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Abstract

For 1 ⩽ ℓ < k, an ℓ-overlapping k-cycle is a k-uniform hypergraph in which,
for some cyclic vertex ordering, every edge consists of k consecutive vertices and
every two consecutive edges share exactly ℓ vertices. A k-uniform hypergraph H
is ℓ-hamiltonian saturated if H does not contain an ℓ-overlapping hamiltonian k-
cycle but every hypergraph obtained from H by adding one edge does contain
such a cycle. Let sat(N, k, ℓ) be the smallest number of edges in an ℓ-hamiltonian
saturated k-uniform hypergraph on N vertices. In the case of graphs Clark and
Entringer showed in 1983 that sat(N, 2, 1) = ⌈3N2 ⌉. The present authors proved
that for k ⩾ 3 and ℓ = 1, as well as for all 0.8k ⩽ ℓ ⩽ k − 1, sat(N, k, ℓ) = Θ(N ℓ).
Here we prove that sat(N, 2ℓ, ℓ) = Θ

(
N ℓ

)
.

Mathematics Subject Classifications: 05C65

1 Introduction

A k-uniform hypergraph (k-graph for short) is a pair H = (V,E), where V is a finite set
(of vertices) and E ⊆

(
V
k

)
is a family of k-element subsets of V called edges of H. We will

often identify H with its vertex set E. For instance, we will denote by |H| the number of
edges in H.

Given integers 1 ⩽ ℓ < k, we define an ℓ-overlapping k-cycle or, shortly, (ℓ, k)-cycle,
as a k-graph in which, for some cyclic ordering of its vertices, every edge consists of
k consecutive vertices, and every two consecutive edges (in the natural ordering of the
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edges induced by the ordering of the vertices) share exactly ℓ vertices. An ℓ-overlapping
k-path (or (ℓ, k)-path) is defined similarly, that is, with vertices ordered v1, . . . , vs, the
edges of the path are {v1, . . . , vk}, {vk−ℓ+1, . . . , vk+ℓ}, . . . , {vs−k+1, . . . , vs}. Note that
the number of edges of an (ℓ, k)-cycle with s vertices is s/(k − ℓ) (and thus, s is divisible
by k − ℓ). Likewise, it can be easily seen that the number of vertices of an (ℓ, k)-path
equals ℓ modulo k − ℓ.

Given a k-graph H and a k-element set e ∈ Hc, where Hc =
(
V
k

)
\H is the complement

of H, we denote by H + e the hypergraph obtained from H by adding e to its edge set.
For 1 ⩽ ℓ ⩽ k − 1, a k-graph H is ℓ-hamiltonian saturated (a.k.a. maximally non-ℓ-
hamiltonian) if H is not ℓ-hamiltonian but for every e ∈ Hc the k-graph H + e is such.
The largest number of edges in an ℓ-hamiltonian saturated k-graph on N vertices has
been determined in [5].

In this paper we are interested in the other extreme. For N divisible by k − ℓ, let
sat(N, k, ℓ) be the smallest number of edges in an ℓ-hamiltonian saturated k-graph on N
vertices. In the case of graphs, Clark and Entringer proved in 1983 that

sat(N, 2, 1) = ⌈3N
2
⌉ for N ⩾ 52. (1)

For k-graphs with k ⩾ 3 the problem was first mentioned in [6, 7]. It seems to be
quite hard to obtain such precise results as for graphs. Therefore, the emphasis has been
put on the order of magnitude of sat(N, k, ℓ). It is quite easy to see that

sat(N, k, ℓ) = Ω(N ℓ), for all k ⩾ 3, 1 ⩽ ℓ ⩽ k − 1, (2)

(see, e.g., Proposition 2.1 in [8]). The present authors proved in [8] that for k ⩾ 3 and
ℓ = 1, as well as for all 0.8k ⩽ ℓ ⩽ k − 1,

sat(N, k, ℓ) = Θ(N ℓ) (3)
(see [10] for the case ℓ = k−1). We also conjectured that (3) holds true for all 1 ⩽ ℓ ⩽ k−1.
In [9] we proved a weaker general upper bound

sat(N, k, ℓ) = O
(
N

k+ℓ
2

)
.

In the same paper we improved the above bound in the smallest open case by showing
that sat(N, 4, 2) = O

(
N

14
5

)
. In this paper we confirm our conjecture in the middle of

the range.
Theorem 1. For all ℓ ⩾ 2 and N divisible by ℓ, sat(N, 2ℓ, ℓ) = Θ

(
N ℓ

)
.

Our proof combines two general approaches to this type of problems developed, re-
spectively, in [8] and [10, 9].

2 Construction

In this section, after setting some parameters, we will describe our construction and
present the proof of Theorem 1 based on two lemmas which will be proved later.
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2.1 Parameters setting

We need to choose the values of some parameters carefully and in doing so a pivotal role
is played by the following notion. Given a positive integer x, let C and D be two disjoint
sets with |C| = x and |D| = ∞. Let ν(x) = maxP |V (P )|, where the maximum is taken
over all (ℓ, 2ℓ)-paths P which are subgraphs of the complete 2ℓ-uniform hypergraph with
vertex set C ∪D and such that

C ⊂ V (P ) ⊂ C ∪D and |e ∩ C| ⩾ ℓ+ 1 for all e ∈ P. (4)

Proposition 2. If x ⩾ ℓ+ 1, then

ν(x) =

{
x 2ℓ
ℓ+1

, if (ℓ+ 1)|x ,⌊
x

ℓ+1

⌋
2ℓ+ ℓ, otherwise.

(5)

In particular,
ν(x) ⩾ 2ℓ

ℓ+ 1
x− ℓ. (6)

Proof. Let x = q(ℓ + 1) + r, where q =
⌊

x
ℓ+1

⌋
and 0 ⩽ r ⩽ ℓ. Let P be an (ℓ, 2ℓ)-path

with |V (P )| = ν(x) and t edges satisfying (4). Let e1, . . . , et be the edges of P in the
linear order underlying P . Set s =

⌊
t+1
2

⌋
. Clearly, t ∈ {2s − 1, 2s}. Recall that, by (4),

|ei ∩ C| ⩾ ℓ + 1 for each i ∈ {1, . . . , 2s − 1}. Hence, s ⩽ q, because e1, e3, . . . , e2s−1 are
pairwise disjoint. Also by (4), if t = 2s, then

(et ∩ C) \
s∪

j=1

e2j−1 = (et ∩ C) \ e2s−1 ̸= ∅.

Thus, if r = 0, then t = 2s−1 and |V (P )| = s·2ℓ. Otherwise, t ⩽ 2s and |V (P )| ⩽ s·2ℓ+ℓ,
and so the right-hand-side of (5) is the upper bound on |V (P )|.

To show equality in (5), let us view P as a binary sequence Q, where each vertex of C
is represented by a symbol c and each vertex of V (P ) ∩D is represented by a symbol d.
(And the edges of P follow the sequence Q according to the definition of an (ℓ, 2ℓ)-path.)
We now construct a sequence Q which yields a path P satisfying (4) and with |V (P )|
equal to the R-H-S of (5).

Let Q begin with ℓ − 1 vertices from D and then traverse a group of ℓ + 1 vertices
from C, and so on q times. If r > 0, then at the end we add r vertices from C followed
by ℓ− r vertices from D (see (7) below).

e1︷ ︸︸ ︷
d, . . . , d︸ ︷︷ ︸

ℓ−1

, c, . . . , c︸ ︷︷ ︸
ℓ+1

e3︷ ︸︸ ︷
d, . . . , d︸ ︷︷ ︸

ℓ−1

, c, . . . , c︸ ︷︷ ︸
ℓ+1

· · ·
e2q−1︷ ︸︸ ︷

d, . . . , d︸ ︷︷ ︸
ℓ−1

, c, . . . , c︸ ︷︷ ︸
ℓ+1

, (c, . . . , c︸ ︷︷ ︸
r

, d, . . . , d)︸ ︷︷ ︸
ℓ−r

(7)

It is easy to check that P satisfies (4). Clearly, |V (P )| = q · 2ℓ, if r = 0, and |V (P )| =
q · 2ℓ+ ℓ, if r > 0.
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The function ν(x) is non-decreasing, but, as an immediate consequence of Proposition
2, it cannot increase too fast.
Proposition 3. For all x ⩾ 1 we have ν(x − 1) ⩾ ν(x) − ℓ. Moreover, if x or x − 1 is
divisible by ℓ+ 1, then ν(x− 1) = ν(x)− ℓ.

Proof. Let x = q(ℓ + 1) + r as in the proof of Proposition 2. It is easy to check that, by
(5), if 2 ⩽ r ⩽ ℓ, then ν(x−1) = ν(x), while in the remaining two cases, r = 0 and r = 1,
we have ν(x− 1) = ν(x)− ℓ.

We now define parameters and sets our construction will rely upon. Let

N0 = 100ℓ5 (8)

and let N ⩾ N0 be an integer divisible by ℓ. Define integers

n =

⌊
N + 4ℓ3

8ℓ3 + 2ℓ

⌋
(9)

and
a =

N + 4ℓ3 − n(8ℓ3 + 2ℓ)

ℓ
. (10)

Using (8), it is easy to check that

n ⩾ 10ℓ2. (11)

Moreover, by (9), n > N+4ℓ3

8ℓ3+2ℓ
− 1, which is equivalent to a < 8ℓ2 + 2. Consequently, in

view of (11), a ⩽ n− 1. Let

xi =

{
4ℓ2(ℓ+ 1) + 2ℓ+ 1, i = 1, . . . , a,

4ℓ2(ℓ+ 1) + 2ℓ, i = a+ 1, . . . , n.
(12)

Proposition 4. For each I ⊂ {1, . . . , n} with |I| = n− 1

2nℓ+
∑
i∈I

ν(xi − 2ℓ) + 4ℓ2 + 4ℓ < N < (2n+ 2)ℓ+
n∑

i=1

ν(xi − 2ℓ)− 4ℓ3. (13)

Proof. By (5) and (12),

ν(xi − 2ℓ) =

{
8ℓ3 + ℓ, i = 1, . . . , a

8ℓ3, i = a+ 1, . . . , n.
(14)

By (14) and (10),
n∑

i=1

ν(xi − 2ℓ) = a(8ℓ3 + ℓ) + (n− a)(8ℓ3) = aℓ+ 8nℓ3 = N + 4ℓ3 − 2nℓ, (15)
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thus, the second inequality of (13) holds. On the other hand, by (14) and (15),

∑
i∈I

ν(xi − 2ℓ) ⩽
n∑

i=1

ν(xi − 2ℓ)− 8ℓ3 = N − 4ℓ3 − 2nℓ < N − (4ℓ2 + 4ℓ)− 2nℓ,

where the last inequality holds, since ℓ ⩾ 2. Hence, the first inequality of (13) holds
too.

Let Ai and Bi, i = 1, . . . , 2n, be a family of 4n pairwise disjoint sets with sizes:

|Ai| =

{
3ℓ− 1 for i = 1, . . . , n

2ℓ− 1 for i = n+ 1, . . . , 2n,
(16)

and

|Bi| =

{
xi − 3ℓ+ 1 for i = 1, . . . , n

bi for i = n+ 1, . . . , 2n,
(17)

where the bi’s differ from each other by at most one and are chosen in such a way that

2n∑
i=1

(|Ai|+ |Bi|) = N. (18)

Observe that bi’s are well defined and positive. Indeed, by (16), (17), (12), and (10), using
also the inequality 4ℓn(ℓ2+ ℓ+1) ⩽ 8ℓ3+2ℓn− 4ℓ3, which, due to (11), is valid for ℓ ⩾ 2,

2n∑
i=1

|Ai|+
n∑

i=1

|Bi| = n(2ℓ− 1) +
n∑

i=1

xi = n(2ℓ− 1) + a+ n(4ℓ2(ℓ+ 1) + 2ℓ)

< aℓ+ 4ℓn(ℓ2 + ℓ+ 1)− n ⩽ N − n.

Finally, since the bi’s differ from each other by at most one, we have that, by the
R-H-S of (13) and by (14), for i = n+ 1, . . . , 2n,

|Ai|+ |Bi| ⩽
⌈
N

n

⌉
<

N

n
+ 1 <

n ·maxi ν(xi − 2ℓ) + 2nℓ

n
+ 1

<
n(8ℓ3 + ℓ) + 2nℓ

n
+ 1 = 8ℓ3 + 3ℓ+ 1 < 10ℓ3. (19)

2.2 Main construction

Our construction stems from a base graph G which consists of a maximally non-hamilto-
nian graph G1 on n vertices {1, . . . , n} with bounded degree to which n pendant vertices
{n + 1, . . . , 2n} have been added, so that for each i = 1, . . . , n, the pair {i, n + i} is an
edge of G. By analyzing the constructions in [2, 3, 4] one can see that the hamiltonian
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saturated graphs obtained there do have bounded maximum degree. An alternative way
is by combining (1) with a result of Bondy [1] (cf. [8]).

Fix ℓ ⩾ 2. The desired 2ℓ-graph H will be defined on an N -vertex set

V =
2n∪
i=1

Ui,

where Ui = Ai ∪ Bi and Ai, Bi are given in the previous subsection. Note that, by (12),
for each i = 1, . . . , n, we have |Ai ∪ Bi| = xi ⩽ 10ℓ3. This and (19) imply together that
for all i = 1, . . . , 2n,

|Ui| ⩽ 10ℓ3. (20)
Before defining the edge set of H, we need some more terminology and notation, which

will be illustrated by an example. For a graph F and a set U ⊂ V (F ), denote by F [U ]
the subgraph of F induced by U . For S ⊂ V , set

tr(S) = {i : S ∩ Ui ̸= ∅} and min(S) = min {i ∈ tr(S)}

(The set tr(S) is often called the trace of S, but we will not use this name here.)
Example 1. In Fig. 1 we have tr(e1) = {1, 2}, tr(e2) = {1, 3, 2n}, tr(e3) = {2, 3} and
tr(e4) = {3, n+ 1} and thus, min(e1) = 1, min(e2) = 1, min(e3) = 2 and min(e4) = 3.

Further, let c(S) be the number of connected components of G3[tr(S)], where G3 is
the third power of G, that is, the graph with the same vertex set as G, but with edges
joining all pairs of distinct vertices at distance at most three in G.

The role of the third power can be explained as follows. In order to find a hamiltonian
(ℓ, 2ℓ)-cycle in H + e, we will look for a hamiltonian path between two non-adjacent
vertices of G1, selected from the vertices of tr(e) or their neighbors. In the worst case,
tr(e) ⊂ {n + 1, . . . , 2n} and we will be forced to find a hamiltonian path between the
neighbors u, v of some vertices n+u and n+v. Our construction will yield c(e) ⩾ ℓ+1 ⩾ 2
which allows us to select n+u and n+v so that they are non-adjacent in G3. Consequently,
u and v will be non-adjacent in G1, which, by the choice of G1, guarantees the existence
(in G1) of a hamiltonian path between u and v.

We define the ultimate 2ℓ-graph H via three other hypergraphs. Let

H1 =

{
e ∈

(
V

2ℓ

)
: tr(e) ∈ G and |Ai ∩ e| = ℓ for both i ∈ tr(e)

}
.

We split H1 = H1
1 ∪H2

1 , where H1
1 = {e ∈ H1 : tr(e) ∈ G1}. Further, let

H2 =

{
e ∈

(
V

2ℓ

)
:
∣∣e ∩ Umin(e)

∣∣ ⩾ ℓ+ 1

}
.

Example 2. Recall that, in Fig.1, tr(e1) = {1, 2}. Moreover, |e ∩ A1| = |e ∩ A2| = 3 = ℓ.
Thus, if {1, 2} is an edge of G, then e1 ∈ H1 (more precisely, e1 ∈ H1

1 ). Furthermore,
tr(e2) = {1, 3, 2n} and min(e2) = 1. Since |e2 ∩ U1| = 4 = ℓ + 1, we have e2 ∈ H2.
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Similarly, |e4∩U3| = 5 ⩾ ℓ+1, so e4 ∈ H2 too. Finally, |e3 ∩U3| ⩾ ℓ+1, but min(e3) = 2
and |e3 ∩ U2| = 1. Hence e3 ̸∈ H2. Since e3 ̸⊂ A2 ∪ A3, e3 ̸∈ H1 either, regardless of
whether {2, 3} is an edge of G or not.
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Figure 1: An illustration to construction: ℓ = 3.

Note that if P is an (ℓ, 2ℓ)-path in H2, then there is an index i such that every edge
of P draws at least ℓ + 1 vertices from Ui. Indeed, let e, e′ ∈ P with |e ∩ e′| = ℓ. Let
i = min(e). Since |e∩Ui| ⩾ ℓ+1, |e′∩Ui| ⩾ 1. Hence, i ∈ tr(e′) and so min(e′) ⩽ min(e).
By symmetry, min(e) ⩽ min(e′). Thus min(e′) = min(e) = i. By transitivity, min(f) = i
for every f ∈ P .

The third element of the construction is

H3 =

{
e ∈

(
V

2ℓ

)
: c(e) ⩽ ℓ

}
.

Note that
H1 ∪H2 ⊆ H3, (21)

where H1∪H2 is a 2ℓ-graph with vertex set V whose edge set is the union of the edge sets
of H1 and H2. Indeed, if e ∈ H1, then tr(e) ∈ G1 and so c(e) = 1 ⩽ ℓ. If e ∈ H2, then
|e ∩ Umin(e)| ⩾ ℓ + 1 and, consequently, |tr(e)| ⩽ 1 + (ℓ − 1) = ℓ. Clearly, c(e) ⩽ |tr(e)|,
hence (21) follows.

We are going to show (cf. Lemma 5 in Section 3) that H1 ∪H2 is non-ℓ-hamiltonian.
Finally, we define H as a non-ℓ-hamiltonian 2ℓ-graph satisfying the containments

H1 ∪H2 ⊆ H ⊆ H3
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and such that H + e is ℓ-hamiltonian for every e ∈ H3 \H. (If H3 is non-ℓ-hamiltonian
itself, we set H = H3.)

2.3 Proof of Theorem 1

In [8] we proved the following result. Let comp(F ) denote the number of connected
components of a graph F .
Claim 1. Let r, ℓ, and ∆ be constants. If ∆(G) ⩽ ∆, then the number of r-element
subsets T ⊆ V (G) with comp(G[T ]) ⩽ ℓ is O(nℓ).

Theorem 1 is an consequence of Claim 1, our construction presented in the previous
subsection, and the following two lemmas the proofs of which are deferred to the later
sections. Lemma 5 guarantees that the definition of H is not vacuous.
Lemma 5. H1 ∪H2 is non-ℓ-hamiltonian.

Lemma 6 implies quickly that H is indeed ℓ-hamiltonian saturated (see the proof of
Theorem 1 below.)
Lemma 6. For every e ∈

(
V
2ℓ

)
\H3, the 2ℓ-graph H1 ∪H2 + e is ℓ-hamiltonian.

Proof of Theorem 1. By (2), sat(N, 2ℓ, ℓ) = Ω(N ℓ). In order to prove the upper bound,
we begin by showing that |H| = O(N ℓ). Observe that

H3 =
∪

T⊂V (G)

{
e ∈

(
V

2ℓ

)
: tr(e) = T

}
,

where the sum is over all subsets T of V (G) of size at most 2ℓ with comp(G3[T ]) ⩽ ℓ.
Since G1 has bounded degree, so does G and G3. Thus, by Claim 1 with r ⩽ 2ℓ, the
number of such subsets T is O(nℓ). Moreover, given T ,∣∣∣∣∣

{
e ∈

(
V

2ℓ

)
: tr(e) = T

} ∣∣∣∣∣ ⩽
(∑

i∈T |Ui|
2ℓ

)
⩽ (|T | · 10ℓ3)2ℓ = O(1),

by (20). Consequently, |H3| = O(nℓ) = O(N ℓ) and, thus, also |H| = O(N ℓ).
It remains to show that H is ℓ-hamiltonian saturated. Recall that, by construction

(and Lemma 5), H is non-ℓ-hamiltonian. Let e ∈
(
V
2ℓ

)
\H. If e ∈ H3 then, by the definition

of H, H+e is ℓ-hamiltonian. On the other hand, if e ∈
(
V
2ℓ

)
\H3, then H+e ⊇ H1∪H2+e

is ℓ-hamiltonian by Lemma 6. This shows that H is, indeed, ℓ-hamiltonian saturated and
thus, the proof of Theorem 1 is completed.

3 Proof of Lemma 5.

3.1 (ℓ, 2ℓ)-paths in H1 ∪ H2

Before turning to the actual proof, we first prove a result about (ℓ, 2ℓ)-paths in H1 ∪H2.
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Proposition 7. Let m ⩾ 1 and P = (e, e1, . . . , em, e
′) be an (ℓ, 2ℓ)-path in H1 ∪ H2 such

that e, e′ ∈ H1
1 and ei ∈ H2

1 ∪H2, i = 1, . . . ,m. The following hold:
(a) P does not contain an edge f ∈ H2

1 disjoint from e ∪ e′;
(b) P does not contain two disjoint edges f, f ′ ∈ H2

1 ;
(c) min(ei) ∈ tr(e) ∩ tr(e′), i = 1, . . . ,m.
In the proof of Proposition 7, we will need the following result.

Claim 2. Let m ⩾ 1 and let P = (e, e1, . . . , em, e
′) be an (ℓ, 2ℓ)-path such that e, e′ ∈ H1

and ei ∈ H2, i = 1, . . . ,m. Then min(e1) = · · · = min(em) ∈ tr(e) ∩ tr(e′), i = 1, . . . ,m.

Proof. Let α = min(e1). Then, by the definition of H2 and the fact that |e1\e2| = ℓ < ℓ+1,
we have α ∈ tr(e2). Hence, min(e2) ⩽ α = min(e1). By symmetry, min(e1) ⩽ min(e2).
Thus, min(e1) = min(e2). By transitivity, min(ei) = α for every i = 1, . . . ,m. By the
same token, α ∈ tr(e) and α ∈ tr(e′).

Proof of Proposition 7. Since m ⩾ 1, we have e ∩ e′ = ∅. If P does not contain any
edge of H2

1 , then the statements (a) and (b) are vacuous, while (c) follows from Claim 2.
Assume that H2

1 ∩P = {f1, . . . , ft} where t ⩾ 1 and fj, j = 1, . . . , t, are listed in order of
appearance on P . Let tr(f1) = {α, n+ α}. Furthermore, let f0 = e and ft+1 = e′.

If fj ∩ fj+1 ̸= ∅ then, trivially,

tr(fj) ∩ tr(fj+1) ̸= ∅ j = 0, 1, . . . , t. (22)

Otherwise, (22) holds by Claim 2. It follows by the structure of G that tr(fj) = {α, n+α},
j = 1, . . . , t, and α ∈ tr(fj), j ∈ {0, t+ 1}, that is, α ∈ tr(e) ∩ tr(e′).

Since e ∩ e′ = ∅ and |Aα ∩ fj| = ℓ for every j ∈ {0, . . . , t + 1}, (a) holds by the first
part of (16), while (b) holds by the second part of (16). Note that it follows that (c) holds
for every edge fj, j = 1, . . . , t, that is, for every edge ei ∈ H2

1 .
Let us now consider e′′ ∈ P ∩ H2. If m ⩾ 3, then, by (a) and (b), the only edge in

{e1, . . . , em} ∩H2
1 is either {e1} or {em}. Without loss of generality assume that e1 ∈ H2

1

and em ∈ H2. (For m = 2, we may assume the same with e′′ = em.) By Claim 2 applied
to the path from e1 to e′, we conclude that min(e′′) ∈ tr(e1) = {α, n + α}, as well as,
min(e′′) ∈ tr(e′) ⊂ {1, . . . , n}. Hence, min(e′′) = α ∈ tr(e) ∩ tr(e′) and (c) holds.

3.2 Proof of Lemma 5.

In this subsection we complete the proof of Lemma 5.

Proof of Lemma 5. Suppose C is a hamiltonian (ℓ, 2ℓ)-cycle in H1 ∪ H2. We are going
show that |V (C)| < N which will be a contradiction. Our proof at some point (cf.
proof of Claim 4) relies on the assumption that the graph G1 is not hamiltonian. Let
M = {e1, . . . , em} be a maximal set of pairwise disjoint edges of C ∩ H1

1 , listed in the

the electronic journal of combinatorics 27(4) (2020), #P4.36 9



order of appearance on C. Further, for i = 1, . . . ,m, let Pi be the (ℓ, 2ℓ)-path in C joining
the last ℓ vertices of ei with the first ℓ vertices of ei+1, where em+1 := e1. Notice that

C \M =
m∪
i=1

Pi, (23)

where all Pi’s are vertex disjoint, see Fig. 2.

P ′
i P ′

i+1P ′
i−1

Pi

li+1liri−1

ei

ri

ei+1

b b b b b b b b b b b b b b b bb b b bb b b b b b b b b b b bb b b b b b b b

Pi−1 Pi+1

Figure 2: Fragment of C

Let li be the first edge of Pi and ri be the last edge of Pi (note that they may coincide).
We also define P ′

i to be the (ℓ, 2ℓ)-path arising from Pi by removing both li and ri. Note
that, by the definition of M ,

P ′
i ⊂ H2

1 ∪H2. (24)

We call P ′
i trivial if P ′

i ⊂ H2
1 . We further define

P ′′
i = P ′

i ∩H2. (25)

Note that P ′′
i is an (ℓ, 2ℓ)-path, too. Indeed, by Proposition 7a), every edge in P ′

i ∩ H2
1

intersects li or ri (and thus, is the first or the last edge of P ′
i ).

If P ′′
i is non-empty, then let

αi = min(f) for every f ∈ P ′′
i (26)

By Claim 2, αi is well defined.
Observe that each edge e ∈ (H1

1 ∩ C) \ M intersects some ei ∈ M , so e = li or
e = ri−1. We call an edge li (or ri) bad if it belongs to H1

1 , |Pi| ⩾ 2, and tr(li) ̸= tr(ei)
(tr(ri) ̸= tr(ei+1), resp.). We call Pi problematic if either li or ri is bad or P ′

i contains an
edge from H2

1 . Otherwise, we call Pi nice.
Let Tr(M) = {tr(e) : e ∈ M} be a graph defined by the traces of edges in M . Clearly,

|Tr(M)| = m. Since, for each e ∈ M and j ∈ tr(e), |e ∩ Aj| = ℓ,

∆(Tr(M)) ⩽ 2, (27)

the electronic journal of combinatorics 27(4) (2020), #P4.36 10



by (16). In particular

m ⩽ n. (28)

We need, however, better bounds on m. Let q be the number of problematic (ℓ, 2ℓ)-paths
among P1, . . . , Pm.
Claim 3.

m ⩽
⌊
n− q

2

⌋
(29)

Proof. Let P be problematic. Suppose e is a bad edge in P . If e = li then since tr(li) ̸=
tr(ei), there exists β ∈ tr(e) such that |(e ∩ Aβ) \ ei| = ℓ. Since |P | ⩾ 2,

|(e ∩ Aβ) \ (ei ∪ ei+1)| = ℓ, (30)

as well. By symmetry, the same holds if e = ri. If P ′ contains an edge e which belongs
to H2

1 , then (30) is also true, since e does not intersect any edge of M . To sum up, for
each i = 1, . . . ,m, there exists βi ∈ tr(Pi) such that∣∣∣∣∣(V (Pi) ∩ Aβi

) \
m∪
j=1

ej

∣∣∣∣∣ ⩾
{
ℓ if Pi is problematic
0 otherwise.

(31)

Note that βi’s need not be different. Since |Aβi
| ⩽ 3ℓ−1, (31) implies that degTr(M)(βi) ⩽ 1

if Pi is problematic (and degTr(M)(βi) ⩽ 2 if not). If two problematic Pi’s yield the same
βi as above, then we conclude that degTr(M)(βi) = 0. Thus,

n∑
i=1

degTr(M)(βi) ⩽ 2n− q.

Therefore,
m = |Tr(M)| ⩽

⌊
2n− q

2

⌋
.

Claim 4. Suppose that P ′
i ̸= ∅ for every i = 1, . . . ,m. Then

m ⩽ n− 1 (32)

Proof. If q ⩾ 1, then the claim follows by Claim 3. Assume that q = 0 and |Tr(M)| =
m = n. Then, by (27), Tr(M) is a 2-regular spanning subgraph of G1. Since q = 0, each
Pi is nice and so

P ′
i ⊂ H2, (33)

by (24). Let fi be any edge of P ′
i . Recall that αi = min(fi), see (26) and because P ′

i = P ′′
i

by (33). If li ∈ H2
1 ∪ H2, then αi ∈ tr(ei) by Proposition 7(c) applied to P + ei + ei+1.

Otherwise, if li ∈ H1
1 , then αi ∈ tr(li), again by Proposition 7(c), this time applied to Pi.

Since Pi is nice, li is not bad and so, tr(ei) = tr(li). Hence, αi ∈ tr(ei), as before. By
symmetry, αi ∈ tr(ei+1), too. Thus, Tr(M) is connected and, consequently, Tr(M) is a
hamiltonian cycle in G1, a contradiction.
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Claim 5. If Pi is nice, then
|V (P ′

i )| ⩽ ν(xαi
− 2ℓ).

Proof. Since Pi is nice, P ′
i = P ′′

i ⊂ H2 by (24). If P ′
i = ∅, then the claim trivially holds.

Assume that fi ∈ P ′
i . Then αi = min(fi). Similarly, as in the proof of Claim 4, we infer

that αi ∈ tr(ei) and αi ∈ tr(ei+1). In particular, since ei, ei+1 ∈ H1
1 , αi ⩽ n. Thus,

|Aαi
∩ei| = ℓ and |Aαi

∩ei+1| ⩾ ℓ, which implies that |V (P ′
i ) ∩ Uαi

| ⩽ xαi
−2ℓ. Therefore,

the claim follows by the definitions of H2 and ν.

Claim 6. If Pi is problematic, then

|V (P ′
i )| ⩽ ν(xαi

) + ℓ.

Proof. By Proposition 7(a),(b) and by the choice of M , P ′
i contains at most one edge, say

fi, from H2
1 . Moreover, this edge is the first or the last edge of P ′

i . The rest of P ′
i (i.e., P ′

i

minus the first or the last ℓ vertices) is contained in H2. Hence, by Claim 2, αi ∈ tr(ei)
or αi ∈ tr(ei+1). In particular, αi ⩽ n. Thus, the claim follows by the definition of ν.

We are now in the position to finish the proof of Lemma 5. Suppose that there are
exactly q problematic paths among the Pi’s. Let I ′ ⊂ [1, n] be the set of those indices i
for which Pi is problematic, and I ′′ = [1,m]\I ′. By (23), Claims 5 and 6, and Proposition
3 (applied 2ℓ times),

|V (C)| = 2mℓ+
m∑
i=1

|V (P ′
i )|

⩽ 2mℓ+
∑
i∈I′

(ν(xαi
) + ℓ) +

∑
i∈I′′

ν(xαi
− 2ℓ)

⩽ 2mℓ+
∑
i∈I′

(ν(xαi
− 2ℓ) + 2ℓ2 + ℓ) +

∑
i∈I′′

ν(xαi
− 2ℓ)

= 2mℓ+
m∑
i=1

ν(xαi
− 2ℓ) + (2ℓ2 + ℓ)q.

If q ⩾ 1, then (since ν(xαi
− 2ℓ) ⩾ xαi

− 2ℓ > 4ℓ2 + 2ℓ) the maximum is attained for
m = n− 1 and q = 2, by Claim 3. Hence,

|V (C)| ⩽ 2nℓ+
∑
i∈I

ν(xαi
− 2ℓ) + 2(2ℓ2 + ℓ), (34)

where I ⊂ [1, n] with |I| ⩽ n − 1. Otherwise, by Claim 4, either m ⩽ n − 1 or m ⩽ n
and P ′

i = ∅ for some i ∈ {1, . . . ,m}. In both these cases (34) holds as well. Therefore, by
(13), |V (C)| < N , and so C cannot be a hamiltonian (ℓ, 2ℓ)-cycle, a contradiction.
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4 Proof of Lemma 6.

4.1 The idea of the proof

One can easily construct n disjoint (ℓ, 2ℓ)-paths P1, . . . Pn in H2. Each such path Pj,
however, is relatively short. Indeed, recall that by the definition of H2, every edge of Pj

draws at least ℓ+ 1 vertices from some fixed set Uij .
Edges from H1 will serve as bridges joining the paths Pj. We have seen in the proof of

Lemma 5 that, since G1 is not Hamiltonian, we can use at most n−1 bridges. Fortunately,
the new edge e ̸∈ H will play the role of an additional bridge in H, that, together with
original n− 1 edges of M , will ‘glue’ all paths P1, . . . , Pn into a hamiltonian (ℓ, 2ℓ)-cycle
in H.

The use of H3 is crucial for the argument. It allows us, when proving the existence of
a hamiltonian (ℓ, 2ℓ)-cycle in H + e, to restrict only to e ∈

(
V
2ℓ

)
\H3, for which we know

that c(e) ⩾ ℓ + 1. The remaining edges (i.e. those in H3 \H), which are relatively rare
but cumbersome, can be ignored just by the definition of H.

4.2 Proof of Lemma 6

The forthcoming proof will be illustrated by some diagrams in which we apply the follow-
ing notation.

• I denotes a vertex from Ai

• I, I, . . . , I denotes a sequence of different vertices from Ai

• i denotes a vertex from Ui (we do not exclude Ai)

• i, i, . . . , i denotes a sequence of different vertices from Ui

• ∗ denotes a vertex from V

• ∗, ∗, . . . , ∗ denotes a sequence of different vertices from V

Proof of Lemma 6. Let e ∈
(
V
2ℓ

)
\H3. Recall that, by the definition of H3, c(e) ⩾ ℓ + 1.

For a subset Z ⊆ tr(e) let e(Z) = {u ∈ e : tr(u) ∈ Z}. Let X be the vertex set of the
component of G3[tr(e)] which contains vertex i = min(e) and let Y = tr(e) \ X. Note
that, since c(e) ⩾ ℓ+ 1,

|e(X)| ⩽ ℓ. (35)

If for some s ∈ Y we have |e ∩ Us| ⩾ ℓ, then let j = s. Otherwise, let j = min(e(Y )). By
the choice of j

|Ut ∩ e| ⩽ ℓ− 1 for all t ̸∈ {i, j}. (36)
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Also, as i and j are in different components of G3[tr(e)], they do not form an edge of G.
Even more, if i = n + i′ or j = n + j′ for some 1 ⩽ i′, j′ ⩽ n, then, as i and j are in
different components of G3[tr(e)], we have ij′, i′j, i′j′ ̸∈ G1 either.

Suppose first that i, j ∈ {1, . . . , n}. Let P0 be a 3-edge (ℓ, 2ℓ)-path with the edge e in
the middle and two edges e′ and e′′ from H2. The first ℓ vertices of e belong to e(Y ) and
the first one of them must be from Uj. The last ℓ vertices of e contain e(X) and the last
of them must be from Ui. The first edge of P0, e′, begins with ℓ vertices of Uj, the last
(third) edge of P0, e′′, ends with ℓ vertices of Ui (see the diagram below).

jj . . . j︸ ︷︷ ︸
ℓ

e(Y )︷︸︸︷
j ∗ ∗

e(X)︷︸︸︷
∗i︸ ︷︷ ︸

e

ii . . . i︸ ︷︷ ︸
ℓ

(37)

Due to this deliberate construction and the choice of j, we have min(e′) = j and |e′∩Uj| ⩾
ℓ+ 1, so that indeed e′ ∈ H2. Similarly, e′′ ∈ H2. As observed above, ij ̸∈ G1.

If i = n+ i′ and j = n+ j′, then P0 is, if possible, of the form

J ′ . . . J ′︸ ︷︷ ︸
ℓ

J . . . J︸ ︷︷ ︸
ℓ

e(Y )︷︸︸︷
j ∗ ∗

e(X)︷︸︸︷
∗i︸ ︷︷ ︸

e

I . . . I︸ ︷︷ ︸
ℓ

I ′ . . . I ′︸ ︷︷ ︸
ℓ

(38)

In this case the first and the last edge of P0 belong to H2
1 , and the second and the

penultimate – to H2. However, by (16), this construction is not feasible if |e ∩ Ai| = ℓ or
|e ∩ Aj| = ℓ. In such cases we modify P0 as follows (let, say, |e ∩ Ai| = ℓ)

J ′ . . . J ′︸ ︷︷ ︸
ℓ

J . . . J︸ ︷︷ ︸
ℓ

e(Y )︷︸︸︷
j ∗ ∗

e(X)︷ ︸︸ ︷
I . . . I︸ ︷︷ ︸
e

I ′ . . . I ′︸ ︷︷ ︸
ℓ

(39)

As observed above, i′j′ ̸∈ G1. If i ⩽ n and j = n+ j′, then the right-hand side of P0 is like
in diagram (37), while the left-hand side is like in diagram (38) or (39). The construction
for i = n+ i′ and j ⩽ n is analogous.

Since G1 is maximally non-hamiltonian, it contains a hamiltonian path v1v2 · · · vn−1vn,
where v1 ∈ {i, i′} and vn ∈ {j, j′}, depending on the case. Based on this hamiltonian path,
we are building a hamiltonian (ℓ, 2ℓ)-cycle in H as follows.

Note that by (35) and by the construction of P0

|Ut ∩ P0| ⩽
{
2ℓ− 1 for t ∈ {v1, vn}
ℓ− 1 for t ∈ {v2, . . . , vn−1}.

(40)

First, we construct n−1 pairwise disjoint edges, e1 . . . , en−1 ∈ H1, such that they are also
disjoint from e and for each t = 1, . . . , n− 1, et contains ℓ vertices from Avt followed by ℓ
vertices from Avt+1 (see the diagram below)

Vt, . . . , Vt︸ ︷︷ ︸
ℓ

Vt+1, . . . , Vt+1︸ ︷︷ ︸
ℓ

.
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By (40) and (16), this construction is possible.
Next, we construct n (ℓ, 2ℓ)-paths Pt ⊆ H2, t = 1, . . . , n, such that Pt consists of all

vertices from Uvt \
(
V (P0) ∪

∪n−1
t=1 et

)
and some vertices from

∪2n
j=n+1 Uj, and |V (Pt)| is as

large as possible. We will do it in two stages. First, instead of
∪2n

j=n+1 Uj we use vertices
from some (abstract) infinite set B and denote the resulting (ℓ, 2ℓ)-paths by P ′

t .
Recall that |Ui| = xi and that the set ei−1 ∪ ei contains already 2ℓ vertices of Ui.

Hence, if Uvi ∩ e = ∅, then we still have to use x − 2ℓ vertices from Uvi and so, recalling
the definition of ν(xi),

|V (P ′
i )| = ν(xi − 2ℓ). (41)

Otherwise, quite roughly,

|V (P ′
i )| ⩾ ν(xi − 4ℓ) ⩾ ν(xi − 2ℓ)− 2ℓ2, (42)

by Proposition 3. Note that since |e| ⩽ 2ℓ, e intersects at most 2ℓ sets Ut. Bearing this
in mind, we now estimate from below the total number N ′ of vertices appearing in all so
far constructed elements:

N ′ = |P0|+
n−1∑
t=1

|et|+
n∑

t=1

|P ′
t |

⩾ 2(n+ 1)ℓ+
∑

t,Ut∩e=∅

ν(xt − 2ℓ) +
∑

t,Ut∩e̸=∅

(ν(xt − 2ℓ)− 2ℓ2)

⩾ 2(n+ 1)ℓ+
n∑

t=1

ν(xt − 2ℓ)− 4ℓ3 > N,

where the last inequality holds by (13). Note that both, N ′ and N , are divisible by ℓ. We
remove N ′ −N vertices of B from the paths P ′

1, . . . , P
′
t in such a way that each path P ′

t

gets shorter by a multiple of ℓ vertices and the vertices removed from each P ′
t are the first

vertices of V (P ′
t ∩B) according to the order of appearance on P ′

t . Treating the remaining
vertices as consecutive, we thus obtain a collection of paths P ′′

t such that each edge of P ′′
t

still has at least ℓ + 1 vertices of Uvt . Now we arbitrarily replace the remaining vertices
of B by the vertices of

∪2n
j=n+1 Uj, obtaining the desired paths Pt ∈ H2.

Finally, note that the sequence

S = P0, P1, e1, P2, e2, P3, . . . , en−1, Pn.

spans a hamiltonian (ℓ, 2ℓ)-cycle in H1 ∪H2 + e. Indeed, the last ℓ vertices of P0 and the
first ℓ vertices of P1 together contain at least ℓ+ 1 vertices of Uv1 and thus they form an
edge of H2. So do the last ℓ vertices of P1 and the first ℓ vertices of e1, etc. Finally, the
last ℓ vertices of Pn and the first ℓ vertices of P0 together contain at least ℓ + 1 vertices
of Uvn and so they also form an edge of H2.
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