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For integers k ≥ 2 and ` ≥ 0, a k-uniform hypergraph is called a loose path of length `, and denoted by P
(k)
` , if

it consists of ` edges e1, . . . , e` such that |ei ∩ ej | = 1 if |i − j| = 1 and ei ∩ ej = ∅ if |i − j| ≥ 2. In other
words, each pair of consecutive edges intersects on a single vertex, while all other pairs are disjoint. Let R(P

(k)
` ; r)

be the minimum integer n such that every r-edge-coloring of the complete k-uniform hypergraph K
(k)
n yields a

monochromatic copy of P (k)
` . In this paper we are mostly interested in constructive upper bounds on R(P

(k)
` ; r),

meaning that on the cost of possibly enlarging the order of the complete hypergraph, we would like to efficiently find
a monochromatic copy of P (k)

` in every coloring. In particular, we show that there is a constant c > 0 such that for all
k ≥ 2, ` ≥ 3, 2 ≤ r ≤ k−1, and n ≥ k(`+1)r(1+ln(r)), there is an algorithm such that for every r-edge-coloring
of the edges of K(k)

n , it finds a monochromatic copy of P (k)
` in time at most cnk. We also prove a non-constructive

upper bound R(P
(k)
` ; r) ≤ (k − 1)`r.

Keywords: multicolor Ramsey number, loose path, constructive bounds

1 Introduction
For positive integers k ≥ 2 and ` ≥ 0, a k-uniform hypergraph is called a loose path of length `, and
denoted by P (k)

` , if its vertex set is {v1, v2, . . . , v(k−1)`+1} and the edge set is {ei = {v(i−1)(k−1)+q :
1 ≤ q ≤ k}, i = 1, . . . , `}, that is, for ` ≥ 2, each pair of consecutive edges intersects on a single vertex
(see Figure 1), while for ` = 0 and ` = 1 it is, respectively, a single vertex and an edge. For k = 2 the
loose path P (2)

` is just a (graph) path on `+ 1 vertices.
Let H be a k-uniform hypergraph and r ≥ 2 be an integer. The multicolor Ramsey number R(H; r)

is the minimum n such that every r-edge-coloring of the complete k-uniform hypergraph K(k)
n yields a

monochromatic copy of H .
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Fig. 1: A 4-uniform loose path P
(4)
3 .

1.1 Known results for graphs

For graphs, determining the Ramsey number R(P (2)
` , r) is a well-known problem that attracted a lot of

attention. It was shown by Gerencsér and Gyárfás (1967) that

R(P
(2)
` , 2) =

⌊
3`+ 1

2

⌋
.

For three colors Figaj and Łuczak (2007) proved that R(P (2)
` , 3) ≈ 2`. Soon after, Gyárfás et al. (2007,

2008) determined this number exactly, showing that for all sufficiently large `

R(P
(2)
` , 3) =

{
2`+ 1 for even `,
2` for odd `,

(1)

as conjectured earlier by Faudree and Schelp (1975). For r ≥ 4 much less is known. A celebrated
Turán-type result of Erdős and Gallai (1959) implies that

R(P
(2)
` , r) ≤ r`. (2)

Recently, this was slightly improved by Sárközy (2016) and, subsequently, by Davies et al. (2017) who
showed that for all sufficiently large `,

R(P
(2)
` ; r) ≤ (r − 1/4)(`+ 1). (3)

1.2 Known results for hypergraphs

Let us first recall what is known about R(P (k)
` , r) for k ≥ 3. For two colors, Gyárfás and Raeisi (2012)

considered only paths of length ` = 2, 3, 4 and proved that R(P (k)
2 , 2) = 2k − 1, R(P (k)

3 , 2) = 3k − 1,
and R(P (k)

4 , 2) = 4k − 2. Later, for k = 3 or k ≥ 8, and ` ≥ 3, Omidi and Shahsiah (2014, 2017)
determined this number completely:

R(P
(k)
` , 2) = (k − 1)`+

⌊
`+ 1

2

⌋
,

and conjectured that the above formula is also valid for k = 4, 5, 6, 7.
For an arbitrary number of colors there are only few results and mainly for very short paths. The

following is known.
For ` = 2 and k = 3 (so called bows), Axenovich et al. (2014) determined the value of R(P (3)

2 , r)
for an infinite subsequence of integers r (including 2 ≤ r ≤ 10) and for r → ∞ they showed that
R(P

(3)
2 , r) ≈

√
6r.
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For k ≥ 4, and large r, the Ramsey number R(P (k)
2 , r) can be easily upper bounded by a standard

application of Turán numbers (by counting the average number of edges per color). Recall that for a given
k-uniform hypergraph H , the Turán number, exk(n;H), is the maximum number of edges in an n vertex
k-uniform hypergraph with no copy of H . It was proved by Frankl (1977) that exk(n;P

(k)
2 ) =

(
n−2
k−2
)

for

n sufficiently large, from which it follows quickly that R(P (k)
2 , r) ≤

√
k(k − 1)r.

For ` ≥ 3, a similar approach via Turán numbers exk(n;P
(k)
` ), determined for large n by Füredi et al.

(2014), yields for large r,
R(P

(k)
` ; r) ≤ k`r/2, (4)

and, slightly better for ` = 3,
R(P

(k)
3 ; r) ≤ kr. (5)

In the smallest instance k = ` = 3, owing to the validity of formula ex3(n;P
(3)
3 ) =

(
n−1
2

)
for all n ≥ 8

(see Jackowska et al. (2016)), the above bound holds for all r ≥ 3:

R(P
(3)
3 , r) ≤ 3r. (6)

Recently, Łuczak and Polcyn twice improved (6) significantly. First, in Łuczak and Polcyn (2017), they
showed that R(P (3)

3 , r) ≤ 2r + O(
√
r), then, in Łuczak and Polcyn (2018), they broke the barrier of 2r

by proving the bound R(P (3)
3 , r) < 1.98r, both results for large r. This still seems to be far from the

true value which is conjectured to be equal to r + 6, the current best lower bound. In a series of papers
Jackowska, Polcyn, and Ruciński (Jackowska et al. (2016), Polcyn (2017), Polcyn and Ruciński (2017))
confirmed this conjecture for r ≤ 10. Finally, for ` = 3, k arbitrary, and r large, Łuczak et al. (2018)
showed an upper bound R(P (k)

3 , r) ≤ 250r which is independent of k.
In the next section we show a general upper bound, obtained iteratively for all k ≥ 2, starting from the

Erdős-Gallai bound (2) R(P (2)
` , r) ≤ r`.

Theorem 1.1 For all k ≥ 2, ` ≥ 3, and r ≥ 2 we have R(P (k)
` ; r) ≤ (k − 1)`r.

Theorem 1.1 can be easily improved for r ≥ 3 provided ` is large. Using (1) instead of (2), we obtain
for three colors that

R(P
(k)
` ; 3) ≤ (3k − 4)`,

and for r ≥ 4, by (3),
R(P

(k)
` ; r) ≤ (k − 1)`r − `/4.

On the other hand, for large r, the bound (4) is roughly twice better than the one in Theorem 1.1.

1.3 Constructive bounds
In this paper we are mostly interested in constructive bounds which means that on the cost of possibly
enlarging the order of the complete hypergraph, we would like to efficiently find a monochromatic copy of
a target hypergraph F in every coloring. Clearly, by examining all copies of F in K(k)

n for n ≥ R(F ; r),
we can always find a monochromatic one in time O(n|V (F )|). Hence, we are interested in complexity not
depending on F , preferably O(nk). Given a k-graph F , a constant c > 0 and integers r and n, we say
that a propertyR(F, r, c, n) holds if there is an algorithm such that for every r-edge-coloring of the edges
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of K(k)
n , it finds a monochromatic copy of F in time at most cnk. For graphs, a constructive result of this

type can be deduced from the proof of Lemma 3.5 in Dudek and Prałat (2017).

Theorem 1.2 (Dudek and Prałat (2017)) There is a constant c > 0 such that for all ` ≥ 3, r ≥ 2, and
n ≥ 2r+1`, propertyR(P (2)

` , r, c, n) holds.

Our goal is to obtain similar constructive results for loose hyperpaths. In Section 2, we show that,
by replacing the Erdős-Gallai bound (2) with the assumption on n given in Theorem 1.2, the proof of
Theorem 1.1 can be easily adapted to yield a constructive result.

Theorem 1.3 There is a constant c > 0 such that for all k ≥ 2, ` ≥ 3, r ≥ 2, and n ≥ 2r+1`+(k−2)`r,
propertyR(P (k)

` , r, c, n) holds.

Our second constructive bound (valid only for r ≤ k) utilizes a more sophisticated algorithm.

Theorem 1.4 There is a constant c > 0 such that for all k ≥ 2, ` ≥ 3, 2 ≤ r ≤ k, and n ≥ k(` +

1)r
(
1 + 1

k−r+1 + ln
(
1 + r−2

k−r+1

))
, property R(P (k)

` , r, c, n) holds. For r = 2, the bound on n can be

improved to n ≥ (2k − 2)`+ k.

Note that for r = 2 the lower bound on n in Theorem 1.4 is very close to that in Theorem 1.1. For r = k
the bound in Theorem 1.4 assumes a simple form

n ≥ k2(`+ 1)(2 + ln(k − 1).

Furthermore, when r ≤ k − 1, one can show (see Claim 4.2) that

1

k − r + 1
+ ln

(
1 +

r − 2

k − r + 1

)
≤ ln

(
1 +

r − 1

k − r

)
yielding the following corollary.

Corollary 1.5 There is a constant c > 0 such that for all k ≥ 3, ` ≥ 3, 2 ≤ r ≤ k − 1, and n ≥
k(`+ 1)r

(
1 + ln

(
1 + r−1

k−r

))
, propertyR(P (k)

` , r, c, n) holds.

We can further replace the lower bound on n in Corollary 1.5 by (slightly weaker but simpler)

n ≥ k(`+ 1)r(1 + ln r).

Observe that in several instances the lower bound in Theorem 1.4 (and also in Corollary 1.5) is signifi-
cantly better (that means smaller) than the one in Theorem 1.3 (for example for large k and k/2 ≤ r ≤ k).
On the other hand, for some instances bounds in Theorems 1.3 and 1.4 are basically the same. For ex-
ample, for fixed r, large k and ` ≥ k the lower bound is k`r + o(k`). This also matches the bound from
Theorem 1.1.

2 Proof of Theorems 1.1 and 1.3
For completeness, we begin with proving bounds (4)-(6).

Proposition 2.1 For all k ≥ 3 and ` ≥ 3, inequalities (4) and (5) hold for large r, while inequality (5)
holds for all r.
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Proof: It has been proved in Füredi et al. (2014) and Kostochka et al. (2017) that for all k ≥ 3 and ` ≥ 3,
except for k = ` = 3 (but see Acknowledgements in Jackowska et al. (2016)), and for n sufficiently large

exk(n;P
(k)
` ) =

(
n

k

)
−
(
n− t
k

)
+ δ`

(
n− k − t
k − 2

)
,

where δ` = 0 if ` is odd and, otherwise, δ` = 1, while t = b `+1
2 c − 1. Regardless of the parity of `, for

every ε > 0 and sufficiently large n, this Turán number is smaller than (1+ ε)tnk−1/(k−1)!. With some
foresight, we require that ε ≤ (2`−1)−1. Thus, for fixed ε > 0, k ≥ 2 and ` ≥ 3 and all sufficiently large
r, the average number of edges per color in an r-coloring of the complete k-graph K(k)

n with n ≥ `kr/2
is (

n
k

)
r
≥ (1− ε) n

k

rk!
≥ (1− ε) `nk−1

2(k − 1)!
≥ (1 + ε)

(`− 1)nk−1

2(k − 1)!
> exk(n;P

(k)
` ),

which proves (4).
For ` = 3, the formula for exk(n;P

(k)
` ) simplifies to exk(n;P

(k)
3 ) =

(
n−1
k−1
)

and we have(
n
k

)
r
≥
(
n− 1

k − 1

)
already for n ≥ kr. Since the only extremal k-graph in this case is the full star and it is impossible that
all colors are stars, we get (5).

Finally, for ` = k = 3 it was proved in Jackowska et al. (2016) that ex3(n;P
(3)
3 ) =

(
n−1
2

)
for all n ≥ 8

and the same argument as above applies to all r ≥ 3. 2

Preparing for the proof of Theorem 1.1, recall that Erdős and Gallai (1959) showed that the Turán
number for a graph path P (2)

` satisfies the bound ex2(n;P
(2)
` ) ≤ 1

2 (` − 1)n. This immediately yields,
by the same argument as in the above proof, that the majority color in Kr` contains a copy of P (2)

` , and
consequentlyR(P (2)

` ; r) ≤ r`. We are going to use this result by blowing up the edges of a graph to obtain
a 3-graph, then blowing the edges of a 3-graph to obtain a 4-graph, and so on. Formally, we call an edge
of a hypergraph selfish if it contains a vertex of degree one, that is, a vertex which belongs exclusively to
this edge. We call a hypergraph H selfish if every edge of H is selfish. Clearly, for k ≥ 3 and ` ≥ 1, the
loose path P (k)

` is selfish.
A selfish k-graph H can be reduced to a (k − 1)-graph GH by removing one vertex of degree one

from each edge of H . Inversely, every (k − 1)-graph G can be turned into a selfish k-graph H , called a
selfish extension of G, such that G = GH , by adding |E(G)| vertices, one to each edge of G. Note that
|E(H)| = |E(GH)|.

Lemma 2.2 For a given integer k ≥ 3, let H be a selfish k-graph with G = GH . Then

R(H; r) ≤ R(G; r) + r(|E(H)| − 1) + 1.

Proof: Let n = R(G; r) + r(|E(H)| − 1) + 1, V = U ∪W , U ∩W = ∅, |V | = n, |U | = R(G; r), and
|W | = r(|E(H)| − 1) + 1. Consider an r-coloring of the edges of K(k)

n . For every (k − 1)-tuple e of
vertices in U , we choose the most frequent color on all the k-tuples e∪ {w}, w ∈W (see Figure 2). This
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Fig. 2: Proving Lemma 2.2.

induces an r-coloring of the edges of the clique K(k−1)
|U | on vertex set U . By the definition of R(G; r),

this yields a monochromatic (say, red) copy G′ of G (in the induced coloring). Note that for each edge e
of G′ the red color appears on at least |E(H)| k-tuples containing e and, thus, one can find a red selfish
extension H ′ of G′ which is isomorphic to H . 2

Proof of Theorem 1.1.: We use induction on k. For k = 2 the theorem coincides with the Erdős-Gallai
result (2). Assume that for some k ≥ 3 we haveR(P (k−1)

` ; r) ≤ (k−2)`r, observe that P (k−1)
` = G

P
(k)
`

,
and apply Lemma 2.2 obtaining

R(P
(k)
` ; r) ≤ R(P (k−1)

` ; r) + r(`− 1) + 1 ≤ (k − 2)`r + `r = (k − 1)`r.

2

Proof of Theorem 1.3: To get the desired lower bound on n it suffices to replace in the base step of
induction the Erdős-Gallai bound (2) by the one from Theorem 1.2 which yields

R(P
(k)
` ; r) ≤ R(P (k−1)

` ; r) + r(`− 1) + 1 ≤ 2r+1`+ (k − 3)`r + `r = 2r+1`+ (k − 2)`r.

It remains to show that the performance time does not exceed cnk for some c > 0, which, by Theorem
1.2, is the case when k = 2. Without loss of generality, assume that c ≥ 1. Suppose that for some k ≥ 3
it holds for (k−1)-uniform hypergraphs. Similarly as in Lemma 2.2, we arbitrarily partition V = U ∪W
with |U | ≥ 2r+1`+ (k − 3)`r and |W | = r(`− 1) + 1. Next we color each (k − 1)-tuple e in U by the
most frequent color on the k-tuples e ∪ {w}, w ∈W . This requires no more than(

|U |
k − 1

)
× |W | ≤ nk/(k − 1)!

steps. Finally, by inductive assumption, in time at most cnk−1 we find a monochromatic copy of P (k−1)
`

in U which can be extended to a monochromatic P (k)
` in no more than

`|W | ≤ r`2 ≤ 2r−1`2 ≤ 2r−1(2−r−1n)2 = 2−r−3n2

steps. Altogether, the performance time, using bounds r ≥ 2, k ≥ 3, ` ≥ 3, and so n ≥ 30, is

nk/(k − 1)! + cnk−1 + 2−r−3n2 ≤ (1/2 + c/30 + 1/960)nk ≤ cnk,

as required. 2
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3 Proof of Theorem 1.4

The proof is based on the depth first search (DFS) algorithm. Such approach for graphs was first success-
fully applied by Ben-Eliezer et al. (2012b,a) and for Ramsey-type problems by Dudek and Prałat (2015,
2017).

Given integers k and 2 ≤ m ≤ k, and disjoint sets of vertices W1, . . . ,Wm−1, Vm, an m-partite com-
plete k-graph K(k)(W1, . . . ,Wm−1, Vm) consists of all k-tuples of vertices with exactly one element in
each Wi, i = 1, . . . ,m − 1, and k −m + 1 elements in Vm. Note that if |Wi| ≥ `, i = 1, . . . ,m − 1,
and |Vm| ≥ `(k −m) + 1 for m ≤ k − 1 (or |Vm| ≥ ` for m = k), then K(k)(W1, . . . ,Wm−1, Vm) con-
tains P (k)

` . Indeed, if m ≤ k − 1, then we inductively find a copy of P (k)
` in K(k)(W1, . . . ,Wm−1, Vm),

edge by edge, by making sure that for each edge e, |e ∩Wi| = 1 (for i = 1, . . . ,m− 1) and |e ∩ Vm| =
m − k + 1 and the consecutive edges of P (k)

` intersect in Vm. In the remaining case, when m = k, the
consecutive edges of P (k)

` intersect either in W1 or Vk by alternating between these two sets.

We now give a description of the algorithm. As an input there is an r-coloring of the edges of the
complete k-graph K(k)

n . The algorithm consists of r − 1 implementations of DFS subroutine, each round
exploring the edges of one color only and either finding a monochromatic copy of P (k)

` or decreasing the
number of colors present on a large subset of vertices, until after the (r − 1)st round we end up with a
monochromatic complete r-partite subgraph, large enough to contain a copy of P (k)

` .

During the ith round, while trying to build a copy of the path P (k)
` in the ith color, the algorithm selects

a subset Wi,i from a set of still available vertices Vi ⊆ V and, by the end of the round, creates trash bins
Si and Ti. The search for P (k)

` is realized by a DFS process which maintains a working path P (in the
form of a sequence of vertices) whose endpoints (the first or the last k − 1 vertices on the sequence) are
either extended to a longer path or otherwise put into Wi,i. The round is terminated whenever P becomes
a copy of P (k)

` or the size of Wi,i reaches certain threshold, whatever comes first. In the latter case we set
Si = V (P ).

To better depict the extension process, we introduce the following terminology. An edge of P (k)
` is

called pendant if it contains at most one vertex of degree two. The vertices of degree one, belonging to
the pendant edges of P (k)

` are called pendant. In particular, in P (k)
1 all its k vertices are pendant. For

convenience, the unique vertex of the path P (k)
0 is also considered to be pendant. Observe that for t ≥ 0,

to extend a copy P of P (k)
t to a copy of P (k)

t+1 one needs to add a new edge which shares exactly one
vertex with P and that vertex has to be pendant in P . Our algorithm may also come across a situation
when P = ∅, that is, P has no vertices at all. Then by an extension of P we mean any edge whatsoever.

The sets Wi,i have a double subscript, because they are updated in the later rounds to Wi,i+1, Wi,i+2,
and so on, until at the end of the (r − 1)st round (unless a monochromatic P (k)

` has been found) one
obtains sets Wi :=Wi,r−1, i = 1, . . . , r − 1, a final trash set T =

⋃r−1
i=1 Ti ∪

⋃r−1
i=1 Si and the remainder

set Vr = V \ (
⋃r−1

i=1 Wi ∪ T ) such that all k-tuples of vertices in K(k)(W1, . . . ,Wr−1, Vr) are of color r.
As an input of the ith round we take sets Wj,i−1, j = 1, . . . , i− 1, and Vi−1, inherited from the previous
round, and rename them to Wj,i, j = 1, . . . , i− 1, and Vi. We also set Ti = ∅ and P = ∅, and update all
these sets dynamically until the round ends.
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Now come the details. For 1 ≤ i ≤ r − 1, let

τi =

(i− 1)
(

`
k−r+1 + `+1

k−r+2 + · · ·+ `+1
k−i

)
if 1 ≤ i ≤ r − 2,

(r − 2) `
k−r+1 if i = r − 1,

(7)

and
ti = τi + 2(i− 1).

Note that τi is generally not an integer. It can be easily shown (see Claim 4.1) that for all 2 ≤ r ≤ k
and 1 ≤ i ≤ r − 1

τi ≤ (i− 1)(`+ 1)

(
1

k − r + 1
+ ln

(
1 +

r − 2

k − r + 1

))
. (8)

Before giving a general description of the ith round, we deal separately with the 1st and 2nd round.

Round 1
Set V1 = V , W1,1 = ∅, and P = ∅. Select an arbitrary edge e of color one (say, red), add its vertices
to P (in any order), reset V1 := V1 \ e, and try to extend P to a red copy of P (k)

2 . If successful, we
appropriately enlarge P , diminish V1, and try to further extend P to a red copy of P (k)

3 . This procedure
is repeated until finally we either find a red copy of P (k)

` or, otherwise, end up with a red copy P of P (k)
t ,

for some 1 ≤ t ≤ `− 1, which cannot be extended any more. In the latter case we shorten P by moving
all its pendant vertices to W1,1 and try to extend the remaining red path again. When t ≥ 2, the new path
has t− 2 edges. If t = 2, P becomes a single vertex path P (k)

0 , while if t = 1, it becomes empty.
Let us first consider the simplest but instructive case r = 2 in which only one round is performed. We

terminate Round 1 as soon as
|W1,1| ≥ `. (9)

If at some point P = ∅ and cannot be extended (which means there are no red edges within V1), but (9)
fails to hold, then we move ` − |W1,1| arbitrary vertices from V1 = V \W1,1 to W1,1 and stop. At that
moment, no edge of K(k)(W1,1, V1) is red (so, all of them must be, say, blue). Moreover, since the size
of W1,1 increases by increments of at most 2(k − 1), we have

` ≤ |W1,1| ≤ `+ 2(k − 1)− 1,

and, consequently,

|V1| = n− |W1,1| − |V (P )| ≥ n− `− 2(k − 1) + 1− |V (P
(k)
`−1)| ≥ `(k − 2) + 1

by our bound on n (see Theorem 1.4, case r = 2). This means that the completely blue copy of
K(k)(W1,1, V1) is large enough to contain a copy of P (k)

` .
When r ≥ 3, there are still more rounds ahead during which the set W1,1 will be cut down, so we need

to ensure it is large enough to survive the entire process. We terminate Round 1 as soon as

|W1,1| ≥ (k − 1)τ2 + `+ 1. (10)
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If at some point P = ∅ and cannot be extended and (10) fails to hold, we move d(k−1)τ2e+`+1−|W1,1|
arbitrary vertices from V1 = V \W1,1 to W1,1 and stop.

Since the size of W1,1 increases by increments of at most 2(k − 1) and the right-hand side of (10) is
not necessarily integer, we also have

|W1,1| ≤ (k − 1)τ2 + `+ 1 + 2(k − 1). (11)

Finally, we set S1 := P , T1 = ∅ for mere convenience, and V1 := V \ (W1,1 ∪ S1 ∪ T1). Note that
|S1| ≤ |V (P

(k)
`−1)| = (` − 1)(k − 1) + 1. Also, it is important to realize that no edge of K(k)(W1,1, V1)

is colored red.

Round 2
We begin with resetting W1,2 := W1,1 and V2 := V1, and setting P := ∅, W2,2 = ∅, and T2 := ∅. In this
round only the edges of color two (say, blue) belonging to K(k)(W1,2, V2) are considered. Let us denote
the set of these edges by E2. We choose an arbitrary edge e ∈ E2, set P = e, and try to extend P to a
copy of P (k)

2 in E2 but only in such a way that the vertex of e belonging to W1,2 remains of degree one
on the path. Then, we try to extend P to a copy of P (k)

3 in E2, etc., always making sure that the vertices
in W1,2 are of degree one. Eventually, either we find a blue copy of P (k)

` or end up with a blue copy P
of P (k)

t , for some 1 ≤ t ≤ ` − 1, which cannot be further extended. We move the pendant vertices of P
belonging to W1,2 to the trash set T2, while the remaining pendant vertices of P go to W2,2. Then we try
to extend the shortened path again. By moving the pendant vertices of P in W1,2 to T2 we make sure that
in the next iterations there will be no blue edge e with exactly one vertex in W1,2, one vertex in W2,2 and
(k − 2) vertices in V2 \W2,2. We terminate Round 2 as soon as

|W2,2| ≥ (k − 2)τ2.

If at some point P = ∅ and cannot be extended and |W2,2| < (k−2)τ2, then we move d(k−2)τ2e−|W2,2|
arbitrary vertices from V2 to W2,2 and stop. Note that at the end of this round

|W2,2| ≤ (k − 2)τ2 + 2(k − 2). (12)

We set S2 := V (P ) and V2 := V \ (W1,2 ∪ W2,2 ∪ S1 ∪ S2 ∪ T2). Observe that no edge of
K(k)(W1,2,W2,2, V2) is red or blue. We will now show that

|T2| ≤ t2 and |W1,2| ≥ (k − 2)τ2. (13)

First observe that the size of W1,1 (the set obtained in Round 1) satisfies

|W1,1| ≤ |W1,2|+ |T2|+ `− 1. (14)

Indeed, at the end of this round W1,1 is the union of W1,2 ∪ T2 and the vertices in V (P )∩W1,2 that were
moved to S2. Since |V (P ) ∩W1,2| ≤ `− 1, (14) holds.

Also note that each vertex in T2 can be matched with a set of k − 2 or k − 1 vertices in W2,2, and all
these sets are disjoint. Consequently,

|W2,2| ≥ (k − 2)|T2|. (15)
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Fig. 3: Applying the algorithm to a 7-uniform hypergraph. Here i = 4 and path P , which consists of edges e1, e2,
and e3, cannot be extended. Therefore, the vertices in V (P ) ∩ (W1,4 ∪W2,4 ∪W3,4) are moved to the trash bin T4

and the pendant vertices in V4 ∩ (e1 ∪ e3) are moved to W4,4.

Inequality (15) immediately implies that

|T2|
(15)
≤ 1

k − 2
|W2,2|

(12)
≤ τ2 + 2 = t2.

Furthermore,

(k − 1)τ2 + `+ 1
(10)
≤ |W1,1|

(14)
≤ |W1,2|+ |T2|+ `− 1 ≤ |W1,2|+ τ2 + `+ 1,

completing the proof of (13).
From now on we proceed inductively. Assume that i ≥ 3 and we have just finished round i − 1

constructing so far, for each 1 ≤ j ≤ i− 1, sets Sj , Tj , and Wj,i−1, satisfying

|Wj,i−1| ≥
k − i+ 1

i− 2
τi−1, (16)

|Si−1| ≤ |V (P
(k)
`−1)|, and |Ti−1| ≤ ti−1, and the residual set

Vi−1 = V \
i−1⋃
j=1

(Wj,i−1 ∪ Sj ∪ Tj)

such that K(k)(W1,i−1, . . . ,Wi−1,i−1, Vi−1) contains no edge of color 1, 2, . . . , or i− 1.

Round i, 3 ≤ i ≤ r − 1

We begin the ith round by resetting W1,i := W1,i−1, . . . ,Wi−1,i := Wi−1,i−1, and Vi := Vi−1, and
setting P := ∅, Wi,i := ∅, and Ti := ∅. We consider only edges of color i in K(k)(W1,i, . . . ,Wi−1,i, Vi).
Let us denote the set of such edges by Ei.

As in the previous steps we are trying to extend the current path P using the edges of Ei, but only in
such a way that the vertices from P that are inW1,i∪· · ·∪Wi−1,i have degree one in P and the vertices of
degree two in P belong to Vi. When an extension is no longer possible and P 6= ∅, we move the pendant
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vertices of P belonging to
⋃i−1

j=1Wj,i to the trash set Ti, while the remaining pendant vertices of P go to
Wi,i (see Figure 3). Then we try to extend the shortened path. We terminate the ith round as soon as

|Wi,i| ≥
k − i
i− 1

τi.

If P = ∅ and cannot be extended and |Wi,i| < k−i
i−1 τi, then we move dk−ii−1 τie − |Wi,i| vertices from Vi to

Wi,i and stop. This yields that

|Wi,i| ≤
k − i
i− 1

τi + 2(k − i). (17)

Similarly as in (14) and (15) notice that for all 1 ≤ j ≤ i− 1

|Wj,i−1| ≤ |Wj,i|+
|Ti|
i− 1

+ `− 1 (18)

and
|Ti| ≤

i− 1

k − i
|Wi,i| ≤ τi + 2(i− 1) = ti. (19)

Thus,

k − i+ 1

i− 2
τi−1

(16)
≤ |Wj,i−1|

(18),(19)
≤ |Wj,i|+

τi
i− 1

+ 2 + `− 1 = |Wj,i|+
τi
i− 1

+ `+ 1

and, since also
k − i+ 1

i− 2
τi−1

(7)
=
k − i+ 1

i− 1
τi + `+ 1,

we get

|Wj,i| ≥
k − i
i− 1

τi. (20)

Finally we set Si := V (P ). Consequently, when the ith round ends, we have (20) for all 1 ≤ j ≤ i. We
also have |Si| ≤ |V (P

(k)
`−1)|, |Ti| ≤ ti, and Vi = V \

⋃i
j=1(Wj,i ∪ Sj ∪ Tj) such that

K(k)(W1,i, . . . ,Wi−1,i,Wi,i, Vi) has no edges of color 1, 2, . . . , or i.
In particular, when the (r − 1)st round is finished, we have, for each 1 ≤ j ≤ r − 1,

|Wj,r−1| ≥
k − r + 1

r − 2
τr−1, (21)

|Sr−1| ≤ |V (P
(k)
`−1)| and |Tr−1| ≤ tr−1. SetWj :=Wj,r−1, j = 1, . . . , r−1, and Vr := V \

⋃r−1
j=1(Wj ∪

Sj ∪ Tj) and observe that K(k)(W1, . . . ,Wr−1, Vr) has only edges of color r.
By (21), for each 1 ≤ j ≤ r − 1

|Wj |
(21)
≥ k − r + 1

r − 2
τr−1

(7)
= `.

Now we are going to show that |Vr| ≥ `(k− r+ 1) which will complete the proof as this bound yields
a monochromatic copy of P (k)

` inside K(k)(W1, . . . ,Wr−1, Vr). (Actually for r ≤ k − 1 it suffices to
show that |Vr| ≥ `(k − r) + 1.)
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First observe that

|W1,1|+ · · ·+ |Wr−2,r−2| ≥ |W1|+ · · ·+ |Wr−2|+ |T1|+ · · ·+ |Tr−1|. (22)

This is easy to see, since during the process

Wi,i ⊇Wi,r−1 ∪ (Wi,i ∩ (Ti+1 ∪ · · · ∪ Tr−1)) .

Also,

|W1,1|
(11)
≤ (k − 1)τ2 + 2(k − 1) + `+ 1

(8)

≤ (k − 1)(`+ 1)

(
1

k − r + 1
+ ln

(
1 +

r − 2

k − r + 1

))
+ 2(k − 1) + `+ 1

and, for 2 ≤ i ≤ r − 1,

|Wi,i|
(17)
≤ k − i

i− 1
τi + 2(k − i)

(8)

≤ (k − i)(`+ 1)

(
1

k − r + 1
+ ln

(
1 +

r − 2

k − r + 1

))
+ 2(k − i).

Since
r−1∑
i=1

(k − i) = (k − r/2)(r − 1),

we have by (22) that

|W1|+ . . .+ |Wr−1|+ |T2|+ · · ·+ |Tr−1|

≤ (`+ 1)

(
1

k − r + 1
+ ln

(
1 +

r − 2

k − r + 1

))
(k − r/2)(r − 1)

+ (2k − r)(r − 1) + `+ 1

≤ k(`+ 1)r

(
1

k − r + 1
+ ln

(
1 +

r − 2

k − r + 1

))
+ (2k − r)(r − 1) + `+ 1.

As also |Si| ≤ |V (P
(k)
`−1)| = (k − 1)(`− 1) + 1 for each 1 ≤ i ≤ r − 1 and

|Vr| = |V | −
r−1∑
i=1

(|Wi|+ |Ti|+ |Si|),

we finally obtain, using the lower bound on n = |V |, that

|Vr| ≥ k(`+ 1)r − (2k − r)(r − 1)− `− 1− (r − 1) [(k − 1)(`− 1) + 1]

= `(2r − 3) + (r − 1)(r − 2) + (k − 1) + `(k − r + 1) ≥ `(k − r + 1),



Monochromatic loose paths in multicolored k-uniform cliques 13

since the first three terms in the last line are nonnegative.

To check the O(nk) complexity time, observe that in the worst-case scenario we need to go over all
edges colored by the first r − 1 colors and no edge is visited more than once.

4 Auxiliary inequalities
For the sake of completeness we prove here two straightforward inequalities.

Claim 4.1 Let 2 ≤ r ≤ k, 1 ≤ i ≤ r − 1 and

τi =

(i− 1)
(

`
k−r+1 + `+1

k−r+2 + · · ·+ `+1
k−i

)
if 1 ≤ i ≤ r − 2,

(r − 2) `
k−r+1 if i = r − 1.

Then,

τi ≤ (i− 1)(`+ 1)

(
1

k − r + 1
+ ln

(
1 +

r − 2

k − r + 1

))
.

Proof: It suffices to observe that

1

k − r + 1
+

1

k − r + 2
+ · · ·+ 1

k − i
≤ 1

k − r + 1
+

∫ k−i

k−r+1

dx

x

=
1

k − r + 1
+ ln

(
k − i

k − r + 1

)
≤ 1

k − r + 1
+ ln

(
k − 1

k − r + 1

)
=

1

k − r + 1
+ ln

(
1 +

r − 2

k − r + 1

)
.

2

Claim 4.2 For all 2 ≤ r ≤ k − 1 we have

1

k − r + 1
+ ln

(
1 +

r − 2

k − r + 1

)
≤ ln

(
1 +

r − 1

k − r

)
. (23)

Proof: Let f(x) = ln
(
1 + 1

x

)
− 1

x+1 and observe that f ′(x) = −1
x(x+1)2 . Hence, f(x) is decreasing for

x > 0 and so f(x) ≥ limx→∞ f(x) = 0. Consequently, for x = k− r (by assumption k− r ≥ 1) we get
that

1

k − r + 1
≤ ln

(
1 +

1

k − r

)
= ln

(
k − r + 1

k − r

)
= ln

(
k − 1

k − r

)
− ln

(
k − 1

k − r + 1

)
,

which is equivalent to (23). 2
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