On the minimum size of hamiltonian saturated hypergraphs

Andrzej Ruciński*
Department of Discrete Mathematics
Adam Mickiewicz University
Poznań, Poland
rucinski@amu.edu.pl

Andrzej Żak ${ }^{\dagger}$
Faculty of Applied Mathematics
AGH University of Science and Technology
Kraków, Poland
zakandrz@agh.edu.pl

Submitted: Dec 27, 2018; Accepted: Nov 3, 2020; Published: Nov 27, 2020
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

For $1 \leqslant \ell<k$, an ℓ-overlapping k-cycle is a k-uniform hypergraph in which, for some cyclic vertex ordering, every edge consists of k consecutive vertices and every two consecutive edges share exactly ℓ vertices. A k-uniform hypergraph H is ℓ-hamiltonian saturated if H does not contain an ℓ-overlapping hamiltonian k cycle but every hypergraph obtained from H by adding one edge does contain such a cycle. Let $\operatorname{sat}(N, k, \ell)$ be the smallest number of edges in an ℓ-hamiltonian saturated k-uniform hypergraph on N vertices. In the case of graphs Clark and Entringer showed in 1983 that $\operatorname{sat}(N, 2,1)=\left\lceil\frac{3 N}{2}\right\rceil$. The present authors proved that for $k \geqslant 3$ and $\ell=1$, as well as for all $0.8 k \leqslant \ell \leqslant k-1, \operatorname{sat}(N, k, \ell)=\Theta\left(N^{\ell}\right)$. Here we prove that $\operatorname{sat}(N, 2 \ell, \ell)=\Theta\left(N^{\ell}\right)$.

Mathematics Subject Classifications: 05C65

1 Introduction

A k-uniform hypergraph (k-graph for short) is a pair $H=(V, E)$, where V is a finite set (of vertices) and $E \subseteq\binom{V}{k}$ is a family of k-element subsets of V called edges of H. We will often identify H with its vertex set E. For instance, we will denote by $|H|$ the number of edges in H.

Given integers $1 \leqslant \ell<k$, we define an ℓ-overlapping k-cycle or, shortly, (ℓ, k)-cycle, as a k-graph in which, for some cyclic ordering of its vertices, every edge consists of k consecutive vertices, and every two consecutive edges (in the natural ordering of the

[^0]edges induced by the ordering of the vertices) share exactly ℓ vertices. An ℓ-overlapping k-path (or (ℓ, k)-path) is defined similarly, that is, with vertices ordered v_{1}, \ldots, v_{s}, the edges of the path are $\left\{v_{1}, \ldots, v_{k}\right\},\left\{v_{k-\ell+1}, \ldots, v_{k+\ell}\right\}, \ldots,\left\{v_{s-k+1}, \ldots, v_{s}\right\}$. Note that the number of edges of an (ℓ, k)-cycle with s vertices is $s /(k-\ell)$ (and thus, s is divisible by $k-\ell$). Likewise, it can be easily seen that the number of vertices of an ($\ell, k)$-path equals ℓ modulo $k-\ell$.

Given a k-graph H and a k-element set $e \in H^{c}$, where $H^{c}=\binom{V}{k} \backslash H$ is the complement of H, we denote by $H+e$ the hypergraph obtained from H by adding e to its edge set. For $1 \leqslant \ell \leqslant k-1$, a k-graph H is ℓ-hamiltonian saturated (a.k.a. maximally non- ℓ hamiltonian) if H is not ℓ-hamiltonian but for every $e \in H^{c}$ the k-graph $H+e$ is such. The largest number of edges in an ℓ-hamiltonian saturated k-graph on N vertices has been determined in [5].

In this paper we are interested in the other extreme. For N divisible by $k-\ell$, let $\operatorname{sat}(N, k, \ell)$ be the smallest number of edges in an ℓ-hamiltonian saturated k-graph on N vertices. In the case of graphs, Clark and Entringer proved in 1983 that

$$
\begin{equation*}
\operatorname{sat}(N, 2,1)=\left\lceil\frac{3 N}{2}\right\rceil \text { for } N \geqslant 52 \tag{1}
\end{equation*}
$$

For k-graphs with $k \geqslant 3$ the problem was first mentioned in [6, 7]. It seems to be quite hard to obtain such precise results as for graphs. Therefore, the emphasis has been put on the order of magnitude of $\operatorname{sat}(N, k, \ell)$. It is quite easy to see that

$$
\begin{equation*}
\operatorname{sat}(N, k, \ell)=\Omega\left(N^{\ell}\right), \text { for all } k \geqslant 3,1 \leqslant \ell \leqslant k-1, \tag{2}
\end{equation*}
$$

(see, e.g., Proposition 2.1 in [8]). The present authors proved in [8] that for $k \geqslant 3$ and $\ell=1$, as well as for all $0.8 k \leqslant \ell \leqslant k-1$,

$$
\begin{equation*}
\operatorname{sat}(N, k, \ell)=\Theta\left(N^{\ell}\right) \tag{3}
\end{equation*}
$$

(see [10] for the case $\ell=k-1$). We also conjectured that (3) holds true for all $1 \leqslant \ell \leqslant k-1$. In [9] we proved a weaker general upper bound

$$
\operatorname{sat}(N, k, \ell)=O\left(N^{\frac{k+\ell}{2}}\right) .
$$

In the same paper we improved the above bound in the smallest open case by showing that $\operatorname{sat}(N, 4,2)=O\left(N^{\frac{14}{5}}\right)$. In this paper we confirm our conjecture in the middle of the range.
Theorem 1. For all $\ell \geqslant 2$ and N divisible by $\ell, \operatorname{sat}(N, 2 \ell, \ell)=\Theta\left(N^{\ell}\right)$.
Our proof combines two general approaches to this type of problems developed, respectively, in [8] and [10, 9].

2 Construction

In this section, after setting some parameters, we will describe our construction and present the proof of Theorem 1 based on two lemmas which will be proved later.

2.1 Parameters setting

We need to choose the values of some parameters carefully and in doing so a pivotal role is played by the following notion. Given a positive integer x, let C and D be two disjoint sets with $|C|=x$ and $|D|=\infty$. Let $\nu(x)=\max _{P}|V(P)|$, where the maximum is taken over all $(\ell, 2 \ell)$-paths P which are subgraphs of the complete 2ℓ-uniform hypergraph with vertex set $C \cup D$ and such that

$$
\begin{equation*}
C \subset V(P) \subset C \cup D \quad \text { and } \quad|e \cap C| \geqslant \ell+1 \quad \text { for all } \quad e \in P . \tag{4}
\end{equation*}
$$

Proposition 2. If $x \geqslant \ell+1$, then

$$
\nu(x)= \begin{cases}x \frac{2 \ell}{\ell+1}, & \text { if }(\ell+1) \mid x, \tag{5}\\ \left\lfloor\frac{x}{\ell+1}\right\rfloor 2 \ell+\ell, & \text { otherwise }\end{cases}
$$

In particular,

$$
\begin{equation*}
\nu(x) \geqslant \frac{2 \ell}{\ell+1} x-\ell \tag{6}
\end{equation*}
$$

Proof. Let $x=q(\ell+1)+r$, where $q=\left\lfloor\frac{x}{\ell+1}\right\rfloor$ and $0 \leqslant r \leqslant \ell$. Let P be an $(\ell, 2 \ell)$-path with $|V(P)|=\nu(x)$ and t edges satisfying (4). Let e_{1}, \ldots, e_{t} be the edges of P in the linear order underlying P. Set $s=\left\lfloor\frac{t+1}{2}\right\rfloor$. Clearly, $t \in\{2 s-1,2 s\}$. Recall that, by (4), $\left|e_{i} \cap C\right| \geqslant \ell+1$ for each $i \in\{1, \ldots, 2 s-1\}$. Hence, $s \leqslant q$, because $e_{1}, e_{3}, \ldots, e_{2 s-1}$ are pairwise disjoint. Also by (4), if $t=2 s$, then

$$
\left(e_{t} \cap C\right) \backslash \bigcup_{j=1}^{s} e_{2 j-1}=\left(e_{t} \cap C\right) \backslash e_{2 s-1} \neq \emptyset
$$

Thus, if $r=0$, then $t=2 s-1$ and $|V(P)|=s \cdot 2 \ell$. Otherwise, $t \leqslant 2 s$ and $|V(P)| \leqslant s \cdot 2 \ell+\ell$, and so the right-hand-side of (5) is the upper bound on $|V(P)|$.

To show equality in (5), let us view P as a binary sequence Q, where each vertex of C is represented by a symbol c and each vertex of $V(P) \cap D$ is represented by a symbol d. (And the edges of P follow the sequence Q according to the definition of an ($\ell, 2 \ell$)-path.) We now construct a sequence Q which yields a path P satisfying (4) and with $|V(P)|$ equal to the R-H-S of (5).

Let Q begin with $\ell-1$ vertices from D and then traverse a group of $\ell+1$ vertices from C, and so on q times. If $r>0$, then at the end we add r vertices from C followed by $\ell-r$ vertices from D (see (7) below).

$$
\begin{equation*}
\overbrace{\underbrace{d, \ldots, d}_{\ell-1}}^{e_{1}}, \underbrace{c, \ldots, c}_{\ell+1} \overbrace{\underbrace{d, \ldots, d}_{\ell-1}}^{\overbrace{1}}, \underbrace{c_{1}, \ldots, c}_{\ell+1}, \cdots \cdot \underbrace{\overbrace{d, \ldots, d}^{e}}_{\ell-1}, \underbrace{c, \ldots, c}_{\ell+1}, \underbrace{e_{2 q-1}}_{r}(c, \ldots, c, \underbrace{d, \ldots, d)}_{\ell-r} \tag{7}
\end{equation*}
$$

It is easy to check that P satisfies (4). Clearly, $|V(P)|=q \cdot 2 \ell$, if $r=0$, and $|V(P)|=$ $q \cdot 2 \ell+\ell$, if $r>0$.

The function $\nu(x)$ is non-decreasing, but, as an immediate consequence of Proposition 2, it cannot increase too fast.
Proposition 3. For all $x \geqslant 1$ we have $\nu(x-1) \geqslant \nu(x)-\ell$. Moreover, if x or $x-1$ is divisible by $\ell+1$, then $\nu(x-1)=\nu(x)-\ell$.

Proof. Let $x=q(\ell+1)+r$ as in the proof of Proposition 2. It is easy to check that, by (5), if $2 \leqslant r \leqslant \ell$, then $\nu(x-1)=\nu(x)$, while in the remaining two cases, $r=0$ and $r=1$, we have $\nu(x-1)=\nu(x)-\ell$.

We now define parameters and sets our construction will rely upon. Let

$$
\begin{equation*}
N_{0}=100 \ell^{5} \tag{8}
\end{equation*}
$$

and let $N \geqslant N_{0}$ be an integer divisible by ℓ. Define integers

$$
\begin{equation*}
n=\left\lfloor\frac{N+4 \ell^{3}}{8 \ell^{3}+2 \ell}\right\rfloor \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
a=\frac{N+4 \ell^{3}-n\left(8 \ell^{3}+2 \ell\right)}{\ell} . \tag{10}
\end{equation*}
$$

Using (8), it is easy to check that

$$
\begin{equation*}
n \geqslant 10 \ell^{2} . \tag{11}
\end{equation*}
$$

Moreover, by (9), $n>\frac{N+4 \ell^{3}}{8 \ell^{3}+2 \ell}-1$, which is equivalent to $a<8 \ell^{2}+2$. Consequently, in view of (11), $a \leqslant n-1$. Let

$$
x_{i}= \begin{cases}4 \ell^{2}(\ell+1)+2 \ell+1, & i=1, \ldots, a \tag{12}\\ 4 \ell^{2}(\ell+1)+2 \ell, & i=a+1, \ldots, n\end{cases}
$$

Proposition 4. For each $I \subset\{1, \ldots, n\}$ with $|I|=n-1$

$$
\begin{equation*}
2 n \ell+\sum_{i \in I} \nu\left(x_{i}-2 \ell\right)+4 \ell^{2}+4 \ell<N<(2 n+2) \ell+\sum_{i=1}^{n} \nu\left(x_{i}-2 \ell\right)-4 \ell^{3} . \tag{13}
\end{equation*}
$$

Proof. By (5) and (12),

$$
\nu\left(x_{i}-2 \ell\right)= \begin{cases}8 \ell^{3}+\ell, & i=1, \ldots, a \tag{14}\\ 8 \ell^{3}, & i=a+1, \ldots, n\end{cases}
$$

By (14) and (10),

$$
\begin{equation*}
\sum_{i=1}^{n} \nu\left(x_{i}-2 \ell\right)=a\left(8 \ell^{3}+\ell\right)+(n-a)\left(8 \ell^{3}\right)=a \ell+8 n \ell^{3}=N+4 \ell^{3}-2 n \ell \tag{15}
\end{equation*}
$$

thus, the second inequality of (13) holds. On the other hand, by (14) and (15),

$$
\sum_{i \in I} \nu\left(x_{i}-2 \ell\right) \leqslant \sum_{i=1}^{n} \nu\left(x_{i}-2 \ell\right)-8 \ell^{3}=N-4 \ell^{3}-2 n \ell<N-\left(4 \ell^{2}+4 \ell\right)-2 n \ell
$$

where the last inequality holds, since $\ell \geqslant 2$. Hence, the first inequality of (13) holds too.

Let A_{i} and $B_{i}, i=1, \ldots, 2 n$, be a family of $4 n$ pairwise disjoint sets with sizes:

$$
\left|A_{i}\right|=\left\{\begin{array}{l}
3 \ell-1 \text { for } i=1, \ldots, n \tag{16}\\
2 \ell-1 \text { for } i=n+1, \ldots, 2 n
\end{array}\right.
$$

and

$$
\left|B_{i}\right|=\left\{\begin{array}{l}
x_{i}-3 \ell+1 \text { for } i=1, \ldots, n \tag{17}\\
b_{i} \quad \text { for } i=n+1, \ldots, 2 n
\end{array}\right.
$$

where the b_{i} 's differ from each other by at most one and are chosen in such a way that

$$
\begin{equation*}
\sum_{i=1}^{2 n}\left(\left|A_{i}\right|+\left|B_{i}\right|\right)=N \tag{18}
\end{equation*}
$$

Observe that b_{i} 's are well defined and positive. Indeed, by (16), (17), (12), and (10), using also the inequality $4 \ln \left(\ell^{2}+\ell+1\right) \leqslant 8 \ell^{3}+2 \ell n-4 \ell^{3}$, which, due to (11), is valid for $\ell \geqslant 2$,

$$
\begin{aligned}
\sum_{i=1}^{2 n}\left|A_{i}\right|+\sum_{i=1}^{n}\left|B_{i}\right| & =n(2 \ell-1)+\sum_{i=1}^{n} x_{i}=n(2 \ell-1)+a+n\left(4 \ell^{2}(\ell+1)+2 \ell\right) \\
& <a \ell+4 \ell n\left(\ell^{2}+\ell+1\right)-n \leqslant N-n .
\end{aligned}
$$

Finally, since the b_{i} 's differ from each other by at most one, we have that, by the R-H-S of (13) and by (14), for $i=n+1, \ldots, 2 n$,

$$
\begin{align*}
\left|A_{i}\right|+\left|B_{i}\right| & \leqslant\left\lceil\frac{N}{n}\right\rceil<\frac{N}{n}+1<\frac{n \cdot \max _{i} \nu\left(x_{i}-2 \ell\right)+2 n \ell}{n}+1 \\
& <\frac{n\left(8 \ell^{3}+\ell\right)+2 n \ell}{n}+1=8 \ell^{3}+3 \ell+1<10 \ell^{3} . \tag{19}
\end{align*}
$$

2.2 Main construction

Our construction stems from a base graph G which consists of a maximally non-hamiltonian graph G_{1} on n vertices $\{1, \ldots, n\}$ with bounded degree to which n pendant vertices $\{n+1, \ldots, 2 n\}$ have been added, so that for each $i=1, \ldots, n$, the pair $\{i, n+i\}$ is an edge of G. By analyzing the constructions in $[2,3,4]$ one can see that the hamiltonian
saturated graphs obtained there do have bounded maximum degree. An alternative way is by combining (1) with a result of Bondy [1] (cf. [8]).

Fix $\ell \geqslant 2$. The desired 2ℓ-graph H will be defined on an N-vertex set

$$
V=\bigcup_{i=1}^{2 n} U_{i}
$$

where $U_{i}=A_{i} \cup B_{i}$ and A_{i}, B_{i} are given in the previous subsection. Note that, by (12), for each $i=1, \ldots, n$, we have $\left|A_{i} \cup B_{i}\right|=x_{i} \leqslant 10 \ell^{3}$. This and (19) imply together that for all $i=1, \ldots, 2 n$,

$$
\begin{equation*}
\left|U_{i}\right| \leqslant 10 \ell^{3} . \tag{20}
\end{equation*}
$$

Before defining the edge set of H, we need some more terminology and notation, which will be illustrated by an example. For a graph F and a set $U \subset V(F)$, denote by $F[U]$ the subgraph of F induced by U. For $S \subset V$, set

$$
\operatorname{tr}(S)=\left\{i: S \cap U_{i} \neq \emptyset\right\} \text { and } \min (S)=\min \{i \in \operatorname{tr}(S)\}
$$

(The set $\operatorname{tr}(S)$ is often called the trace of S, but we will not use this name here.)
Example 1. In Fig. 1 we have $\operatorname{tr}\left(e_{1}\right)=\{1,2\}, \operatorname{tr}\left(e_{2}\right)=\{1,3,2 n\}, \operatorname{tr}\left(e_{3}\right)=\{2,3\}$ and $\operatorname{tr}\left(e_{4}\right)=\{3, n+1\}$ and thus, $\min \left(e_{1}\right)=1, \min \left(e_{2}\right)=1, \min \left(e_{3}\right)=2$ and $\min \left(e_{4}\right)=3$.

Further, let $c(S)$ be the number of connected components of $G^{3}[\operatorname{tr}(S)]$, where G^{3} is the third power of G, that is, the graph with the same vertex set as G, but with edges joining all pairs of distinct vertices at distance at most three in G.

The role of the third power can be explained as follows. In order to find a hamiltonian $(\ell, 2 \ell)$-cycle in $H+e$, we will look for a hamiltonian path between two non-adjacent vertices of G_{1}, selected from the vertices of $\operatorname{tr}(e)$ or their neighbors. In the worst case, $\operatorname{tr}(e) \subset\{n+1, \ldots, 2 n\}$ and we will be forced to find a hamiltonian path between the neighbors u, v of some vertices $n+u$ and $n+v$. Our construction will yield $c(e) \geqslant \ell+1 \geqslant 2$ which allows us to select $n+u$ and $n+v$ so that they are non-adjacent in G^{3}. Consequently, u and v will be non-adjacent in G_{1}, which, by the choice of G_{1}, guarantees the existence (in G_{1}) of a hamiltonian path between u and v.

We define the ultimate 2ℓ-graph H via three other hypergraphs. Let

$$
H_{1}=\left\{e \in\binom{V}{2 \ell}: \operatorname{tr}(e) \in G \text { and }\left|A_{i} \cap e\right|=\ell \text { for both } i \in \operatorname{tr}(e)\right\} .
$$

We split $H_{1}=H_{1}^{1} \cup H_{1}^{2}$, where $H_{1}^{1}=\left\{e \in H_{1}: \operatorname{tr}(e) \in G_{1}\right\}$. Further, let

$$
H_{2}=\left\{e \in\binom{V}{2 \ell}:\left|e \cap U_{\min (e)}\right| \geqslant \ell+1\right\} .
$$

Example 2. Recall that, in Fig.1, $\operatorname{tr}\left(e_{1}\right)=\{1,2\}$. Moreover, $\left|e \cap A_{1}\right|=\left|e \cap A_{2}\right|=3=\ell$. Thus, if $\{1,2\}$ is an edge of G, then $e_{1} \in H_{1}$ (more precisely, $e_{1} \in H_{1}^{1}$). Furthermore, $\operatorname{tr}\left(e_{2}\right)=\{1,3,2 n\}$ and $\min \left(e_{2}\right)=1$. Since $\left|e_{2} \cap U_{1}\right|=4=\ell+1$, we have $e_{2} \in H_{2}$.

Similarly, $\left|e_{4} \cap U_{3}\right|=5 \geqslant \ell+1$, so $e_{4} \in H_{2}$ too. Finally, $\left|e_{3} \cap U_{3}\right| \geqslant \ell+1$, but min $\left(e_{3}\right)=2$ and $\left|e_{3} \cap U_{2}\right|=1$. Hence $e_{3} \notin H_{2}$. Since $e_{3} \not \subset A_{2} \cup A_{3}, e_{3} \notin H_{1}$ either, regardless of whether $\{2,3\}$ is an edge of G or not.

Figure 1: An illustration to construction: $\ell=3$.

Note that if P is an $(\ell, 2 \ell)$-path in H_{2}, then there is an index i such that every edge of P draws at least $\ell+1$ vertices from U_{i}. Indeed, let $e, e^{\prime} \in P$ with $\left|e \cap e^{\prime}\right|=\ell$. Let $i=\min (e)$. Since $\left|e \cap U_{i}\right| \geqslant \ell+1,\left|e^{\prime} \cap U_{i}\right| \geqslant 1$. Hence, $i \in \operatorname{tr}\left(e^{\prime}\right)$ and so $\min \left(e^{\prime}\right) \leqslant \min (e)$. By symmetry, $\min (e) \leqslant \min \left(e^{\prime}\right)$. Thus $\min \left(e^{\prime}\right)=\min (e)=i$. By transitivity, $\min (f)=i$ for every $f \in P$.

The third element of the construction is

$$
H_{3}=\left\{e \in\binom{V}{2 \ell}: c(e) \leqslant \ell\right\} .
$$

Note that

$$
\begin{equation*}
H_{1} \cup H_{2} \subseteq H_{3}, \tag{21}
\end{equation*}
$$

where $H_{1} \cup H_{2}$ is a 2ℓ-graph with vertex set V whose edge set is the union of the edge sets of H_{1} and H_{2}. Indeed, if $e \in H_{1}$, then $\operatorname{tr}(e) \in G_{1}$ and so $c(e)=1 \leqslant \ell$. If $e \in H_{2}$, then $\left|e \cap U_{\min (e)}\right| \geqslant \ell+1$ and, consequently, $|\operatorname{tr}(e)| \leqslant 1+(\ell-1)=\ell$. Clearly, $c(e) \leqslant|\operatorname{tr}(e)|$, hence (21) follows.

We are going to show (cf. Lemma 5 in Section 3) that $H_{1} \cup H_{2}$ is non- ℓ-hamiltonian. Finally, we define H as a non- ℓ-hamiltonian 2ℓ-graph satisfying the containments

$$
H_{1} \cup H_{2} \subseteq H \subseteq H_{3}
$$

and such that $H+e$ is ℓ-hamiltonian for every $e \in H_{3} \backslash H$. (If H_{3} is non- ℓ-hamiltonian itself, we set $H=H_{3}$.)

2.3 Proof of Theorem 1

In [8] we proved the following result. Let $\operatorname{comp}(F)$ denote the number of connected components of a graph F.
Claim 1. Let r, ℓ, and Δ be constants. If $\Delta(G) \leqslant \Delta$, then the number of r-element subsets $T \subseteq V(G)$ with $\operatorname{comp}(G[T]) \leqslant \ell$ is $O\left(n^{\ell}\right)$.

Theorem 1 is an consequence of Claim 1, our construction presented in the previous subsection, and the following two lemmas the proofs of which are deferred to the later sections. Lemma 5 guarantees that the definition of H is not vacuous.
Lemma 5. $H_{1} \cup H_{2}$ is non- ℓ-hamiltonian.
Lemma 6 implies quickly that H is indeed ℓ-hamiltonian saturated (see the proof of Theorem 1 below.)
Lemma 6. For every $e \in\binom{V}{2 \ell} \backslash H_{3}$, the 2ℓ-graph $H_{1} \cup H_{2}+e$ is ℓ-hamiltonian.
Proof of Theorem 1. By (2), $\operatorname{sat}(N, 2 \ell, \ell)=\Omega\left(N^{\ell}\right)$. In order to prove the upper bound, we begin by showing that $|H|=O\left(N^{\ell}\right)$. Observe that

$$
H_{3}=\bigcup_{T \subset V(G)}\left\{e \in\binom{V}{2 \ell}: \operatorname{tr}(e)=T\right\}
$$

where the sum is over all subsets T of $V(G)$ of size at most 2ℓ with $\operatorname{comp}\left(G^{3}[T]\right) \leqslant \ell$. Since G_{1} has bounded degree, so does G and G^{3}. Thus, by Claim 1 with $r \leqslant 2 \ell$, the number of such subsets T is $O\left(n^{\ell}\right)$. Moreover, given T,

$$
\left|\left\{e \in\binom{V}{2 \ell}: \operatorname{tr}(e)=T\right\}\right| \leqslant\binom{\sum_{i \in T}\left|U_{i}\right|}{2 \ell} \leqslant\left(|T| \cdot 10 \ell^{3}\right)^{2 \ell}=O(1)
$$

by (20). Consequently, $\left|H_{3}\right|=O\left(n^{\ell}\right)=O\left(N^{\ell}\right)$ and, thus, also $|H|=O\left(N^{\ell}\right)$.
It remains to show that H is ℓ-hamiltonian saturated. Recall that, by construction (and Lemma 5), H is non- ℓ-hamiltonian. Let $e \in\binom{V}{2 \ell} \backslash H$. If $e \in H_{3}$ then, by the definition of $H, H+e$ is ℓ-hamiltonian. On the other hand, if $e \in\binom{V}{2 \ell} \backslash H_{3}$, then $H+e \supseteq H_{1} \cup H_{2}+e$ is ℓ-hamiltonian by Lemma 6. This shows that H is, indeed, ℓ-hamiltonian saturated and thus, the proof of Theorem 1 is completed.

3 Proof of Lemma 5.

$3.1(\ell, 2 \ell)$-paths in $H_{1} \cup H_{2}$

Before turning to the actual proof, we first prove a result about $(\ell, 2 \ell)$-paths in $H_{1} \cup H_{2}$.

Proposition 7. Let $m \geqslant 1$ and $P=\left(e, e_{1}, \ldots, e_{m}, e^{\prime}\right)$ be an $(\ell, 2 \ell)$-path in $H_{1} \cup H_{2}$ such that $e, e^{\prime} \in H_{1}^{1}$ and $e_{i} \in H_{1}^{2} \cup H_{2}, i=1, \ldots, m$. The following hold:
(a) P does not contain an edge $f \in H_{1}^{2}$ disjoint from $e \cup e^{\prime}$;
(b) P does not contain two disjoint edges $f, f^{\prime} \in H_{1}^{2}$;
(c) $\min \left(e_{i}\right) \in \operatorname{tr}(e) \cap \operatorname{tr}\left(e^{\prime}\right), i=1, \ldots, m$.

In the proof of Proposition 7, we will need the following result.
Claim 2. Let $m \geqslant 1$ and let $P=\left(e, e_{1}, \ldots, e_{m}, e^{\prime}\right)$ be an $(\ell, 2 \ell)$-path such that $e, e^{\prime} \in H_{1}$ and $e_{i} \in H_{2}, i=1, \ldots, m$. Then $\min \left(e_{1}\right)=\cdots=\min \left(e_{m}\right) \in \operatorname{tr}(e) \cap \operatorname{tr}\left(e^{\prime}\right), i=1, \ldots, m$.

Proof. Let $\alpha=\min \left(e_{1}\right)$. Then, by the definition of H_{2} and the fact that $\left|e_{1} \backslash e_{2}\right|=\ell<\ell+1$, we have $\alpha \in \operatorname{tr}\left(e_{2}\right)$. Hence, $\min \left(e_{2}\right) \leqslant \alpha=\min \left(e_{1}\right)$. By symmetry, $\min \left(e_{1}\right) \leqslant \min \left(e_{2}\right)$. Thus, $\min \left(e_{1}\right)=\min \left(e_{2}\right)$. By transitivity, $\min \left(e_{i}\right)=\alpha$ for every $i=1, \ldots, m$. By the same token, $\alpha \in \operatorname{tr}(e)$ and $\alpha \in \operatorname{tr}\left(e^{\prime}\right)$.

Proof of Proposition 7. Since $m \geqslant 1$, we have $e \cap e^{\prime}=\emptyset$. If P does not contain any edge of H_{1}^{2}, then the statements (a) and (b) are vacuous, while (c) follows from Claim 2. Assume that $H_{1}^{2} \cap P=\left\{f_{1}, \ldots, f_{t}\right\}$ where $t \geqslant 1$ and $f_{j}, j=1, \ldots, t$, are listed in order of appearance on P. Let $\operatorname{tr}\left(f_{1}\right)=\{\alpha, n+\alpha\}$. Furthermore, let $f_{0}=e$ and $f_{t+1}=e^{\prime}$.

If $f_{j} \cap f_{j+1} \neq \emptyset$ then, trivially,

$$
\begin{equation*}
\operatorname{tr}\left(f_{j}\right) \cap \operatorname{tr}\left(f_{j+1}\right) \neq \emptyset \quad j=0,1, \ldots, t . \tag{22}
\end{equation*}
$$

Otherwise, (22) holds by Claim 2. It follows by the structure of G that $\operatorname{tr}\left(f_{j}\right)=\{\alpha, n+\alpha\}$, $j=1, \ldots, t$, and $\alpha \in \operatorname{tr}\left(f_{j}\right), j \in\{0, t+1\}$, that is, $\alpha \in \operatorname{tr}(e) \cap \operatorname{tr}\left(e^{\prime}\right)$.

Since $e \cap e^{\prime}=\emptyset$ and $\left|A_{\alpha} \cap f_{j}\right|=\ell$ for every $j \in\{0, \ldots, t+1\}$, (a) holds by the first part of (16), while (b) holds by the second part of (16). Note that it follows that (c) holds for every edge $f_{j}, j=1, \ldots, t$, that is, for every edge $e_{i} \in H_{1}^{2}$.

Let us now consider $e^{\prime \prime} \in P \cap H_{2}$. If $m \geqslant 3$, then, by (a) and (b), the only edge in $\left\{e_{1}, \ldots, e_{m}\right\} \cap H_{1}^{2}$ is either $\left\{e_{1}\right\}$ or $\left\{e_{m}\right\}$. Without loss of generality assume that $e_{1} \in H_{1}^{2}$ and $e_{m} \in H_{2}$. (For $m=2$, we may assume the same with $e^{\prime \prime}=e_{m}$.) By Claim 2 applied to the path from e_{1} to e^{\prime}, we conclude that $\min \left(e^{\prime \prime}\right) \in \operatorname{tr}\left(e_{1}\right)=\{\alpha, n+\alpha\}$, as well as, $\min \left(e^{\prime \prime}\right) \in \operatorname{tr}\left(e^{\prime}\right) \subset\{1, \ldots, n\}$. Hence, $\min \left(e^{\prime \prime}\right)=\alpha \in \operatorname{tr}(e) \cap \operatorname{tr}\left(e^{\prime}\right)$ and (c) holds.

3.2 Proof of Lemma 5.

In this subsection we complete the proof of Lemma 5.
Proof of Lemma 5. Suppose C is a hamiltonian $(\ell, 2 \ell)$-cycle in $H_{1} \cup H_{2}$. We are going show that $|V(C)|<N$ which will be a contradiction. Our proof at some point (cf. proof of Claim 4) relies on the assumption that the graph G_{1} is not hamiltonian. Let $M=\left\{e_{1}, \ldots, e_{m}\right\}$ be a maximal set of pairwise disjoint edges of $C \cap H_{1}^{1}$, listed in the
order of appearance on C. Further, for $i=1, \ldots, m$, let P_{i} be the $(\ell, 2 \ell)$-path in C joining the last ℓ vertices of e_{i} with the first ℓ vertices of e_{i+1}, where $e_{m+1}:=e_{1}$. Notice that

$$
\begin{equation*}
C \backslash M=\bigcup_{i=1}^{m} P_{i} \tag{23}
\end{equation*}
$$

where all P_{i} 's are vertex disjoint, see Fig. 2.

Figure 2: Fragment of C

Let l_{i} be the first edge of P_{i} and r_{i} be the last edge of P_{i} (note that they may coincide). We also define P_{i}^{\prime} to be the $(\ell, 2 \ell)$-path arising from P_{i} by removing both l_{i} and r_{i}. Note that, by the definition of M,

$$
\begin{equation*}
P_{i}^{\prime} \subset H_{1}^{2} \cup H_{2} \tag{24}
\end{equation*}
$$

We call P_{i}^{\prime} trivial if $P_{i}^{\prime} \subset H_{1}^{2}$. We further define

$$
\begin{equation*}
P_{i}^{\prime \prime}=P_{i}^{\prime} \cap H_{2} . \tag{25}
\end{equation*}
$$

Note that $P_{i}^{\prime \prime}$ is an $(\ell, 2 \ell)$-path, too. Indeed, by Proposition 7a), every edge in $P_{i}^{\prime} \cap H_{1}^{2}$ intersects l_{i} or r_{i} (and thus, is the first or the last edge of P_{i}^{\prime}).

If $P_{i}^{\prime \prime}$ is non-empty, then let

$$
\begin{equation*}
\alpha_{i}=\min (f) \text { for every } f \in P_{i}^{\prime \prime} \tag{26}
\end{equation*}
$$

By Claim 2, α_{i} is well defined.
Observe that each edge $e \in\left(H_{1}^{1} \cap C\right) \backslash M$ intersects some $e_{i} \in M$, so $e=l_{i}$ or $e=r_{i-1}$. We call an edge l_{i} (or r_{i}) bad if it belongs to $H_{1}^{1},\left|P_{i}\right| \geqslant 2$, and $\operatorname{tr}\left(l_{i}\right) \neq \operatorname{tr}\left(e_{i}\right)$ $\left(\operatorname{tr}\left(r_{i}\right) \neq \operatorname{tr}\left(e_{i+1}\right)\right.$, resp.). We call P_{i} problematic if either l_{i} or r_{i} is bad or P_{i}^{\prime} contains an edge from H_{1}^{2}. Otherwise, we call P_{i} nice.

Let $\operatorname{Tr}(M)=\{\operatorname{tr}(e): e \in M\}$ be a graph defined by the traces of edges in M. Clearly, $|\operatorname{Tr}(M)|=m$. Since, for each $e \in M$ and $j \in \operatorname{tr}(e),\left|e \cap A_{j}\right|=\ell$,

$$
\begin{equation*}
\Delta(\operatorname{Tr}(M)) \leqslant 2 \tag{27}
\end{equation*}
$$

by (16). In particular

$$
\begin{equation*}
m \leqslant n \tag{28}
\end{equation*}
$$

We need, however, better bounds on m. Let q be the number of problematic ($\ell, 2 \ell$)-paths among P_{1}, \ldots, P_{m}.
Claim 3.

$$
\begin{equation*}
m \leqslant\left\lfloor n-\frac{q}{2}\right\rfloor \tag{29}
\end{equation*}
$$

Proof. Let P be problematic. Suppose e is a bad edge in P. If $e=l_{i}$ then since $\operatorname{tr}\left(l_{i}\right) \neq$ $\operatorname{tr}\left(e_{i}\right)$, there exists $\beta \in \operatorname{tr}(e)$ such that $\left|\left(e \cap A_{\beta}\right) \backslash e_{i}\right|=\ell$. Since $|P| \geqslant 2$,

$$
\begin{equation*}
\left|\left(e \cap A_{\beta}\right) \backslash\left(e_{i} \cup e_{i+1}\right)\right|=\ell \tag{30}
\end{equation*}
$$

as well. By symmetry, the same holds if $e=r_{i}$. If P^{\prime} contains an edge e which belongs to H_{1}^{2}, then (30) is also true, since e does not intersect any edge of M. To sum up, for each $i=1, \ldots, m$, there exists $\beta_{i} \in \operatorname{tr}\left(P_{i}\right)$ such that

$$
\left|\left(V\left(P_{i}\right) \cap A_{\beta_{i}}\right) \backslash \bigcup_{j=1}^{m} e_{j}\right| \geqslant\left\{\begin{array}{l}
\ell \text { if } P_{i} \text { is problematic } \tag{31}\\
0 \text { otherwise }
\end{array}\right.
$$

Note that β_{i} 's need not be different. Since $\left|A_{\beta_{i}}\right| \leqslant 3 \ell-1$, (31) implies that $\operatorname{deg}_{\operatorname{Tr}(M)}\left(\beta_{i}\right) \leqslant 1$ if P_{i} is problematic (and $\operatorname{deg}_{\operatorname{Tr}(M)}\left(\beta_{i}\right) \leqslant 2$ if not). If two problematic P_{i} 's yield the same β_{i} as above, then we conclude that $\operatorname{deg}_{\operatorname{Tr}(M)}\left(\beta_{i}\right)=0$. Thus,

$$
\sum_{i=1}^{n} d e g_{\operatorname{Tr}(M)}\left(\beta_{i}\right) \leqslant 2 n-q
$$

Therefore,

$$
m=|\operatorname{Tr}(M)| \leqslant\left\lfloor\frac{2 n-q}{2}\right\rfloor
$$

Claim 4. Suppose that $P_{i}^{\prime} \neq \emptyset$ for every $i=1, \ldots, m$. Then

$$
\begin{equation*}
m \leqslant n-1 \tag{32}
\end{equation*}
$$

Proof. If $q \geqslant 1$, then the claim follows by Claim 3. Assume that $q=0$ and $|\operatorname{Tr}(M)|=$ $m=n$. Then, by (27), $\operatorname{Tr}(M)$ is a 2-regular spanning subgraph of G_{1}. Since $q=0$, each P_{i} is nice and so

$$
\begin{equation*}
P_{i}^{\prime} \subset H_{2}, \tag{33}
\end{equation*}
$$

by (24). Let f_{i} be any edge of P_{i}^{\prime}. Recall that $\alpha_{i}=\min \left(f_{i}\right)$, see (26) and because $P_{i}^{\prime}=P_{i}^{\prime \prime}$ by (33). If $l_{i} \in H_{1}^{2} \cup H_{2}$, then $\alpha_{i} \in \operatorname{tr}\left(e_{i}\right)$ by Proposition 7(c) applied to $P+e_{i}+e_{i+1}$. Otherwise, if $l_{i} \in H_{1}^{1}$, then $\alpha_{i} \in \operatorname{tr}\left(l_{i}\right)$, again by Proposition $7(\mathrm{c})$, this time applied to P_{i}. Since P_{i} is nice, l_{i} is not bad and so, $\operatorname{tr}\left(e_{i}\right)=\operatorname{tr}\left(l_{i}\right)$. Hence, $\alpha_{i} \in \operatorname{tr}\left(e_{i}\right)$, as before. By symmetry, $\alpha_{i} \in \operatorname{tr}\left(e_{i+1}\right)$, too. Thus, $\operatorname{Tr}(M)$ is connected and, consequently, $\operatorname{Tr}(M)$ is a hamiltonian cycle in G_{1}, a contradiction.

Claim 5. If P_{i} is nice, then

$$
\left|V\left(P_{i}^{\prime}\right)\right| \leqslant \nu\left(x_{\alpha_{i}}-2 \ell\right) .
$$

Proof. Since P_{i} is nice, $P_{i}^{\prime}=P_{i}^{\prime \prime} \subset H_{2}$ by (24). If $P_{i}^{\prime}=\emptyset$, then the claim trivially holds. Assume that $f_{i} \in P_{i}^{\prime}$. Then $\alpha_{i}=\min \left(f_{i}\right)$. Similarly, as in the proof of Claim 4, we infer that $\alpha_{i} \in \operatorname{tr}\left(e_{i}\right)$ and $\alpha_{i} \in \operatorname{tr}\left(e_{i+1}\right)$. In particular, since $e_{i}, e_{i+1} \in H_{1}^{1}, \alpha_{i} \leqslant n$. Thus, $\left|A_{\alpha_{i}} \cap e_{i}\right|=\ell$ and $\left|A_{\alpha_{i}} \cap e_{i+1}\right| \geqslant \ell$, which implies that $\left|V\left(P_{i}^{\prime}\right) \cap U_{\alpha_{i}}\right| \leqslant x_{\alpha_{i}}-2 \ell$. Therefore, the claim follows by the definitions of H_{2} and ν.

Claim 6. If P_{i} is problematic, then

$$
\left|V\left(P_{i}^{\prime}\right)\right| \leqslant \nu\left(x_{\alpha_{i}}\right)+\ell
$$

Proof. By Proposition 7(a),(b) and by the choice of M, P_{i}^{\prime} contains at most one edge, say f_{i}, from H_{1}^{2}. Moreover, this edge is the first or the last edge of P_{i}^{\prime}. The rest of P_{i}^{\prime} (i.e., P_{i}^{\prime} minus the first or the last ℓ vertices) is contained in H_{2}. Hence, by Claim 2, $\alpha_{i} \in \operatorname{tr}\left(e_{i}\right)$ or $\alpha_{i} \in \operatorname{tr}\left(e_{i+1}\right)$. In particular, $\alpha_{i} \leqslant n$. Thus, the claim follows by the definition of ν.

We are now in the position to finish the proof of Lemma 5. Suppose that there are exactly q problematic paths among the P_{i} 's. Let $I^{\prime} \subset[1, n]$ be the set of those indices i for which P_{i} is problematic, and $I^{\prime \prime}=[1, m] \backslash I^{\prime}$. By (23), Claims 5 and 6 , and Proposition 3 (applied 2ℓ times),

$$
\begin{aligned}
|V(C)| & =2 m \ell+\sum_{i=1}^{m}\left|V\left(P_{i}^{\prime}\right)\right| \\
& \leqslant 2 m \ell+\sum_{i \in I^{\prime}}\left(\nu\left(x_{\alpha_{i}}\right)+\ell\right)+\sum_{i \in I^{\prime \prime}} \nu\left(x_{\alpha_{i}}-2 \ell\right) \\
& \leqslant 2 m \ell+\sum_{i \in I^{\prime}}\left(\nu\left(x_{\alpha_{i}}-2 \ell\right)+2 \ell^{2}+\ell\right)+\sum_{i \in I^{\prime \prime}} \nu\left(x_{\alpha_{i}}-2 \ell\right) \\
& =2 m \ell+\sum_{i=1}^{m} \nu\left(x_{\alpha_{i}}-2 \ell\right)+\left(2 \ell^{2}+\ell\right) q .
\end{aligned}
$$

If $q \geqslant 1$, then (since $\nu\left(x_{\alpha_{i}}-2 \ell\right) \geqslant x_{\alpha_{i}}-2 \ell>4 \ell^{2}+2 \ell$) the maximum is attained for $m=n-1$ and $q=2$, by Claim 3. Hence,

$$
\begin{equation*}
|V(C)| \leqslant 2 n \ell+\sum_{i \in I} \nu\left(x_{\alpha_{i}}-2 \ell\right)+2\left(2 \ell^{2}+\ell\right) \tag{34}
\end{equation*}
$$

where $I \subset[1, n]$ with $|I| \leqslant n-1$. Otherwise, by Claim 4, either $m \leqslant n-1$ or $m \leqslant n$ and $P_{i}^{\prime}=\emptyset$ for some $i \in\{1, \ldots, m\}$. In both these cases (34) holds as well. Therefore, by (13), $|V(C)|<N$, and so C cannot be a hamiltonian ($\ell, 2 \ell)$-cycle, a contradiction.

4 Proof of Lemma 6.

4.1 The idea of the proof

One can easily construct n disjoint $(\ell, 2 \ell)$-paths $P_{1}, \ldots P_{n}$ in H_{2}. Each such path P_{j}, however, is relatively short. Indeed, recall that by the definition of H_{2}, every edge of P_{j} draws at least $\ell+1$ vertices from some fixed set $U_{i_{j}}$.

Edges from H_{1} will serve as bridges joining the paths P_{j}. We have seen in the proof of Lemma 5 that, since G_{1} is not Hamiltonian, we can use at most $n-1$ bridges. Fortunately, the new edge $e \notin H$ will play the role of an additional bridge in H, that, together with original $n-1$ edges of M, will 'glue' all paths P_{1}, \ldots, P_{n} into a hamiltonian ($\ell, 2 \ell$)-cycle in H.

The use of H_{3} is crucial for the argument. It allows us, when proving the existence of a hamiltonian $(\ell, 2 \ell)$-cycle in $H+e$, to restrict only to $e \in\binom{V}{2 \ell} \backslash H_{3}$, for which we know that $c(e) \geqslant \ell+1$. The remaining edges (i.e. those in $\left.H_{3} \backslash H\right)$, which are relatively rare but cumbersome, can be ignored just by the definition of H.

4.2 Proof of Lemma 6

The forthcoming proof will be illustrated by some diagrams in which we apply the following notation.

- I denotes a vertex from A_{i}
- I, I, \ldots, I denotes a sequence of different vertices from A_{i}
- i denotes a vertex from U_{i} (we do not exclude A_{i})
- i, i, \ldots, i denotes a sequence of different vertices from U_{i}
- * denotes a vertex from V
- $*, *, \ldots, *$ denotes a sequence of different vertices from V

Proof of Lemma 6. Let $e \in\binom{V}{2 \ell} \backslash H_{3}$. Recall that, by the definition of $H_{3}, c(e) \geqslant \ell+1$. For a subset $Z \subseteq \operatorname{tr}(e)$ let $e(Z)=\{u \in e: \operatorname{tr}(u) \in Z\}$. Let X be the vertex set of the component of $G^{3}[\operatorname{tr}(e)]$ which contains vertex $i=\min (e)$ and let $Y=\operatorname{tr}(e) \backslash X$. Note that, since $c(e) \geqslant \ell+1$,

$$
\begin{equation*}
|e(X)| \leqslant \ell \tag{35}
\end{equation*}
$$

If for some $s \in Y$ we have $\left|e \cap U_{s}\right| \geqslant \ell$, then let $j=s$. Otherwise, let $j=\min (e(Y))$. By the choice of j

$$
\begin{equation*}
\left|U_{t} \cap e\right| \leqslant \ell-1 \text { for all } t \notin\{i, j\} . \tag{36}
\end{equation*}
$$

Also, as i and j are in different components of $G^{3}[\operatorname{tr}(e)]$, they do not form an edge of G. Even more, if $i=n+i^{\prime}$ or $j=n+j^{\prime}$ for some $1 \leqslant i^{\prime}, j^{\prime} \leqslant n$, then, as i and j are in different components of $G^{3}[\operatorname{tr}(e)]$, we have $i j^{\prime}, i^{\prime} j, i^{\prime} j^{\prime} \notin G_{1}$ either.

Suppose first that $i, j \in\{1, \ldots, n\}$. Let P_{0} be a 3 -edge ($\ell, 2 \ell$)-path with the edge e in the middle and two edges e^{\prime} and $e^{\prime \prime}$ from H_{2}. The first ℓ vertices of e belong to $e(Y)$ and the first one of them must be from U_{j}. The last ℓ vertices of e contain $e(X)$ and the last of them must be from U_{i}. The first edge of P_{0}, e^{\prime}, begins with ℓ vertices of U_{j}, the last (third) edge of $P_{0}, e^{\prime \prime}$, ends with ℓ vertices of U_{i} (see the diagram below).

$$
\begin{equation*}
\underbrace{j j \ldots j}_{\ell} \underbrace{e(\overbrace{* *}^{Y)} \overbrace{* i}^{e(X)}}_{e} \underbrace{i i \ldots i}_{\ell} \tag{37}
\end{equation*}
$$

Due to this deliberate construction and the choice of j, we have $\min \left(e^{\prime}\right)=j$ and $\left|e^{\prime} \cap U_{j}\right| \geqslant$ $\ell+1$, so that indeed $e^{\prime} \in H_{2}$. Similarly, $e^{\prime \prime} \in H_{2}$. As observed above, $i j \notin G_{1}$.

If $i=n+i^{\prime}$ and $j=n+j^{\prime}$, then P_{0} is, if possible, of the form

In this case the first and the last edge of P_{0} belong to H_{1}^{2}, and the second and the penultimate - to H_{2}. However, by (16), this construction is not feasible if $\left|e \cap A_{i}\right|=\ell$ or $\left|e \cap A_{j}\right|=\ell$. In such cases we modify P_{0} as follows (let, say, $\left|e \cap A_{i}\right|=\ell$)

$$
\begin{equation*}
\underbrace{J^{\prime} \ldots J^{\prime}}_{\ell} \underbrace{J \ldots J}_{\ell} \underbrace{\overbrace{j * *}^{e(Y)} \overbrace{I \ldots I}^{e(X)}}_{e} \underbrace{I^{\prime} \ldots I^{\prime}}_{\ell} \tag{39}
\end{equation*}
$$

As observed above, $i^{\prime} j^{\prime} \notin G_{1}$. If $i \leqslant n$ and $j=n+j^{\prime}$, then the right-hand side of P_{0} is like in diagram (37), while the left-hand side is like in diagram (38) or (39). The construction for $i=n+i^{\prime}$ and $j \leqslant n$ is analogous.

Since G_{1} is maximally non-hamiltonian, it contains a hamiltonian path $v_{1} v_{2} \cdots v_{n-1} v_{n}$, where $v_{1} \in\left\{i, i^{\prime}\right\}$ and $v_{n} \in\left\{j, j^{\prime}\right\}$, depending on the case. Based on this hamiltonian path, we are building a hamiltonian ($\ell, 2 \ell$)-cycle in H as follows.

Note that by (35) and by the construction of P_{0}

$$
\left|U_{t} \cap P_{0}\right| \leqslant\left\{\begin{array}{l}
2 \ell-1 \text { for } t \in\left\{v_{1}, v_{n}\right\} \tag{40}\\
\ell-1 \text { for } t \in\left\{v_{2}, \ldots, v_{n-1}\right\} .
\end{array}\right.
$$

First, we construct $n-1$ pairwise disjoint edges, $e_{1} \ldots, e_{n-1} \in H_{1}$, such that they are also disjoint from e and for each $t=1, \ldots, n-1, e_{t}$ contains ℓ vertices from $A_{v_{t}}$ followed by ℓ vertices from $A_{v_{t+1}}$ (see the diagram below)

$$
\underbrace{V_{t}, \ldots, V_{t}}_{\ell} \underbrace{V_{t+1}, \ldots, V_{t+1}}_{\ell} .
$$

By (40) and (16), this construction is possible.
Next, we construct $n(\ell, 2 \ell)$-paths $P_{t} \subseteq H_{2}, t=1, \ldots, n$, such that P_{t} consists of all vertices from $U_{v_{t}} \backslash\left(V\left(P_{0}\right) \cup \bigcup_{t=1}^{n-1} e_{t}\right)$ and some vertices from $\bigcup_{j=n+1}^{2 n} U_{j}$, and $\left|V\left(P_{t}\right)\right|$ is as large as possible. We will do it in two stages. First, instead of $\bigcup_{j=n+1}^{2 n} U_{j}$ we use vertices from some (abstract) infinite set B and denote the resulting ($\ell, 2 \ell$)-paths by P_{t}^{\prime}.

Recall that $\left|U_{i}\right|=x_{i}$ and that the set $e_{i-1} \cup e_{i}$ contains already 2ℓ vertices of U_{i}. Hence, if $U_{v_{i}} \cap e=\emptyset$, then we still have to use $x-2 \ell$ vertices from $U_{v_{i}}$ and so, recalling the definition of $\nu\left(x_{i}\right)$,

$$
\begin{equation*}
\left|V\left(P_{i}^{\prime}\right)\right|=\nu\left(x_{i}-2 \ell\right) . \tag{41}
\end{equation*}
$$

Otherwise, quite roughly,

$$
\begin{equation*}
\left|V\left(P_{i}^{\prime}\right)\right| \geqslant \nu\left(x_{i}-4 \ell\right) \geqslant \nu\left(x_{i}-2 \ell\right)-2 \ell^{2}, \tag{42}
\end{equation*}
$$

by Proposition 3. Note that since $|e| \leqslant 2 \ell$, e intersects at most 2ℓ sets U_{t}. Bearing this in mind, we now estimate from below the total number N^{\prime} of vertices appearing in all so far constructed elements:

$$
\begin{aligned}
N^{\prime} & =\left|P_{0}\right|+\sum_{t=1}^{n-1}\left|e_{t}\right|+\sum_{t=1}^{n}\left|P_{t}^{\prime}\right| \\
& \geqslant 2(n+1) \ell+\sum_{t, U_{t} \cap e=\emptyset} \nu\left(x_{t}-2 \ell\right)+\sum_{t, U_{t} \cap e \neq \emptyset}\left(\nu\left(x_{t}-2 \ell\right)-2 \ell^{2}\right) \\
& \geqslant 2(n+1) \ell+\sum_{t=1}^{n} \nu\left(x_{t}-2 \ell\right)-4 \ell^{3}>N,
\end{aligned}
$$

where the last inequality holds by (13). Note that both, N^{\prime} and N, are divisible by ℓ. We remove $N^{\prime}-N$ vertices of B from the paths $P_{1}^{\prime}, \ldots, P_{t}^{\prime}$ in such a way that each path P_{t}^{\prime} gets shorter by a multiple of ℓ vertices and the vertices removed from each P_{t}^{\prime} are the first vertices of $V\left(P_{t}^{\prime} \cap B\right)$ according to the order of appearance on P_{t}^{\prime}. Treating the remaining vertices as consecutive, we thus obtain a collection of paths $P_{t}^{\prime \prime}$ such that each edge of $P_{t}^{\prime \prime}$ still has at least $\ell+1$ vertices of $U_{v_{t}}$. Now we arbitrarily replace the remaining vertices of B by the vertices of $\bigcup_{j=n+1}^{2 n} U_{j}$, obtaining the desired paths $P_{t} \in H_{2}$.

Finally, note that the sequence

$$
S=P_{0}, P_{1}, e_{1}, P_{2}, e_{2}, P_{3}, \ldots, e_{n-1}, P_{n} .
$$

spans a hamiltonian $(\ell, 2 \ell)$-cycle in $H_{1} \cup H_{2}+e$. Indeed, the last ℓ vertices of P_{0} and the first ℓ vertices of P_{1} together contain at least $\ell+1$ vertices of $U_{v_{1}}$ and thus they form an edge of H_{2}. So do the last ℓ vertices of P_{1} and the first ℓ vertices of e_{1}, etc. Finally, the last ℓ vertices of P_{n} and the first ℓ vertices of P_{0} together contain at least $\ell+1$ vertices of $U_{v_{n}}$ and so they also form an edge of H_{2}.

Acknowledgements

We are extremely grateful to an anonymous referee for their careful reading of the manuscript and valuable and insightful comments leading ultimately to a much better version of the paper than originally submitted.

References

[1] J. A. Bondy. Variations on the hamiltonian theme. Canad. Math. Bull., 15:57-62, 1972.
[2] L. Clark and R. Entringer, Smallest maximally non-hamiltonian graphs, Period. Math. Hungar. 14(1), 1983, 57-68.
[3] L. Clark, R. Crane, R. Entringer and H. Shapiro. On smallest maximally nonhamiltonian graphs. In Proceedings of the seventeenth Southeastern international conference on combinatorics, graph theory, and computing (Boca Raton, Fla., 1986), 53:215-220, 1986.
[4] L. H. Clark, R. C. Entringer, H. D. Shapiro. Smallest maximally non-hamiltonian graphs II. Graphs Combin., 8:225-231, 1992.
[5] R. Glebov, Y. Person and W. Weps, On extremal hypergraphs for hamiltonian cycles. European J. Combin., 33:544-555, 2012.
[6] G. Y. Katona, Hamiltonian chains in hypergraphs, A survey. Graphs, Combinatorics, Algorithms and its Applications, (ed. S. Arumugam, B. D. Acharya, S. B. Rao), Narosa Publishing House 2004.
[7] G. Y. Katona and H. Kierstead, Hamiltonian chains in hypergraphs. J. Graph Theory, 30:205-212, 1999.
[8] A. Ruciński and A. Żak, Hamilton saturated hypergraphs of essentially minimum size, Electron. J. Combin., 20(2), 2013, \#P25.
[9] A. Ruciński and A. Żak, Upper Bounds on the Minimum Size of Hamilton Saturated Hypergraphs, Electron. J. Comb., 23(4), 2016, \#P4. 12
[10] A. Żak, Growth order for the size of smallest hamiltonian chain saturated uniform hypergraphs. European J. Combin., 34:724-735, 2013.

[^0]: *Research supported by the Polish NSC grants 2014/15/B/ST1/01688 and 2018/29/B/ST1/00426.
 ${ }^{\dagger}$ Research partially supported by the Polish Ministry of Science and Higher Education.

