same averaging argument entails that this is true for every 8‐vertex
3‐graph with at least 45 edges.

Now, let r = 3 and n = 9. With an eye on the case r = 4, we are going to prove, for
r = 3, a slightly stronger result. An r‐coloring which does not yield a monochromatic
member of 4 is referred to as proper. Let H9 be a 9‐vertex 3‐graph with at least

( ) − 2 = 82
9

3
edges and let a proper 3‐coloring of H9 be given. Then, there is a color with

at least 82 3 = 28 > 27 = ex (9; )(2)
4⌈ ∕ ⌉ edges and thus, since the coloring is proper, by

Theorems 1.1 and 1.4, that color must be a subset of S9
+1. After removing the center of

that star as well as the unique edge not containing it, we obtain a proper 2‐coloring of an
8‐vertex 3‐graph with at least ( ) − 3 = 53

8

3
edges, which, as it is shown above, contains a

monochromatic member of 4 , a contradiction.
Finally, consider the case r = 4 and n = 10. To this end let a proper 4‐coloring of all

( ) = 120
10

3
edges of K10

(3) be given. If there is a color which is a subset of either S10
+1 or SP10,

then we remove its center together with at most two additional edges. As a result, we
obtain a proper 3‐coloring of a 9‐vertex 3‐graph with at least ( ) − 2 = 82

9

3
edges, which,

as shown above, contains a monochromatic copy of a member of 4 , a contradiction.
Otherwise, in view of Theorems 1.1, 1.4, and 1.5, each of the four colors has exactly 30
edges and is isomorphic to SK10. But this is impossible, because in K10

(3) every vertex has
degree ( ) = 36

9

2
, whereas in SK10 each vertex has its degree in {4, 11, 26}. Clearly, 36 can

not be obtained as a sum of four numbers from {4, 11, 26} and we are done. □

8 | OPEN PROBLEMS

It would be interesting, though tedious, to calculate higher‐order Turán numbers for 4 , that is,
n sex ( ; ), 4s

3
( )

4 ≥ , and, using them, to pin down Ramsey numbers R r( , )4 for r r5 0≤ ≤ , for
some r 50 ≥ .

Another challenging project would be to determine for all n the Turán number nex ( ; )3 4 ,
where, recall 4 is the family of all minimal 3‐uniform cycles with four edges. Kostochka,
Mubayi, and Verstraete showed in [17] that for large n

( )n
n n

ex ; =
− 1

2
+

− 1

3
.3 4

3 ⎜ ⎟
⎛
⎝

⎞
⎠

⎢
⎣⎢

⎥
⎦⎥

Gunderson, Polcyn, and Ruciński in [9] confirmed this formula for n 7≤ .
Turán numbers for longer minimal paths and cycles seem to be currently out of reach if one

desires the exact values for all n.
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