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Abstract. We show that every 4-uniform hypergraph with n vertices and
minimum pair degree at least (5/9 + o(1))n2/2 contains a tight Hamiltonian cycle.
This degree condition is asymptotically optimal.

1. Introduction

We study hypergraph generalisations of Dirac’s theorem for graphs. For
hypergraphs several extensions were considered and Endre Szemerédi has
been an integral part and driving force for these developments. All but
the last author already had the pleasure to collaborate with and learn from
Endre, while working on related (and unrelated) problems.

1.1. Background and main result. G.A. Dirac [2] showed that ev-
ery (finite) graph G = (V,E) on at least 3 vertices with minimum degree
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δ(G) ≥ |V |/2 contains a Hamiltonian cycle. This result is clearly best possi-
ble, as exemplified by slightly off-balanced complete bipartite graphs. Sev-
eral hypergraph extensions were suggested and considered in the literature.
Here we focus on tight Hamiltonian cycles in uniform hypergraphs and we
briefly review the relevant notation.

For an integer k ≥ 2, a k-uniform hypergraph is a pair (V,E), where the

vertex set V is a finite set and the edge set E ⊆ V (k) = {U ⊆ V : |U | = k}
is some collection of k-element subsets of V . A tight Hamiltonian cycle in
a k-uniform hypergraph H = (V,E) is given by a cyclic ordering of V such
that every k consecutive vertices (in the cyclic ordering) span a hyperedge
from E. As usual for k = 2, we recover the notion of finite, simple graphs
and Hamiltonian cycles.

For k > 2, large part of the research concerns sufficient minimum degree
conditions in hypergraphs that guarantee the existence of tight Hamilto-
nian cycles (see, e.g., the surveys [13,18] and the references therein for a
more thorough discussion). For a set of vertices S ⊆ V , the degree in H is
defined by

dH(S) =
∣∣{e ∈ E : S ⊆ e}

∣∣

and for an integer j with 1 ≤ j ≤ k the minimum j-degree is defined by

δj(H) = min
{
dH(S) : S ∈ V (j)

}
.

The minimum 1-degree δ1(H) is often called minimum vertex degree and
sometimes (in particular, in the context of graphs) we may omit the sub-
script. Moreover, for j = 2 we often refer to δ2(H) as the minimum pair

degree.
Lower bounds on the minimum j-degree bear more information and re-

strictions for larger values of j and, in fact, sufficient minimum (k−1)-degree
conditions for tight Hamiltonian cycles were considered first in the literature.
This line of research was initiated by Katona and Kierstead [7]. In joint work
with the two senior authors, Endre [15] established the following asymptot-
ically optimal result for k-uniform hypergraphs (see also [14] for an earlier
result for 3-uniform hypergraphs and [16] for a sharp version of that result).

Theorem 1.1 [15]. For every integer k ≥ 3 and α > 0, there exists an

integer n0 such that every k-uniform hypergraph H on n ≥ n0 vertices with

δk−1(H) ≥
(
1
2 + α

)
n contains a tight Hamiltonian cycle.

Theorem 1.1 can be viewed as an approximate generalisation of Dirac’s
theorem from graphs to hypergraphs and, in fact, the lower bound construc-
tions, that show the optimality of this result, exhibit a similar bipartite
structure.
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Given the ‘monotonicity’ of the degree conditions, as a next step it seems
natural to consider an extension of Theorem 1.1 with a minimum (k − 2)-
degree condition. For such an extension we have to restrict ourselves to
k-uniform hypergraphs for k ≥ 3. Improving a series of partial results by
several authors, for 3-uniform hypergraphs the following asymptotically op-
timal result was recently obtained by Endre in collaboration with the middle
four authors [11].

Theorem 1.2 [11]. For every α > 0, there exists an integer n0 such that

every 3-uniform hypergraph H on n ≥ n0 vertices with δ1(H) ≥
(
5
9 + α

)
n2

2
contains a tight Hamiltonian cycle.

Again there are lower bound constructions, showing that the number
5/9 in Theorem 1.2 is best possible. In fact, three structurally different
examples can be found in [11, Example 1.2]. Here we extend Theorem 1.2 to
4-uniform hypergraphs with a minimum pair degree condition and establish
the following result.

Theorem 1.3. For every α > 0 there exists an integer n0 such that every

4-uniform hypergraph H on n ≥ n0 vertices with δ2(H) ≥
(
5
9 +α

)
n2

2 contains
a tight Hamiltonian cycle.

Theorem 1.3 is also asymptotically best possible as the following exam-
ples of Han and Zhao [5] show:

(a) For simplicity let n = |V | be divisible by three and consider a par-
tition X ∪· Y = V with |X| = 2n/3. Let H be the 4-uniform hypergraph
H = (V,E) with e ∈ V (4) being an edge of H if, and only if,

(1.1) |e ∩X| 6= 2 .

It is easy to check that H satisfies δ2(H) ≥
(
5
9 − o(1)

)
n2

2 .
Suppose for the sake of contradiction that H contains a tight Hamilto-

nian cycle C. Since every vertex of C is contained in precisely four edges
of C, we have

∑

f∈E(C)

|f ∩X| = 4 |X| .

Hence, the average intersection of an edge of C with X is 8/3. In particular,
there exist two edges f and f ′ in C such that

|f ∩X| ≤ 2 = ⌊83⌋ and |f ′ ∩X| ≥ 3 = ⌈83⌉
and the definition of H implies that f shares at most one vertex with X .

On the other hand, the sizes of the intersections in X of two consecutive
edges in C (in the induced cyclic order) can differ by at most one. Conse-
quently, the lack of edges in E intersecting X in exactly two vertices makes
the occurrence of the edges f and f ′ in C impossible.
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(b) The same construction with (1.1) replaced by |e ∩X| 6= 3 yields an-
other hypergraph exemplifying a matching lower bound for Theorem 1.3 by
a similar argument.

The type of construction used in (a) and (b) above generalises to arbi-
trary uniformities k ≥ 3. In fact, if 3 | k then this gives rise to three struc-
turally different lower bound constructions and if 3 ∤ k then two hypergraphs
arise (see [5, Corollary 1.6] for details). Those examples show that the
optimal minimum (k − 2)-degree for tight Hamiltonian cycles in k-uniform

hypergraphs on n vertices is at least
(
5
9 − o(1)

)
n2

2 .
The results discussed so far address special cases of the following more

general problem: Given integers k > r ≥ 1, determine the infimal real num-

ber α
(k)
r ∈ [0, 1] with the property that every k-uniform hypergraph H =

(V,E) satisfying the minimum r-degree condition

δr(H) ≥
(
α(k)
r + o(1)

)
|V |k−r/(k − r)!

contains a Hamiltonian cycle. Thus Dirac’s theorem and Theorem 1.1 assert

α
(k)
k−1 = 1/2 for k ≥ 2, while the Theorems 1.2 and 1.3 entail α

(3)
1 = α

(4)
2 =

5/9. These results might indicate that α
(k)
r might be determined by the

difference d = k − r, which leads to the following question.

Question 1.4. Given a positive integer d, does there exist a constant βd
such that α

(k)
k−d = βd holds for every k ≥ d+ 1?

We are not aware of any counterexample and for d = 1 Theorem 1.1 states
that β1 = 1/2. Moreover, very recently Theorems 1.2 and 1.3 were extended
for arbitrary k ≥ 5 in [8,10] and β2 = 5/9 was established. The lower bounds

on α
(k)
r obtained by Han and Zhao [5] might be optimal for all k > r ≥ 1.

In this case, all numbers βd would exist and the next problem would be to
decide whether β3 = 5/8.

1.2. Overview and organisation. The proof of Theorem 1.3 is based
on the absorption method. This method has been introduced more than a
decade ago in [14] (see also the survey [17] of Endre Szemerédi) and since
then it has turned out to be a versatile tool for solving a variety of problems
concerning the existence of spanning structures in graphs and hypergraphs.
Proofs based on the absorption method usually decompose the problem at
hand into several more manageable subproblems. In results on Hamilto-
nian cycles in hypergraphs such as Theorem 1.3 most of the effort is usually
directed towards showing a connecting lemma, an absorbing lemma, and a
covering lemma.

The complexity of the first two ingredients has evolved over time. For
instance, in the proof of Theorem 1.1 for k = 3 in [14], the connecting lemma
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just said that every pair of vertices can be connected to any other pair of
vertices by means of a relatively short tight path. An analogous result is
not available when proving Theorem 1.2 (see [11]). Instead, one defines a
sufficiently broad class of so-called connectable pairs of vertices and, roughly
speaking, the connecting lemma of [11] asserts that any such connectable
pair can be reached from any other connectable pair by means of a short
tight path. This idea will be reused below, so we shall define a notion of
connectable triples in 4-uniform hypergraphs of large pair degree and our
connecting lemma (Proposition 3.3 below) claims that any two such triples
can be connected by means of a short tight path.

As for the absorbing lemma (see Proposition 5.1), one needs to estab-
lish the existence of a so-called absorbing path PA capable of absorbing any
“small” set of left-over vertices Z. More precisely, no matter which small
set Z of vertices needs attention in the end of the argument there always is
a path with vertex set V (PA) ∪ Z which starts and ends with the same ver-
tices as PA itself. Such a path PA is usually constructed by taking several
small building blocks called absorbers and connecting them by appealing to
the connecting lemma. Proving the existence of suitable absorbers has often
been among the main difficulties in applying the absorption method. Re-
cently, the first two authors, while studying a related problem, observed that
in many cases this problem can be reduced to a degenerate Turán-type prob-
lem [9]. In fact, ignoring for a moment the issue that the absorbers need
to be connectable into a tight path, their existence is a direct consequence
of a classical extremal result of Erdős [3], for the small price that the size
of Z needs to satisfy an additional divisibility assumption (see Section 5.1
for more details).

Finally, the covering lemma (see Proposition 6.1) asserts, in particular,
that the minimum pair degree condition considered in Theorem 1.3 ensures
the existence of an almost perfect path cover. Then the connecting lemma
allows us to connect the paths from the cover together with PA. In fact,
there even exists a cycle C containing paths from the cover and the ab-
sorbing path PA for which the (small) set Z = V (H)r V (C) of remaining
vertices satisfies the aforementioned divisibility condition. Now, to complete
the proof of Theorem 1.3 one just needs to absorb the vertices outside C
into the absorbing path.

As mentioned above, the proof of Theorem 1.3 presented here reuses
some ideas and results from [11] and we collect the relevant material in
the next section. Sections 3–6 establish the connecting lemma, absorbing
lemma, covering lemma, and the so-called reservoir lemma, which ensures
that the short tight paths used for the connections are always vertex disjoint
from the rest. In Section 7 we then present the somewhat standard proof of
Theorem 1.3 based on these lemmata.
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2. Preliminaries

2.1. Notation. Besides graphs, we mainly consider 3-uniform and 4-
uniform hypergraphs, and here we briefly recall some relevant definitions.
For simplicity, if there is no danger of confusion we sometimes omit paren-
theses, braces, and commas and denote edges {x, y}, {x, y, z}, or {x, y, z,w}
in graphs and 3- and 4-uniform hypergraphs by xy, xyz, or xyzw, respec-
tively.

Walks, paths, and cycles. We shall only consider tight walks, paths, and
cycles and for simplicity we omit the word tight from now on. The length
of a walk, a path, or a cycle is measured by its number of edges.

For 3-uniform hypergraphs a walk W of length ℓ ≥ 0 is given by a se-
quence (x1, . . . , xℓ+2) of vertices such that e ∈ E(W ) if and only if e =
xixi+1xi+2 for some i ∈ [ℓ]. The ordered pairs (x1, x2) and (xℓ+1, xℓ+2) are
the end-pairs of W and we say W is a (x1, x2)-(xℓ+1, xℓ+2)-walk. This def-
inition of end-pairs is not symmetric and implicitly fixes a direction of W
and sometimes we may refer to (x1, x2) and (xℓ+1, xℓ+2) as starting pair and
ending pair, respectively. The vertices x3, . . . , xℓ are the inner vertices of W
and in the context of walks we count the inner vertices with their multi-
plicities, i.e., for ℓ ≥ 2 a walk of length ℓ has ℓ− 2 inner vertices. We often
identify a walk with the sequence of its vertices x1x2 . . . xℓ+2 and refer to it
as a x1x2-xℓ+1xℓ+2-walk.

A walk W is a path if all the vertices x1, . . . , xℓ+2 are distinct and it is
a cycle if the vertices x1, . . . , xℓ are distinct and xℓ+1 = x1 and xℓ+2 = x2.

These definitions extend to 4-uniform hypergraphs in a straightforward
way. In this context a walk of length ℓ is given by a sequence of ℓ+ 3 ver-
tices and the end-triples are the subsequences of the first and the last three
vertices.

Links of vertices and pairs. We recall that the link graph of a vertex v
of a 3-uniform hypergraph H is defined to be the graph Hv with the same
vertex set as H and with

E(Hv) = {xy : vxy ∈ E(H)} .

Similarly, for a 4-uniform hypergraph H the link Hv of a vertex v is a
3-uniform hypergraph on the same vertex set with E(Hv) = {xyz : vxyz
∈ E(H)}. Moreover, for an unordered pair of distinct vertices u and v the
link of the pair uv is the graph Huv with vertex set V (Huv) = V (H) and
edge set

E(Huv) = {xy : uvxy ∈ E(H)} .
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2.2. Robust subgraphs. Both in the 3-uniform predecessor [11] of
this work and here the connecting lemma is deduced from certain connectiv-
ity properties of 2-uniform link graphs. In the present subsection we discuss
the graph theoretic result we shall require for this purpose. We begin with
the key notion in this regard (cf. [11, Definition 2.2]).

Definition 2.1. Given β > 0 and ℓ ∈ N a graph R is said to be (β, ℓ)-
robust if for any two distinct vertices x and y of R the number of x-y-paths
of length ℓ is at least β|V (R)|ℓ−1.

The main point is that graphs whose density is larger than 5/9 pos-
sess sufficiently dense robust subgraphs containing more than two thirds of
the vertices. The following result along those lines is a slight strengthening
of [11, Proposition 2.3] and below we shall only indicate how the arguments
in [11] can be modified so as to yield the present version.

Proposition 2.2. Given α, µ > 0, there exist β > 0 and an odd integer

ℓ ≥ 3 such that for sufficiently large n, every n-vertex graph G = (V,E) with

|E| ≥
(
5
9 + α

)
n2

2 contains a (β, ℓ)-robust induced subgraph R ⊆ G satisfying

(i) |V (R)| ≥
(
2
3 + α

2

)
n,

(ii) eG
(
V (R), V r V (R)

)
≤ µn2,

(iii) and e(R) ≥
(
5
9 + α

2

)
n2

2 − (n−|V (R)|)2

2 ≥
(
4
9 + 2

3α
)

n2

2 .

Proof. We may assume α ≤ 4/9, for otherwise there are no n-vertex

graphs (V,E) satisfying |E| ≥
(
5
9 + α

)
n2

2 and there is nothing to show. The
proof of [11, Lemma 3.2] shows for every fixed µ′ ≤ α/72 that every graph

G = (V,E) on n ≫ 1/µ′ vertices such that |E| ≥
(
5
9 + α

)
n2

2 has an induced
subgraph R satisfying (i),

(2.1) eG
(
V (R), V r V (R)

)
< 4µ′n2 ,

and the first estimate in (iii) which, moreover, has a property called µ′-
inseparability (see [11, Definition 3.1]). For the purposes of [11] it was enough
to apply this fact to µ′ = α/72 itself, but here it will be more convenient to
set µ′ = min{µ/4, α/72}, which causes (2.1) to imply (ii). The second esti-
mate in (iii) is an immediate consequence of (i) and of α ≤ 4/9 < 2/3.

It remains to show that R is indeed (β, ℓ)-robust for some constants β
and ℓ that only depend on α and µ but not on n. As the proof of [11,
Proposition 2.3] shows, this follows from the µ′-inseparability of R combined
with the fact that (i) and (iii) allow us to bound the density of R from below.
In fact, it is enough to let ℓ be the least odd integer such that

ℓ > 8
( 1

µ′

)2
+ 1 and to set β =

1

72

(µ′

2

)6ℓ
. �
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The next result will assist us (indirectly via Lemma 2.10) in Section 5
when we wish to ensure that the end-triples of our absorbers are connectable.
Notice that the assumptions on R are like clause (i) and the special case
µ = α/4 of clause (ii) of Proposition 2.2.

Lemma 2.3. Given α > 0, let G = (V,E) and G′ = (V,E′) be two graphs
on the same n-element vertex set, each with at least (5/9 + α)n2/2 edges.
Let R be a subgraph of G induced by a set U = V (R) ⊆ V with |U | ≥ 2n/3
that satisfies eG(U, V r U) ≤ αn2/4. Then

(2.2)
∣∣{ (u, v) ∈ U2 : uv ∈ E ∩ E′ and dR(v) > n/3

}∣∣ ≥ 3

4
αn2 .

Proof. Let Z = {z ∈ U : dR(z) > n/3}. We shall show

(2.3)
∣∣{xy ∈ E ∩E′ : x, y ∈ U and {x, y} ∩ Z 6= ∅

}∣∣ ≥ 3

4
αn2 .

Since every (unordered) edge xy counted here corresponds to one or two
ordered pairs (u, z) counted on the left side of (2.2) (depending on whether
only one or both of x, y are in Z), this will imply the desired estimate (2.2).
For the proof of (2.3) we let η ∈ [2/3, 1] and τ ∈ [0, 1] be defined by

|U | = ηn and |Z| = τn .

We consider two cases depending on the value of τ .
First Case: τ ≥ 2/3. Owing to
∣∣{ (x, y) ∈ V 2 : xy ∈ E ∩E′

}∣∣ ≥ 2 |E| + 2 |E′| − n2 ≥
(
1
9 + 2α

)
n2

and |V r Z|2 = (1− τ)2n2 ≤ n2/9 we have
∣∣{ (x, y) ∈ V 2 : xy ∈ E ∩ E′ and {x, y} ∩ Z 6= ∅

}∣∣ ≥ 2αn2 .

Recall that Z ⊆ U . So if {x, y} ∩ Z 6= ∅, but {x, y} 6⊆ U , then one of the
vertices x, y is in U while the other one is in V r U , whence

∣∣{(x, y) ∈ V 2 : xy ∈ E , {x, y} ∩ Z 6= ∅, and {x, y} 6⊆ U
}∣∣

≤ 2 eG(U, V r U) ≤ α

2
n2 .

Consequently, the number of (unordered) edges xy considered on the left-
hand side of (2.3) is at least 1

2(2αn
2 − αn2/2) = 3αn2/4, as desired.

Second Case: τ < 2/3. Notice that

2 e(R) ≥ 2
(
e(G)− eG(U,V rU)− eG(V rU)

)
≥

(5
9
+α− α

2
− (1−η)2

)
n2.
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Together with (1− η)(2/3− η) ≤ 0 this yields

(2.4) 2 e(R) ≥
(5
9
+

α

2
− (1− η)2 + (1− η)

(2
3
− η

))
n2 =

(2
9
+

α

2
+

η

3

)
n2 .

On the other hand, the definition of Z leads to

(2.5) 2 e(R) =
∑

z∈Z

dR(z) +
∑

z∈UrZ

dR(z) ≤
∑

z∈Z

dR(z) +
(η − τ)

3
n2 .

Comparing (2.4) and (2.5) we deduce

∑

z∈Z

dR(z) ≥
(2
9
+

α

2
+

η

3
− η − τ

3

)
n2 =

(2
9
+

α

2
+

τ

3

)
n2 .

By the assumption of the case we have

τ

3
n2 >

τ2

2
n2 ≥

(|Z|
2

)

and this shows that

∑

z∈Z

dR(z) ≥
(2
9
+

α

2

)
n2 +

(|Z|
2

)
,

which in turn implies

∣∣{xy ∈ E : x, y ∈ U and {x, y}∩Z 6= ∅
}∣∣ ≥

∑

z∈Z

dR(z)−
(|Z|

2

)
≥

(2
9
+
α

2

)
n2.

Finally, the sieve formula yields
∣∣{xy ∈ E ∩E′ : x, y ∈ U and {x, y} ∩ Z 6= ∅

}∣∣

≥
(4
9
+ α

)n2

2
+
(5
9
+ α

)n2

2
−

(
n

2

)
≥ αn2 ,

which is more than what we need for establishing (2.3). �

2.3. Connectable pairs and bridges in 3-uniform hypergraphs.

In this subsection we discuss the 3-uniform connecting lemma from [11] to-
gether with some related results. Roughly speaking, this lemma asserts
that in any sufficiently large 3-uniform hypergraph H = (V,E) with δ1(H)
≥ (5/9 + α)|V |2/2 any two pairs of vertices possessing a special property
called connectability can be connected by many short paths. The definition
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of our connectability notion presupposes that for every vertex v ∈ V (H), one
has fixed a robust subgraph of its link graph as obtained by Proposition 2.2.
We collect these assumptions in the following setup.

Setup 2.4. Suppose that α ∈ (0, 1/3), that µ, β > 0, that ℓ ≥ 3 is an
odd integer, that H = (V,E) is a sufficiently large 3-uniform hypergraph
with δ1(H) ≥ (5/9 + α)|V |2/2, and that for every vertex v ∈ V , Proposi-
tion 2.2 located a (β, ℓ)-robust induced subgraph Rv ⊆ Hv of its link graph
satisfying

(i) |V (Rv)| ≥
(
2
3 +

α
2

)
|V |,

(ii) eHv

(
V (Rv), V r V (Rv)

)
≤ µ|V |2,

(iii) e(Rv) ≥
(
5
9 +

α
2

) |V |2

2 − (|V |−|V (Rv)|)2

2 ≥
(
4
9 + 2

3α
) |V |2

2 .

We remark that for most part of this section condition (ii) with µ = α/4
of this setup suffices. In fact, the results in [11] were obtained for this re-
stricted version of the setup and below we (mostly) recapitulate and apply
them in this form. A stronger form, with a smaller value of µ, of Proposi-
tion 2.2 (ii) will be useful in Lemma 2.10 below and for the construction of
the absorbing path in Section 5. The following notion of connectable pairs
is taken from [11, Definition 2.5].

Definition 2.5. Given Setup 2.4 and ζ > 0, an unordered pair xy of
distinct vertices of H is said to be ζ-connectable if the set

Uxy =
{
v ∈ V : xy ∈ E(Rv)

}

satisfies |Uxy| ≥ ζ|V |. An ordered pair (x, y) is ζ-connectable if its underlying
unordered pair xy is.

We are now ready to state the 3-uniform connecting lemma from [11,
Proposition 2.6].

Proposition 2.6 (connecting lemma for 3-uniform hypergraphs). Given

Setup 2.4 (with µ = α/4) and ζ > 0, there exists ϑ = ϑ(α, β, ℓ, ζ) > 0 such

that the following holds.
If (a, b), (x, y) are two disjoint ζ-connectable pairs of vertices of H , then

the number of ab-xy-paths in H with 3ℓ+1 inner vertices is at least ϑ|V |3ℓ+1.

For later use we also state the following simple fact (see [11, Fact 4.1]).

Lemma 2.7. Given Setup 2.4 (with µ = α/4) and ζ > 0, there are at most

ζ|V |3 triples (x, y, z) ∈ V 3 such that xy ∈ E(Rz), but xy is not ζ-connectable
in H .

To extend these notions and results to 4-uniform hypergraphs we need
a new 3-uniform concept.
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TIGHT HAMILTONIAN CYCLES IN 4-UNIFORM HYPERGRAPHS 11

Definition 2.8. Given Setup 2.4 and ζ > 0, a triple (x, y, z) ∈ V 3 is
called a ζ-bridge in H if xyz ∈ E and xy and yz are both ζ-connectable
in H . We say a path x1x2 . . . xj−1xj starts (resp. ends) with a ζ-bridge, if
x1x2x3 (resp. xj−2xj−1xj) is a ζ-bridge.

It will be useful to estimate the number of bridges in a dense 3-uniform
hypergraph.

Lemma 2.9. Given Setup 2.4 (with µ = α/4) and ζ > 0, the number of

triples (x, y, z) ∈ V 3 with xyz ∈ E that fail to be a ζ-bridge in H is at most

(2/9 + α/2 + 2ζ)|V |3. In particular, if ζ < α/4, then there are more than
|V |3/3 ζ-bridges in H .

Proof. Starting with A = {(x, y, z) ∈ V 3 : xyz ∈ E} we note that the
minimum degree assumption yields |A| ≥ (5/9 + α)|V |3. We consider four
exceptional subsets of A, namely

P1 = {(x, y, z) ∈ A : xy 6∈ E(Rz)} ,
Q1 = {(x, y, z) ∈ Ar P1 : xy is not ζ-connectable} ,

P2 = {(x, y, z) ∈ A : yz 6∈ E(Rx)} ,
Q2 = {(x, y, z) ∈ Ar P2 : yz is not ζ-connectable} .

Notice that every triple in Ar (P1 ∪Q1 ∪ P2 ∪Q2) is a ζ-bridge in H .
Lemma 2.7 yields the upper bounds |Q1|, |Q2| ≤ ζ|V |3. Moreover, the first
two clauses of Setup 2.4 and α ≤ 1/3 lead to

|P1| ≤
∑

z∈V

(2 eHz
(V (Rz), V r V (Rz)) + (n− |V (Rz)|)2)

≤
(α
2
+

(1
3
− α

2

)2)
|V |3 ≤

(1
9
+

α

4

)
|V |3 .

The same upper bound applies to |P2|. These upper bounds on |Q1|, |Q2|
and |P1|, |P2| yield the desired upper bound on |P1 ∪Q1 ∪ P2 ∪Q2| for the
first part of the lemma.

The second part is a direct consequence, since Ar (P1 ∪Q1 ∪ P2 ∪Q2)
is a subset of all ζ-bridges in H and

∣∣Ar (P1 ∪Q1 ∪ P2 ∪Q2)
∣∣ ≥

(5
9
+ α

)
|V 3| −

(2
9
+

α

2
+ 2ζ

)
|V 3| > |V |3

3

as long as ζ < α/4. �

The next lemma implies that every two 3-uniform hypergraphsH andH ′

on the same vertex set V with minimum vertex degree (5/9 + o(1))|V |2/2
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have the property that H ′ contains many bridges of H as edges. (For tech-
nical reasons it will be convenient to allow that the vertex sets of H and H ′

differ slightly.) Note that the lower bound on the number of bridges in
Lemma 2.9 falls short of implying such an assertion. In fact, the proof of the
following lemma will rely on the structural properties of hypergraphs and
bridges.

Lemma 2.10. Given Setup 2.4 with µ = α3

18 for a 3-uniform hyper-

graph H = (V,E) with |V | = n, let ζ ∈ (0, α2/9), and let H ′ = (V ′, E′) be
a 3-uniform hypergraph with δ1(H

′) ≥ (5/9 + α)n2/2 and |V△V ′| ≤ αn/18.
Then the number of ζ-bridges (x, y, z) ∈ V 3 in H such that xyz ∈ E′ is at
least αn3/2.

Proof. Let H = (V,E) and H ′ = (V ′, E′) satisfy the assumptions of
the lemma. In particular, for every vertex v ∈ V we fixed a robust subgraph
Rv ⊆ Hv. We consider the following set of triples

T =
{
(x, y, z) ∈ V 3 : xy ∈ E(Hz) ∩E(H ′

z) , x, y ∈ V (Rz) ,

and dRz
(x) > (13 − α

54 )n
}
.

We shall appeal to Lemma 2.3 for a lower bound on |T |. For that we have to
restrict to the subhypergraphs and subgraphs induced on W = V ∩ V ′. We
consider

T [W ] =
{
(x, y, z) ∈ W 3 : xy ∈ E(Hz[W ]) ∩E(H ′

z[W ]) ,

x, y ∈ V (Rz) ∩W , and dRz[W ](x) > |W |/3
}
.

Note that the bound on the symmetric difference V△V ′ guarantees a mini-
mum vertex degree of at least (5/9+8α/9)n2/2 for H[W ] and H ′[W ]. More-
over, for every z ∈ W we have

|V (Rz) ∩W | ≥
(2
3
+

α

2

)
n− α

18
n ≥ 2

3
|W |

and

eHz

(
V (Rz) ∩W,W r V (Rz)

)
≤ eHz

(
V (Rz), V r V (Rz)

)

≤ µn2 =
α3

18
n2 ≤ α

4
|W |2 .

Consequently, for every z ∈ W we can apply Lemma 2.3 to G = Hz[W ],
G′ = H ′

z[W ], and R = Rz[W ] ⊆ Hz[W ] and (2.2) tells us that

∣∣T [W ]
∣∣ ≥ 3

4
· 8
9
α|W |3 ≥ 3

4
· 8
9
α
(
1− α

18

)3
n3 ≥ 5

8
αn3 .
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The definitions of T and T [W ] imply T [W ] ⊆ T and, hence, we arrive at

(2.6) |T | ≥ 5

8
αn3 .

We shall bound the sizes of the following ‘bad’ subsets of T

S1 =
{
(x, y, z) ∈ T : xy is not a ζ-connectable pair in H

}

and

S2 =
{
(x, y, z) ∈ T : yz is not a ζ-connectable pair in H

}
.

By definition of T , every triple (x, y, z) ∈ T corresponds to an edge in E ∩E′

and by definition of S1 and S2, every triple in T r (S1 ∪ S2) is a ζ-bridge
in H . Hence in view of (2.6), the conclusion of Lemma 2.10 will follow from
the estimates

(2.7) |S1| ≤ ζn3 and |S2| ≤
(
ζ +

α3

18
+

α2

8

)
n3

combined with α < 1/3 (cf. Setup 2.4) and ζ < α2/9.
The desired upper bound on the size of S1 is a direct consequence of

Lemma 2.7. In fact by definition of T , for every (x, y, z) ∈ T we have xy
∈ E(Hz) and x, y ∈ V (Rz). Since Rz ⊆ Hz is an induced subgraph, it follows
that xy ∈ E(Rz) and Lemma 2.7 applies.

In order to prove the second inequality of (2.7) we note that xy ∈ E(Hz)
is equivalent to yz ∈ E(Hx) and thus we can apply the same argument as
above to the subset

S′
2 =

{
(x, y, z) ∈ S2 : y ∈ V (Rx) and z ∈ V (Rx)

}

and Lemma 2.7 tells us S′
2 ≤ ζ|V |3. Next we bound the size of S2 r S′

2 by
splitting it into the sets

S′′
2 =

{
(x, y, z) ∈ S2 : y 6∈ V (Rx) and z ∈ V (Rx)

}

and

S′′′
2 =

{
(x, y, z) ∈ S2 : z 6∈ V (Rx)

}
.

Summarising the discussion above, we note that the proof of (2.7) reduces
to showing that

(2.8)
∣∣S′′

2

∣∣ ≤ α3

18
n3 and

∣∣S′′′
2

∣∣ ≤ α2

8
n3 .

For the bound on |S′′
2 | we appeal for every x ∈ V to part (ii) of Setup 2.4

for Rx ⊆ Hx. For every vertex x ∈ V there are at most µn2 = α3n2/18
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pairs (y, z) ∈ (V r V (Rx))× V (Rx) with yz ∈ E(Hx). Since the definition
of T ⊇ S′′

2 ensures xy ∈ E(Hz) and, hence, by symmetry also yz ∈ E(Hx),
the desired bound on |S′′

2 | stated in (2.8) follows.
For the bound on |S′′′

2 | we consider the set of pairs

P =
{
(x, z) ∈ V 2 : dRz

(x) > (13 − α
54 )n and z 6∈ V (Rx)

}

and we observe that the definitions of T and S′′′
2 yield

∣∣S′′′
2

∣∣ ≤ |P | · n. For
the bound on P we consider an arbitrary vertex x ∈ V . Since

dRz
(x) ≤ dHz

(x) = dH(x, z) = dHx
(z)

we are interested in the number of vertices z 6∈ V (Rx) with dHx
(z) >

(13 − α
54)n. Owing to part (i) of Setup 2.4 for Rx ⊆ Hx there are at least

dHx
(z)−

∣∣V r V (Rx)
∣∣ >

(1
2
− 1

54

)
αn =

26

54
αn

edges of EHx

(
V (Rx), V r V (Rx)

)
incident to such a vertex z. Therefore,

part (ii) of Setup 2.4 implies that for every fixed x there are at most

eHx

(
V (Rx), V r V (Rx)

)

26αn/54
≤ α3n2/18

26αn/54
≤ α2

8
n

choices of z. Consequently, |P | ≤ α2n2/8 and the bound on |S′′′
2 | from (2.8)

follows. This concludes the proof of Lemma 2.10. �

An interesting feature of Proposition 2.6 caused by the proof strategy
pursued in [11] is that the number of inner vertices in the connections it
provides is necessarily congruent to 1 modulo 3. In Section 2.4 below it
will be convenient to employ connections whose numbers of inner vertices
are in other residue classes modulo 3. As the following result shows, such
connections can be accomplished by going “via bridges”.

Corollary 2.11. Given Setup 2.4 (with µ = α/4) and ζ > 0, there

exist three integers ℓ1, ℓ2, ℓ3 ≤ 12ℓ with ℓi ≡ i (mod 3) for all i ∈ [3] and

ϑ = ϑ(α, β, ℓ, ζ) > 0 such that the following holds.
If (a, b), (x, y) are two disjoint ζ-connectable pairs of vertices of H , then

for every i ∈ [3], the number of ab-xy-paths in H with ℓi inner vertices is at

least ϑ|V |ℓi .
Proof. We set

ℓ1 = 3ℓ+ 1 , ℓ2 = 6ℓ+ 5 , ℓ3 = 9ℓ+ 9 , and ϑ =
ϑ3
1

25
,
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where ϑ1 is provided by Proposition 2.6. Since ℓ ≥ 3, we have ℓ1 ≤ ℓ2 ≤ ℓ3
≤ 12ℓ. We already know that ℓ1 has the desired property by Proposition 2.6
and we shall verify the corollary for ℓ2 and ℓ3.

Starting with the argument for ℓ2, we let any two disjoint ζ-connectable
pairs (a, b) and (x, y) be given. Notice that if (u, v,w) is a ζ-bridge, abPuv
is an ab-uv-path with ℓ1 inner vertices, and vwQxy is a vw-xy-path with ℓ1
inner vertices, then abPuvwQxy is an ab-xy-walk with ℓ1 +3+ ℓ1 = ℓ2 inner
vertices.

By Lemma 2.9 for sufficiently large |V | there are |V |3/4 possibilities to
choose the bridge (u, v,w) in such a way that {a, b, x, y} ∩ {u, v,w} = ∅ and
for every such choice of the bridge in the middle, Proposition 2.6 delivers
ϑ1|V |ℓ1 possibilities for P as well as ϑ1|V |ℓ1 possibilities for Q. So altogether
the number of ab-xy-walks with ℓ2 inner vertices is at least ϑ2

1|V |ℓ2/4. Since
at most O(|V |ℓ2−1) of them fail to be paths due to containing the same ver-
tex multiple times, this proves that ℓ2 has the desired property for ϑ < ϑ2

1/5
and sufficiently large |V |.

For ℓ3 we can repeat the same argument once more and get the same
conclusion for the choice of ϑ = ϑ3

1/25 above. �

2.4. Path covers in 3-uniform hypergraphs. Preparing the proof
of the 4-uniform covering lemma in Section 6 we shall now prove the follow-
ing 3-uniform covering principle.

Proposition 2.12. For all α, ξ ∈ (0, 1/3) there is an infinite arithmetic
progression P ⊆ 3N such that the following holds.

Given Setup 2.4 (with µ = α/4), a collection B ⊆ V 3 of ξ-bridges in H
with |B| ≥ ξ|V |3, and M ∈ P , we can cover all but at most ξ|V |+M vertices
of H by vertex-disjoint paths of length M each of which starts and ends with
a bridge from B.

Let us remark that while the vertex set V in this statement is assumed
to be much larger than α−1 and ξ−1, the quantification in Proposition 2.12
allows to consider M to be a function of |V |. In the application we have in

mind, M will be about Θ(
√
|V |). Before we come to the proof of Proposi-

tion 2.12 itself, we would like to give a brief overview. First of all, in [11]
we proved (somewhat implicitly) a similar result, where M is a constant
and |V | is very large. Moreover, there everything related to B is omitted,
but instead of this one can demand that the end-pairs of the constructed
paths should be ζ⋆⋆-connectable for a sufficiently small constant ζ⋆⋆ ≪ α, ξ
(see Lemma 2.14 below). The idea here for obtaining longer paths (say of

length
√
|V |) is that in the beginning of the proof we put a small reservoir

set aside, so that in the end we can connect many short paths into a smaller
number of longer ones. To this end we require a somewhat standard reser-
voir lemma (see Lemma 2.13 and Fig. 2.1). The length of the longer paths
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Fig. 2.1: Collections of small paths, reservoir R, and some bridges from B form the set X

we obtain in this manner depends linearly on the number of short paths we
connect, and hence the possible such lengths form an arithmetic progres-
sion P . Now we still need to ensure that the paths we construct start and
end with bridges from B. This is achieved by putting sufficiently many such
bridges aside that are vertex-disjoint among themselves and to the reservoir.
At the end of the proof we will then be able to connect the selected bridges
to our paths by making further uses of the reservoir.

Lemma 2.13. For all α ∈ (0, 1/3) and ϑ⋆, ζ⋆⋆ > 0 there exists ϑ⋆⋆ > 0
with the following property.

Given Setup 2.4 (with µ = α/4) and the integers ℓ1, ℓ2, ℓ3 ≤ 12ℓ provided
by Corollary 2.11, there is a reservoir set R ⊆ V with 1

2ϑ
2
⋆|V | ≤ |R| ≤ ϑ2

⋆|V |
such that for every R′ ⊆ R with |R′| ≤ ϑ⋆⋆|R|, every i ∈ [3], and any two
disjoint ζ⋆⋆-connectable pairs (x, y) and (z,w), there is a xy-zw-path with ℓi
inner vertices all of which belong to RrR′.

Proof. Without loss of generality we may assume ζ⋆⋆ < 1/4. We fix an
auxiliary constant η and choose ϑ⋆⋆ appropriately to obey the hierarchy ϑ⋆⋆

≪ η ≪ ϑ⋆, ζ⋆⋆, α. Consider a random subset R ⊆ V including every vertex
v ∈ V independently with probability 3

4ϑ
2
⋆. It follows from Corollary 2.11

along the lines of the proof of [11, Proposition 2.7] that such a set a.a.s. has
the desired size 1

2ϑ
2
⋆|V | ≤ |R| ≤ ϑ2

⋆|V | and possesses the property that for
all disjoint ζ⋆⋆-connectable pairs (x, y) and (z,w) and all i ∈ [3], the number
of xy-zw-paths with ℓi inner vertices all of which belong to R is at least
η|R|ℓi . Fix a reservoir set R ⊆ V with this property. Now, if in addition to
the pairs (x, y), (z,w), and to i ∈ [3], also a set R′ ⊆ R with |R′| ≤ ϑ⋆⋆|R|
is given, we know that at most ℓi|R′||R|ℓi−1 ≤ 12ℓϑ⋆⋆|R|ℓi < η|R|ℓi of these
paths can contain an inner vertex from R′, meaning that the desired path
with inner vertices only from RrR′ exists. �
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Lemma 2.14. For all α ∈ (0, 1/3) and ϑ⋆ with 0 ≪ ϑ⋆ ≪ α there is a
ζ⋆⋆ ∈ (0, ϑ⋆) such that for every sufficiently large M ∈ N with M ≡ 2 (mod 3)
the following holds.

Given Setup 2.4 (with µ=α/4), a reservoir set R ⊆ V as provided by
Lemma 2.13, and a set X ⊆ V rR with |X| ≤ ϑ⋆|V |, one can cover all but
at most 2ϑ2

⋆|V | vertices of H − (R∪X) by disjoint M -vertex paths whose
end-pairs are ζ⋆⋆-connectable.

Proof. This is implicit in [11, Section 7], where an almost spanning
path in H is constructed that avoids the absorbing path. More precisely, [11,
Lemma 7.1] asserts that for a certain set X called V (PA) there, there is a
path Q ⊆ H −X satisfying

(2.9) |V (H)r (R∪X ∪ V (Q))| ≤ ϑ2
⋆|V |

and two further statements that are immaterial for our present concerns.
The only property of X used in the proof of [11, Lemma 7.1] is that it con-
sists of no more than ϑ⋆|V | vertices and thus we can repeat the entire proof
with an arbitrary such set. In the beginning of the proof we fixed a suf-
ficiently large M ∈ 3N+ 2 and below we will assume, in particular, that
M ≥ ϑ−2

⋆ .
Next we recall that Q is constructed so as to contain many subpaths

belonging to the set

P =
{
P ⊆ H − (X ∪ R) : P is an M -vertex path

whose end-pairs are ζ⋆⋆-connectable
}
.

In fact, there is a set C ⊆ P of mutually vertex-disjoint paths such that
Q starts and ends with a path from P and between any two “consecutive”
members of C appearing in Q there is either at most one vertex or there are
only vertices from R (cf. clauses (b) and (c) in the definition of candidates
in the proof of Lemma 7.1 in [11]). This property of Q guarantees

∣∣∣∣V (Q)r

( ⋃

P∈C

V (P ) ∪R
)∣∣∣∣ ≤

|V |
M

≤ ϑ2
⋆|V | ,

which combined with (2.9) yields
∣∣∣∣V (H)r

(
R∪X ∪

⋃

P∈C

V (P )

)∣∣∣∣

≤
∣∣V (H)r (R∪X ∪ V (Q))

∣∣ +
∣∣∣∣V (Q)r

( ⋃

P∈C

V (P ) ∪R
)∣∣∣∣ ≤ 2ϑ2

⋆|V | .

In other words, C is the desired collection of paths. �
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Proof of Proposition 2.12. Given α, ξ ∈ (0, 1/3) we apply Lemma
2.14 with α and ϑ⋆ ≪ ξ, α and obtain ζ⋆⋆ ∈ (0, ϑ⋆). With this value of ζ⋆⋆
we appeal to Lemma 2.13, thus getting some ϑ⋆⋆ > 0. Next we pick some
M ≫ ϑ−1

⋆ , ϑ−1
⋆⋆ with M ≡ 2 (mod 3) which is so large that the conclusion of

Lemma 2.14 holds. Finally we take n0 ≫ M,ℓ, ϑ−1
⋆ , ϑ−1

⋆⋆ so large that we can
apply the Lemmata 2.13 and 2.14 when |V | ≥ n0.

We shall prove that the infinite arithmetic progression

P =
{
M ′ ∈ N : M ′ > n0 and M ′ ≡ 9ℓ+ 15 (mod M + 1 + 3ℓ)

}

has the desired property. Since 9ℓ+15 and M +1+ 3ℓ are divisible by 3, so
are all members of P . Now let Setup 2.4, a collection B ⊆ V 3 of ξ-bridges
with |B| ≥ ξ|V |3 as well as a natural number M ′ ∈ P be given. We are
to cover all but at most ξ|V |+M ′ vertices of H by vertex-disjoint paths
consisting of M ′ vertices which start and end with a ξ-bridge from B. If
|V | ≤ M ′ we can just take the empty collection of paths, so we may as-
sume |V | > M ′ > n0 from now on. Let R ⊆ V be a reservoir set as obtained
from Lemma 2.13. Consider a maximal sequence b1, . . . , br of ξ-bridges
from B such that R and these bridges are mutually vertex-disjoint. Since
the reservoir and the selected bridges together involve |R|+ 3r vertices, we
have 3(|R|+ 3r)|V |2 ≥ |B| ≥ ξ|V |3, whence

r ≥ ξ|V | − 3|R|
9

≥ (ξ − 3ϑ2
⋆)|V |

9
> ϑ⋆|V | .

In particular, we can choose x = ⌊ϑ⋆|V |/3⌋ bridges in B that are vertex-
disjoint both from each other and from the reservoir. Define X ⊆ V to be
the set of the 3x vertices occurring in such a list of ξ-bridges.

By Lemma 2.14 there is a collection C of disjoint M -vertex paths in
H − (X ∪R) covering all but at most 2ϑ2

⋆|V | vertices of V (H)r (X ∪R)
which start and end with ζ⋆⋆-connectable pairs. Due to M ′ > n0 ≫ M,ℓ the
natural number k defined by

M ′ = (M + 1 + 3ℓ)k + (9ℓ+ 15)

satisfies k ≥ √
n0. Take an arbitrary partition C = C1 ∪· · · · ∪· Cλ ∪· Cλ+1 such

that |C1| = · · · = |Cλ| = k > |Cλ+1|. For every j ∈ [λ], we want to connect
the k paths in Cj by means of k − 1 connections through the reservoir to
a path Pj . For each of these connections, we want to use 3ℓ+ 1 vertices
from R, so we will have

v(Pj) = kM + (k − 1)(3ℓ+ 1) = M ′ − (12ℓ+ 16)

for every j ∈ [λ]. Altogether, these connections require at most

(3ℓ+ 1)|C | ≤ (3ℓ+ 1)
|V |
M

≤ ϑ⋆⋆

2
|R|
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vertices from the reservoir, so there is no problem in choosing them one by
one.

Our strategy to continue is that for every j ∈ [λ] we want to connect the
ends of the path Pj to two of the ξ-bridges that have been put aside into the
set X . These connections are to be made through the reservoir and for one
of them we want to use 3ℓ+1 inner vertices, while the other one is supposed
to use ℓ3 = 9ℓ+ 9 inner vertices. Thereby each path Pj gets extended to a
path Qj with

v(Qj) = v(Pj) + (9ℓ+ 9) + (3ℓ+ 1) + 6 = M ′ .

There are indeed sufficiently many bridges contributing to X for this plan,
because

2λ ≤ 2|V |
k

≤ 2|V |√
n0

≤ ϑ⋆|V |
4

< x .

In fact, we even have

(12ℓ+ 10)λ ≤ (12ℓ+ 10)|V |
k

≤ |V |
3
√
n0

≤ ϑ⋆⋆|R|
2

,

which shows that the reservoir stays sufficiently intact while we are con-
structing the paths Q1, . . . , Qλ. Finally, the number of vertices that these
paths fail to cover is at most

∣∣∣∣V r
⋃

P∈C

V (P )

∣∣∣∣+
∣∣∣∣

⋃

P∈Cλ+1

V (P )

∣∣∣∣ ≤ |R| + |X|+ 2ϑ2
⋆|V |+M ′

≤ (3ϑ2
⋆ + ϑ⋆)|V |+M ′ ≤ ξ|V |+M ′ . �

3. Connecting lemma

In this section we establish appropriate extensions of Proposition 2.6 and
Corollary 2.11 for 4-uniform hypergraphs (see Proposition 3.3 and Corol-
lary 3.5 below). In particular, from now on H is a 4-uniform hypergraph.

3.1. Connectable triples in 4-uniform hypergraphs. Given a 4-
uniform hypergraph H = (V,E) with minimum pair degree

δ2(H) ≥ (5/9 + α)|V |2/2

we observe that the link Huv of a pair of vertices u, v ∈ V is a graph with
edge density at least 5/9 + α. Consequently, Proposition 2.2 provides the
existence of a robust subgraph in every joint link and we collect this infor-
mation in the following setup.
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Setup 3.1. Suppose that α ∈ (0, 1/3), β > 0, that ℓ ≥ 3 is an odd inte-
ger, thatH = (V,E) is a sufficiently large 4-uniform hypergraph with |V | = n
and δ2(H) ≥ (5/9+α)n2/2, and that for every {u, v} ∈ V (2) we have fixed a
(β, ℓ)-robust subgraph Ruv ⊆ Huv of its link graph given by Proposition 2.2
applied with µ = α3/18.

Let us remark that in this situation the vertices u and v are isolated
in Huv, for which reason they cannot belong to the robust subgraph Ruv .
Similarly, the vertex v is isolated in the (3-uniform) link hypergraph Hv . So
to make the results of §2.3 applicable it turns out to be more convenient
to work with the 3-uniform hypergraph Hv = Hv − v obtained from Hv by
removing the vertex v. Clearly this hypergraph has n− 1 vertices and it
satisfies the minimum degree condition

δ1(Hv) ≥ (5/9 + α)n2/2 ≥ (5/9 + α)|V (Hv)|2/2 .

Moreover, Hv together with the family of graphs
{
Ruv : u ∈ V (Hv)

}

exemplifies Setup 2.4. Thus, whenever Setup 3.1, a constant ζ > 0, and a
vertex v ∈ V are given, we can speak of ζ-connectable pairs in Hv and the
notion of a ζ-bridge in Hv is defined as well.

We continue with the definition of connectable triples in 4-uniform hy-
pergraphs, which pivots on bridges in the 3-uniform links of vertices.

Definition 3.2. Given Setup 3.1 and ζ > 0, a triple (x, y, z) ∈ V 3 is
said to be ζ-connectable in H if the set

Uxyz =
{
v ∈ V : (x, y, z) is a ζ-bridge in Hv

}

satisfies |Uxyz| ≥ ζ|V |.
In general, changing the ordering of x, y, and z can affect whether a

triple (x, y, z) is ζ-connectable. It is easy to see, however, that reversing the
ordering cannot have such an effect, i.e., (z, y, x) is ζ-connectable if and only
if (x, y, z) is.

Proposition 3.3 (connecting lemma). Given Setup 3.1 and ζ > 0, there
is ϑ > 0 such that if (a, b, c) and (x, y, z) are disjoint, ζ-connectable triples

in H , then the number of abc-xyz-paths in H with 8ℓ+ 10 inner vertices is

at least ϑn8ℓ+10.

Proof of Proposition 3.3. By monotonicity we may suppose that
ζ < 1

48 . Let ϑ3 denote the constant obtained by applying Proposition 2.6 to

α, β, ℓ, and ζ3. We shall prove that

(3.1) ϑ =
1

2
ζ3ℓ+6ϑ2ℓ+4

3
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has the desired property. To this end we fix two disjoint ζ-connectable triples
(a, b, c) and (x, y, z). Consider the set T of all sequences

(u, ⇀p, ⇀q , ⇀r,w) ∈ V 6ℓ+8

with

⇀p = (p1, . . . , p3ℓ+1) ,
⇀q = (q1, q2, q3, q4) , and ⇀r = (r3ℓ+1, . . . , r1)

such that the following six conditions hold:
(1) u 6= w and u ∈ Uabc, w ∈ Uxyz ,
(2) ⇀q spans a walk of length 3 in the robust subgraph Ruw of the link

graph Huw,
(3) q1q2 is ζ3-connectable in Hu,
(4) q3q4 is ζ3-connectable in Hw,
(5) (b, c, ⇀p, q1, q2) spans a 3-uniform path of length 3ℓ+1 in the link Hu,
(6) (q3, q4,

⇀r, x, y) spans a 3-uniform path of length 3ℓ+1 in the link Hw.
We establish the following lower bound on the size of set T defined above.

Claim 3.4. We have |T | ≥ ζ3ϑ2
3n

6ℓ+8.

Proof. Our first step is to show that the set

S =
{
(u, ⇀q ,w) ∈ V 6 : u 6= w, u ∈ Uabc, w ∈ Uxyz,

and ⇀q spans a walk of length 3 in Ruw

}

of all sextuples satisfying (1) and (2) satisfies

(3.2) |S| ≥ 1
12ζ

2n6 .

In fact, in view of Definition 3.2 the ζ-connectability of (a, b, c) and (x, y, z)
ensures that there are ζn · (ζn− 1) possibilities to choose the pair (u,w).
Thus for the proof of (3.2) it suffices to show that for every pair (u,w)
∈ Uabc × Uxyz the number of 3-edge walks in Ruw is at least cn4 for some c >
1/12. A result of Blakley and Roy [1] (asserting the validity of Sidorenko’s
conjecture for paths) combined with Proposition 2.2 (iii) entails that the
number of these walks is indeed at least

(2e(Ruv))
3

v(Ruv)2
≥ (4n2/9)3

n2
=

43

93
n4 >

n4

12
.

Thereby (3.2) is proved and we proceed by estimating the set

S⋆ =
{
(u, ⇀q ,w) ∈ S : q1q2 is ζ3-connectable in Hu

and q3q4 is ζ3-connectable in Hw

}
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of all sextuples satisfying (1)–(4). By two successive applications of Lemma
2.7 we shall show

(3.3) |S r S⋆| ≤ 2ζ3n6 .

Indeed, for every fixed triple (u, q3, q4) ∈ V 3, Lemma 2.7 applied to Hu and
ζ3 (in place of H and ζ) tells us that there are at most ζ3n3 triples (q1, q2, w)
with q1q2 ∈ E(Ruw) for which q1q2 fails to be ζ3-connectable in Hu. Simi-
larly, for every fixed triple (q1, q2, w) ∈ V 3, Lemma 2.7 applied to Hw and ζ3

tells us that there are at most ζ3n3 triples (u, q3, q4) with q3q4 ∈ E(Ruw) for
which q3q4 fails to be ζ3-connectable in Hw. So altogether we have |S r S⋆|
≤ 2n3 · ζ3n3, which proves (3.3).

As a direct consequence of (3.2), (3.3), and ζ < 1
48 we obtain

(3.4) |S⋆| ≥ 1

12
ζ2n6 − 2ζ3n6 ≥ 2ζ3n6 .

Now by Proposition 2.6 and the definition of S⋆, for every sextuple (u, ⇀q ,w)
there are at least ϑ3(n− 1)3ℓ+1 sequences ⇀p as demanded by (5) and there is
at least the same number of sequences ⇀r as required by (6). Consequently,
we have

|T | ≥ |S⋆|
(
ϑ3(n− 1)3ℓ+1

)2 (3.4)

≥ ζ3ϑ2
3n

6ℓ+8

for sufficiently large n and this concludes the proof of Claim 3.4. �

Now consider an auxiliary 3-partite 3-uniform hypergraph A with vertex
classes M , U , and W , where M = V 6ℓ+6, while U and W are two copies
of V . We represent the vertices in M as sequences

−⇀m = (p1, . . . , p3ℓ+1, q1, q2, q3, q4, r3ℓ+1, . . . , r1) = (⇀p, ⇀q , ⇀r) .

The edges of A are defined to be the triples {u, −⇀m,w} with −⇀m ∈ M , u ∈ U ,
w ∈ W , and (u, −⇀m,w) ∈ T . Thus Claim 3.4 implies

(3.5) e(A) = |T | ≥ ζ3ϑ2
3n

6ℓ+8 = ζ3ϑ2
3|M ||U ||W | .

For every vertex −⇀m ∈ M we consider its (ordered) bipartite link graph

A−⇀m = {(u,w) ∈ U ×W : −⇀muw ∈ E(A)} .

A standard convexity argument yields

(3.6)
∑

−⇀m∈M

|A−⇀m|ℓ+2 ≥ |M |
(e(A)
|M |

)ℓ+2 (3.5)

≥ ζ3ℓ+6ϑ2ℓ+4
3 n8ℓ+10 (3.1)

= 2ϑn8ℓ+10 .
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Fig. 3.1: Connecting (a, b, c) and (x, y, z)

As we will check below, if −⇀m ∈ M and (u1, w1), . . . , (uℓ+2, wℓ+2) ∈ A−⇀m,
then

abcu1p1p2p3u2 . . .

uℓ+1p3ℓ+1q1q2uℓ+2wℓ+2q3q4r3ℓ+1wℓ+1r3ℓr3ℓ−1r3ℓ−2wℓ . . . w1xyz

is an abc-xyz-walk in H with 8ℓ+ 10 inner vertices (see Fig. 3.1). By (3.6)
this argument produces at least 2ϑn8ℓ+10 such walks and, as at most
O(n8ℓ+9) of them can fail to be paths, this will conclude the proof of Propo-
sition 3.3.

It remains to verify that any four consecutive vertices in the above se-
quence form an edge of H . Recall that (ui,

−⇀m,wi) ∈ T for every i∈ [ℓ+ 2].
So (1) implies abcu1∈E and w1xyz∈E, respectively. Since bcp1 . . . p3ℓ+1q1q2
is a 3-uniform path in each of the link hypergraphs Hu1

, . . . ,Huℓ+2
by (5),

we have

bcu1p1, cu1p1p2, u1p1p2p3, p1p2p3u2, . . . , p3ℓ+1q1q2uℓ+2 ∈ E

and a similar argument utilising (6) establishes

wℓ+2q3q4r3ℓ+1, q3q4r3ℓ+1wℓ+1, . . . , r1w1xy ∈ E .

It remains to note, that by (2) we have

q1q2uℓ+2wℓ+2, q2uℓ+2wℓ+2q3, uℓ+2wℓ+2q3q4 ∈ E ,

which completes the proof of Proposition 3.3. �

3.2. Other residue classes. The almost spanning cycle to be con-
structed in Section 7 will be obtained from an almost spanning path cover
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with the help of the connecting lemma. The number of inner vertices ap-
pearing in the last connection will determine in which residue class modulo
four the number of left-over vertices will lie. As the nature of our absorbing
mechanism requires that the number of left-over vertices should be divisible
by four, it will be useful to strengthen the connecting lemma as follows.

Corollary 3.5. Given Setup 3.1 and ζ > 0, there exist natural numbers
ℓ1, ℓ2, ℓ3, ℓ4 ≤ 50ℓ with ℓi ≡ i (mod 4) for all i ∈ [4] and ϑ = ϑ(α,β, ℓ, ζ) > 0
such that the following holds.

If (a, b, c), (x, y, z) are disjoint ζ-connectable triples of vertices of H ,
then for every i ∈ [4] the number of abc-xyz-paths in H with ℓi inner vertices
is at least ϑ|V |ℓi .

The proof will be established in almost the same way as Corollary 2.11,
the main difference being that, instead of bridges, we utilise connectable
triples to build connecting paths whose number of inner vertices is incongru-
ent to 2 modulo 4 (cf. Proposition 3.3). For the proof we first observe that
there are many connectable triples in the 4-uniform hypergraph H = (V,E)
under consideration.

Lemma 3.6. Given Setup 3.1 and ζ ∈ (0, α/4), the number of ζ-connect-
able triples in H is at least (1/3− 2ζ)|V |3.

Proof. Let N be the number of ζ-connectable triples in H = (V,E).
We will estimate the number

Π =
∣∣{ (v, e) : e is a ζ-bridge in Hv

}∣∣ .

in two different ways. First, Lemma 2.9 tells us that for every vertex v ∈ V
there are at least (n− 1)3/3 different ζ-bridges in Hv , which yields Π ≥
n(n− 1)3/3 ≥ (1/3− ζ)n4 for sufficiently large n. Second, we have

Π ≤ N · n+ n3 · ζn ,

since every ζ-connectable triple e participates in at most n pairs (v, e) ∈ Π,
while every triple e that fails to be ζ-connectable can be a ζ-bridge in at
most ζn link hypergraphs.

By comparing our estimates on Π we obtain

N ≥ (1/3− ζ)n3 − ζn3 = (1/3− 2ζ)n3 ,

as promised. �

Proof of Corollary 3.5. By monotonicity we may suppose that ζ <
α/4 < 1/12 and let ϑ1 > 0 be given by Proposition 3.3. We set

ℓ1 = 32ℓ+ 49 , ℓ2 = 8ℓ+ 10 , ℓ3 = 16ℓ+ 23 , ℓ4 = 24ℓ+ 36 , and ϑ =
ϑ4
1

73
,
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It follows from ℓ ≥ 3 that ℓ2 ≤ ℓ3 ≤ ℓ4 ≤ ℓ1 ≤ 50ℓ and Proposition 3.3 di-
rectly asserts the conclusion of Corollary 3.5 for i = 2.

For i = 3 we use the following argument. Given disjoint ζ-connectable
triples (a, b, c) and (x, y, z) Lemma 3.6 delivers for sufficiently large n at
least n3/6 different ζ-connectable triples (u, v,w) in H with {a, b, c, x, y, z}
∩ {u, v,w} = ∅. For each of them, Proposition 3.3 provides ϑ1n

ℓ2 abc-uvw-
paths of the form abcPuvw, where P consists of ℓ2 vertices. Similarly, there
are ϑ1n

ℓ2 uvw-xyz-paths of the form uvwQxyz, where Q consists of ℓ2 ver-
tices as well. Altogether, this yields ϑ2

1n
ℓ3/6 abc-xyz-walks of the form

abcPuvwQxyz. Since at most O(nℓ3−1) of them fail to be a path due to
some overlap between P and Q, the corollary follows for i = 3.

For i = 0 and i = 1 we argue similarly, exploiting ℓ4 = ℓ2 + ℓ3 + 3 and
ℓ1 = ℓ3 + ℓ3 + 3, respectively. �

3.3. Bridges in 4-uniform hypergraphs. We conclude this section
with some results that will be helpful in Section 5. The following is a 4-
uniform analogue of Lemma 2.7.

Lemma 3.7. Given Setup 3.1 and ζ > 0, there are at most ζ|V |4 quadru-
ples (a, b, c, d) ∈ V 4 such that (a, b, c) is a ζ-bridge in Hd, but (a, b, c) is not
ζ-connectable in H .

Proof. It follows from Definition 3.2 that for every triple (a, b, c) ∈ V 3

that fails to be ζ-connectable in H , there are at most ζ|V | choices of d such
that (a, b, c) is a ζ-bridge in Hd. Consequently, there are at most ζ|V |4
quadruples with the properties under consideration. �

Similarly to the notion of bridges in 3-uniform hypergraphs, which
was defined by containing connectable pairs (cf. Definition 2.8), we define
4-uniform bridges in terms of connectable triples.

Definition 3.8. Given Setup 3.1 and ζ > 0, a quadruple (a, b, c, d) ∈ V 4

is called a ζ-bridge in H if abcd ∈ E and (a, b, c) and (b, c, d) are both ζ-con-
nectable triples in H .

It will later become important for us that there are plenty of bridges
in H . The argument in the proof of the following lemma is very similar to
that in the proof of Lemma 2.9.

Lemma 3.9. Given Setup 3.1 and ζ > 0 there are at least (1/9− 7ζ)|V |4
ζ-bridges in H .

Proof. Let A = {(a, b, c, d) ∈ V 4 : abcd ∈ E} be the set of all orderings
of the edges of H . Obviously, the minimum pair degree condition imposed
on H implies

|A| ≥
(5
9
+ α

)
|V |3(|V | − 1) ≥

(5
9
+ α− ζ

)
|V |4 .
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We consider two exceptional subsets of A, namely

P1 =
{
(a, b, c, d) ∈ A : (a, b, c) is not a ζ-bridge in Hd

}
,

Q1 =
{
(a, b, c, d) ∈ Ar P1 : (a, b, c) is not ζ-connectable in H

}
.

It follows directly from Lemma 3.7, that

|Q1| ≤ ζ|V |4 .

Moreover, by Lemma 2.9 every d ∈ V contributes at most

(2/9 + α/2 + 2ζ)(|V | − 1)3

quadruples to P1, which yields the upper bound

|P1| ≤
(2
9
+

α

2
+ 2ζ

)
|V |4 .

By symmetry we obtain the same bounds for the sets

P2 =
{
(a, b, c, d) ∈ A : (b, c, d) is not a ζ-bridge in Ha

}
,

Q2 =
{
(a, b, c, d) ∈ Ar P2 : (b, c, d) is not ζ-connectable in H

}
.

Since every quadruple in Ar (P1 ∪Q1 ∪ P2 ∪Q2) is a ζ-bridge in H , the
lemma follows. �

4. Reservoir lemma

The connecting lemma for 4-uniform hypergraphs from Section 3 allows
us to connect paths that start and end with a connectable triple. However, in
the process of building longer paths, we must not interfere with the paths al-
ready constructed. For that we put aside a randomly selected small reservoir
of vertices R. Moreover, due to the divisibility restriction of the absorbing
path lemma (see Proposition 5.1), we need to guarantee short connections
by paths of lengths in all residue classes modulo four. The existence of such
a reservoir set is given by the following proposition.

Proposition 4.1 (reservoir lemma). Given Setup 3.1 and constants
ζ⋆, ζ⋆⋆ > 0, let integers ℓ1, ℓ2, ℓ3, ℓ4 ≤ 50ℓ and ϑ⋆ = ϑ(α, β, ℓ, ζ⋆) and ϑ⋆⋆ =
ϑ(α,β, ℓ, ζ⋆⋆) be provided by Corollary 3.5. Then there exists a subset R ⊆ V
such that

(i) ϑ2
⋆|V |/2 ≤ |R| ≤ ϑ2

⋆|V |
(ii) and for all disjoint, ζ⋆⋆-connectable triples (a, b, c), (x, y, z) in H and

every i ∈ [4], there are ϑ⋆⋆|R|ℓi/2 abc-xyz-paths with ℓi inner vertices, which
all belong to R.

Acta Mathematica Hungarica



TIGHT HAMILTONIAN CYCLES IN 4-UNIFORM HYPERGRAPHS 27

We often refer to the set R given by Proposition 4.1 as the reservoir set.

Proof. The existence of such a reservoir set R is established by a stan-
dard probabilistic argument. For that we set

p =
3

4
ϑ2
⋆ and C =

(4
3

) 1

50ℓ

and we consider a random subset R ⊆ V with elements included indepen-
dently with probability p. Observe that |R| is binomially distributed with
expectation p|V | and Chebyshev’s inequality implies that a.a.s.

(4.1)
p

C
|V | ≤ |R| ≤ Cp|V | .

In particular, our choice of C shows that a.a.s. the set R satisfies part (i) of
Proposition 4.1.

For part (ii) we recall that for every pair of disjoint, ζ⋆⋆-connectable
triples (a, b, c), (x, y, z) ∈ V 3, Corollary 3.5 guarantees for every i ∈ [4] at
least ϑ⋆⋆|V |ℓi abc-xyz-paths with ℓi inner vertices. Let X = X(i, (a, b, c),
(x, y, z)) be the random variable counting the number of such abc-xyz-paths
with all ℓi inner vertices in R. Clearly,

(4.2) EX ≥ pℓi · ϑ⋆⋆|V |ℓi .

Since including or not including a particular vertex into R affects the ran-
dom variable X by no more than ℓi|V |ℓi−1, the Azuma–Hoeffding inequality
(see, e.g., [6, Corollary 2.27]) asserts

P
(
X ≤ 2

3ϑ⋆⋆(p|V |)ℓi
) (4.2)

≤ P
(
X ≤ 2

3EX
)

(4.3)

≤ exp
(
− (EX)2

18 · |V | · (ℓi|V |ℓi−1)2

)
= exp

(
−Ω(|V |)

)
.

In view of (4.1) and ℓi ≤ 50ℓ our choice of C implies that a.a.s.

(4.4)
2

3
ϑ⋆⋆(p|V |)ℓi ≥ 1

2
ϑ⋆⋆|R|ℓi .

Since there are at most 4|V |6 choices for the triples (a, b, c), (x, y, z), and
for i, the union bound combined with (4.3) and (4.4) shows that a.a.s. the
set R satisfies part (ii) of Proposition 4.1. Consequently, a reservoir set R
with all required properties exists. �

In the proof of Theorem 1.3 in Section 7 we will repeatedly connect
connectable triples through the reservoir R provided by Proposition 4.1.
Whenever such a connection is made some of the vertices of the reservoir
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are used and the part of the reservoir that may still be used for further con-
nections shrinks. Although Ω(|V |) such connections will be needed, we shall
be able to keep an appropriate version of property (ii) of the reservoir in-
tact throughout this process. We prepare for this situation by the following
corollary.

Corollary 4.2. Given Setup 3.1 and ζ⋆, ζ⋆⋆ > 0, let integers ℓ1, ℓ2, ℓ3, ℓ4
≤ 50ℓ and ϑ⋆ = ϑ(α, β, ℓ, ζ⋆), ϑ⋆⋆ = ϑ(α, β, ℓ, ζ⋆⋆) be provided by Corol-

lary 3.5. Moreover, let R ⊆ V be a reservoir set provided by Proposition 4.1.

Then for every subset R′ ⊆ R of size at most
ϑ2

⋆ϑ⋆⋆

400ℓ |V | the following holds.
For all disjoint, ζ⋆⋆-connectable triples (a, b, c), (x, y, z) in H and every

i ∈ [4], there is some abc-xyz-path with ℓi inner vertices, which all belong to

RrR′.

Proof. It follows from the lower bound in Proposition 4.1(i) and the
bound on |R′| that

|R′| ≤ ϑ⋆⋆

200ℓ
|R| .

Moreover, every vertex in R′ is an inner vertex in at most ℓi|R|ℓi−1 different
abc-xyz-paths in H with all ℓi inner vertices belonging to R. Consequently,
it follows from Proposition 4.1(ii) and ℓi ≤ 50ℓ that there are at least

ϑ⋆⋆

2
|R|ℓi − |R′| · ℓi|R|ℓi−1 ≥ ϑ⋆⋆

4
|R|ℓi

such paths with all inner vertices from RrR′. �

5. Absorbing path lemma

5.1. Outline and main ideas. In this section we establish the exis-
tence of an absorbing path PA, which at the end of the proof of Theorem 1.3
will allow us to ‘absorb’ an arbitrary (but not too large) set Z of left-over
vertices with a size divisible by four.

Proposition 5.1 (absorbing path lemma). Given Setup 3.1, there is

some ζ0 = ζ0(α) > 0 such that for every ζ⋆ ∈ (0, ζ0) and for ϑ⋆ = ϑ(α,β, ℓ, ζ⋆)
provided by Proposition 3.3 the following holds. For every set R ⊆ V of size
at most ϑ2

⋆|V |, there exists a path PA ⊆ H −R satisfying

(i) |V (PA)| ≤ ϑ⋆|V |,
(ii) the end-triples of PA are ζ⋆-connectable,
(iii) and for every subset Z ⊆ V r V (PA) with |Z| ≤ 2ϑ2

⋆n and |Z| ≡ 0
(mod 4), there exists a path Q ⊆ H with the same end-triples as PA and

V (Q) = V (PA) ∪ Z.
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Fig. 5.1: Both a and x form a 4-uniform path together with the 3-uniform path in Ha ∩Hx

The absorbing path PA will be built by connecting many so-called ab-
sorbers (see Definition 5.5). Similarly as in [11], the absorbers used here
consist of two parts. Roughly speaking, the first part allows us to “swap”
any given vertex a with a different vertex x, which then can be absorbed
by the second part of the absorber. In other words, we can move from an
arbitrary vertex a, which we may need to absorb, to another vertex x that
enjoys better properties. For the first part this can be easily achieved if a
and x share a 3-uniform path with six vertices in their joint link Ha ∩Hx

(see Fig. 5.1). Note that our degree assumption on H implies that the 3-
uniform link of every vertex has density at least 5/9 > 1/2 and, hence, the
joint link of any two vertices has positive density and the existence of the
6-vertex paths follows from [3].

Having replaced x with a we need to ensure that x itself can be absorbed.
For that, in the context of 4-uniform hypergraphs, one usually showed that
many vertices x have the property that their links contain a 3-uniform path
on six vertices with the additional property that its vertices span a 4-uniform
path inH . In particular, these six vertices form a path on its own and can ab-
sorb x in the middle, building a 7-vertex path with the same end-triples (see
e.g. [11], where this strategy was implemented for 3-uniform hypergraphs).

While working on a related problem, the first two authors [9] suggested a
different approach for the second part of the absorber. For that we note that

every complete 4-partite 4-uniform hypergraphK
(4)
s,s,s,s contains a path on 4s

vertices. However, any four consecutive vertices in that path are crossing in

the K
(4)
s,s,s,s and removing them gives rise to a copy of K

(4)
s−1,s−1,s−1,s−1, which

again contains a spanning path on the remaining 4(s− 1) vertices. More-
over, if s ≥ 3 then these paths have the same end-triples. Actually it suffices

already to start with a K
(4)
3,3,3,2 and we will follow that route. Again the

existence of K
(4)
3,3,3,2’s in 4-uniform hypergraphs of positive density follows

from [3]. However, due to the 4-partiteness, with this absorption mechanism
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Fig. 5.2: Absorber for (a1, . . . , a4) before and after absorption

we can only absorb four tuples of vertices (x1, . . . , x4), which in turn implies
that we have to start with four vertices a1, . . . , a4 at the beginning. This is
the reason for the divisibility condition on |Z| in part (iii) of Proposition 5.1.

As a result for any given (a1, . . . , a4) ∈ V 4 our absorbers will consist of
35 vertices, which split into five 7-vertex paths (see Fig. 5.2). Four of the
paths are of the form bi1bi2bi3xibi4bi5bi6 for i ∈ [4], where bi1bi2bi3bi4bi5bi6 is
a 3-uniform path in the joint link Hai

∩Hxi
(cf. first part of the absorber

outlined above). The fifth path u1 . . . u4w1w2w3 is given by the vertices of a

K
(4)
2,2,2,1, which together with x1, . . . , x4 span a K

(4)
3,3,3,2. In order to connect

these paths into one absorbing path PA, we shall also require that the end-
triples of these paths are connectable (see Lemmata 5.3 and 5.4 below).

5.2. Proof of the absorbing path lemma. Roughly speaking, the
following lemma shows that the joint 3-uniform link Ha ∩Hx of (almost) all
pairs of vertices a, x ∈ V contains Ω(|V |3) connectable triples. Consequently,
a result of Erdős [3] implies that the joint link contains Ω(|V |6) 3-uniform
paths on six vertices with connectable end-triples (in fact all triples will be
connectable), which shows the abundant existence of the first part of our
absorbers for every vertex a ∈ V (see Lemma 5.3 below).

Lemma 5.2. Given Setup 3.1 and ζ > 0, there is a set X ⊆ V of

size |X| ≤
√
ζn such that for all a ∈ V and every x ∈ V rX there are at

least (α/3−
√
ζ)|V |3 triples (b, b′, b′′) ∈ V 3 with bb′b′′ ∈ E(Ha) ∩E(Hx) and

(b, b′, b′′) being ζ-connectable in H .
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Proof. The lemma is trivially true for ζ ≥ α2/9 and, hence, we may
assume ζ < α2/9. First, we define the set X . For a vertex v ∈ V let

B(v) =
{
(b, b′, b′′) ∈ V 3 : (b, b′, b′′) is a ζ-bridge in Hv,

but it is not ζ-connectable in H
}

and we note that Lemma 3.7 asserts
∑

v∈V

|B(v)| ≤ ζn4 .

We define

X = {v ∈ V : |B(v)| ≥
√

ζ n3} .
and |X| ≤

√
ζn follows.

It is left to show that V rX has the desired property. For that let a ∈ V
and x ∈ V rX . An application of Lemma 2.10 with H = Hx and H ′ = Ha

yields for sufficiently large n at least

α

2
(n− 1)3 >

α

3
n3

triples (b, b′, b′′) ∈ V 3 such that

(5.1) bb′b′′ ∈ E(Ha) ∩ E(Hx) and (b, b′, b′′) is a ζ-bridge in Hx.

Since x 6∈ X , we have |B(x)| <
√
ζ n3 and, therefore, all but at most

√
ζ n3

of the triples (b, b′, b′′) satisfying (5.1) are ζ-connectable. �

Lemma 5.2 combined with a result of Erdős from [3] implies the follow-
ing.

Lemma 5.3. Given Setup 3.1 and ζ ∈ (0, α2/36), there is some ξ′ =
ξ′(α) > 0 and a set X ⊆ V of size at most

√
ζ n such that the following

holds.
For all a ∈ V and x ∈ V rX , there are at least ξ′n6 sextuples (b1, . . . , b6)

∈ V 6 such that

(i) b1b2 . . . b6 is a 3-uniform path in Ha ∩Hx

(ii) and (b1, b2, b3), (b4, b5, b6) are ζ-connectable in H .

Proof. Let X be given by Lemma 5.2 and fix two vertices a ∈ V
and x ∈ V rX . We consider the auxiliary 3-partite 3-uniform hypergraph
B = (U ∪· U ′ ∪· U ′′, EB) whose vertex classes are three disjoint copies of V
and edges bb′b′′ ∈ EB with b ∈ U , b′ ∈ U ′, and b′′ ∈ U ′′ correspond to ζ-
connectable triples (b, b′, b′′) of H with bb′b′′ ∈ E(Ha) ∩E(Hx). Lemma 5.2
and ζ < α2/36 tell us that |EB | ≥ αn3/6 and it follows from [3] that B
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contains any complete 3-partite 3-uniform hypergraph of fixed size. In par-

ticular, there is a copy of K
(3)
2,2,2 in B and by the so-called supersaturation

phenomenon (see, e.g., [4]) there are at least 2ξ′n6 such copies for some

constant ξ′ = ξ′(α). Each such copy of K
(3)
2,2,2 contains a walk b1b2 . . . b6 in

Ha ∩Hx satisfying (ii) and, consequently, there are at least 2ξ′n6 − O(n5)
≥ ξ′n6 paths satisfying (i) and (ii). �

Next we focus on the second part of the absorbers.

Lemma 5.4. There is some ξ′′ > 0 such that for every ζ ∈ (0, 1/126) the
following holds. Given Setup 3.1, there are ξ′′n11 11-tuples (u1, . . . , u4, x1, . . . ,
x4, w1, w2, w3) ∈ V 11 so that

(i) u1 . . . u4x1 . . . x4w1w2w3 and u1 . . . u4w1w2w3 are 4-uniform paths
in H

(ii) and (u1, u2, u3), (w1, w2, w3) are ζ-connectable triples in H .

The proof of Lemma 5.4 is very similar to that of Lemma 5.3. How-
ever, instead of an auxiliary 3-uniform hypergraph of connectable triples in
the shared link of two vertices, we shall consider a 4-uniform hypergraph of
bridges.

Proof. We consider the 4-partite 4-uniform hypergraph B = (V1 ∪·
V2 ∪· V3 ∪· V4, EB) whose vertex classes are four disjoint copies of V and
whose edges v1v2v3v4 ∈ EB with vi ∈ Vi for i ∈ [4] correspond to ζ-bridges
(v1, v2, v3, v4) of H . By Lemma 3.9 and our choice of ζ , there are at least

(1
9
− 7ζ

)
n4 >

n4

18

ζ-bridges in H and, hence, |EB | ≥ n4/18 edges. Similar as in the proof of
Lemma 5.3, this implies that there are at least 2ξ′′n11 copies of the complete

4-partite 4-uniform hypergraph K
(4)
3,3,3,2 in B for some universal constant

ξ′′ > 0. Passing through the vertices of each such copy of K
(4)
3,3,3,2 (by start-

ing in a vertex in V1 and then passing cyclically through the other vertex
classes) leads to a 4-uniform path u1 . . . u4x1 . . . x4w1w2w3 in B. In partic-

ular, x1 . . . x4 is an edge in B, and owing to the completeness of K
(4)
3,3,3,2 we

see that after removing the vertices x1, . . . , x4, the remaining vertices still
form a 4-uniform path u1 . . . u4w1w2w3 in B.

By definition of B every such path u1 . . . u4x1 . . . x4w1w2w3 corresponds
to a walk in H . Consequently, H contains at least 2ξ′′n11 −O(n10) ≥ ξ′′n11

11-tuples u1 . . . u4x1 . . . x4w1w2w3 that satisfy part (i) of Lemma 5.4. More-
over, recalling that edges of B correspond to ζ-bridges in H it follows that
(u1, u2, u3), (w1, w2, w3) are ζ-connectable in H for every such 11-tuple, i.e.,
part (ii) holds as well. �
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Next we define the absorbers, which will be the building blocks of the
absorbing path PA in Proposition 5.1.

Definition 5.5. Given Setup 3.1, ζ > 0, and ⇀a = (a1, . . . , a4) ∈ V 4, we
say that a tuple (

⇀

b1, . . . ,
⇀

b4,
⇀u, ⇀x, ⇀w) ∈ V 35 with

⇀

b i = (bi1, . . . , bi6) for i ∈ [4] , ⇀u = (u1, . . . , u4) ,
⇀x = (x1, . . . , x4) , and ⇀w = (w1, w2, w3) ,

is an ⇀a-absorber in H , if
(a) all its 35 vertices are distinct and different from those in ⇀a,
(b)

⇀

b i satisfies properties (i) and (ii) of Lemma 5.3 for ai and xi for every
i ∈ [4],

(c) and (⇀u, ⇀x, ⇀w) satisfies properties (i) and (ii) of Lemma 5.4.

Formally, an ⇀a-absorber is defined to be a septuple. However, since it
consists of 35 vertices we may refer to it sometimes as a 35-tuple from V 35.
Similarly, in part (c) we refer to (⇀u, ⇀x, ⇀w) as an 11-tuple.

We note that if ⇀a = (a1, . . . , a4) consists of four distinct vertices, then an
⇀a-absorber can be used to absorb the set {a1, . . . , a4} as follows (see Fig. 5.2).
The 35 vertices of an ⇀a-absorber (

⇀

b1, . . . ,
⇀

b4,
⇀u, ⇀x, ⇀w) can be partitioned into

five 4-uniform paths

bi1bi2bi3xibi4bi5bi6 for i ∈ [4] and u1 . . . u4w1w2w3 ,

in H , each of which starts and ends with a ζ-connectable triple. If all five
of these paths are segments (not necessarily consecutive) of the absorbing
path PA, while all a1, a2, a3, a4 are not on PA, then one can replace these
five paths by

bi1bi2bi3aibi4bi5bi6 for i ∈ [4] and u1 . . . u4x1 . . . x4w1w2w3 ,

i.e., replace xi with ai in the four “b-paths” and include x1, . . . , x4 in the
middle of the fifth path.

Below we easily deduce from Lemmata 5.3 and 5.4 that there are Ω(n35)
absorbers for every fixed 4-tuple ⇀a ∈ V 4. This fact will play a key rôle in
the proof of the absorbing path lemma.

Lemma 5.6. Given Setup 3.1, there are constants ζ ′0 = ζ ′0(α) and ξ =
ξ(α) > 0 such that for every ζ ∈ (0, ζ ′0) and for every ⇀a ∈ V 4 the number of
⇀a-absorbers in H is at least ξn35.

Proof. For a fixed α ∈ (0, 1/3) let ξ′(α) > 0 and ξ′′ > 0 be provided by
Lemmata 5.3 and 5.4. We set

ζ ′0 = min
{( ξ′′

23

)2
,

α2

126

}
and ξ =

1

4
(ξ′)4ξ′′
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and let ζ ∈ (0, ζ ′0) and
⇀a = (a1, . . . , a4) ∈ V 4 be given. Moreover, let X ⊆ V

be the exceptional set of vertices of size at most
√
ζ n given by Lemma 5.3.

Lemma 5.4 yields ξ′′n11 distinct (⇀u, ⇀x, ⇀w) ∈ V 11 with ⇀u = (u1, . . . , u4),
⇀x = (x1, . . . , x4), and ⇀w = (w1, w2, w3) satisfying properties (i) and (ii) of
the lemma. Obviously, at most

11(|X|+ 4)n10 ≤ 11
√
ζ n11 + 44n10

of these 11-tuples share a vertex with X ∪ {a1, . . . , a4}. Consequently, our
choice of ζ ′0 > ζ guarantees that for sufficiently large n at least ξ′′n11/2 of
these 11-tuples are disjoint from X and from ⇀a.

Next, for such a fixed 11-tuple (⇀u, ⇀x, ⇀w) we apply Lemma 5.3 for every
i ∈ [4] to ai and xi. Each application yields ξ′n6 sextuples (bi1, . . . , bi6) sat-
isfying properties (i) and (ii) of that lemma. Taking into account that we
insist that all the vertices bij for i ∈ [4] and j ∈ [6] need to be distinct and
different from the already fixed vertices of ⇀a, ⇀x, ⇀u, and ⇀w this gives rise to at

least 1
2

(
ξ′n6

)4
such choices of

⇀

b1, . . . ,
⇀

b4 for every fixed (⇀u, ⇀x, ⇀w). Summing
over all possible choices of (⇀u, ⇀x, ⇀w) leads to at least

1

2
ξ′′n11 × 1

2

(
ξ′n6

) 4 ≥ ξn35

⇀a-absorbers in H . �

After these preparations we conclude this section with the somewhat
standard proof of the absorbing path lemma. In the proof we first find a
suitable selection of Ω(n) disjoint 35-tuples that contain many ⇀a-absorbers
for every ⇀a. In the second and final step we then utilise the ζ-connectable
end-triples to connect these 35-tuples, each consisting of five disjoint paths
of length four, into one absorbing path avoiding the given set R.

Proof of Proposition 5.1. For α ∈ (0, 1/3) let ℓ ≥ 3 be given by
Setup 3.1 and let ζ ′0 = ζ ′0(α) and ξ = ξ(α) be given by Lemma 5.6. Set

ζ0 = min
{
ζ ′0 ,

ξ

12 · 1400ℓ2
}
,

and for ζ⋆ ∈ (0, ζ0) let ϑ⋆ along with a sufficiently large 4-uniform hyper-
graph H = (V,E) and R ⊆ V of size at most ϑ2

⋆n be given. Without loss of
generality we can assume that ϑ⋆ < ζ⋆.

Applying Lemma 5.6 with ζ⋆ yields for every ⇀a ∈ V 4 at least ξn35 ⇀a-ab-
sorbers in H . However, since the absorbing path is required to be disjoint
from R, only absorbers disjoint from R are useful here. Let A(⇀a) be the set
of all ⇀a-absorbers disjoint from R and note

(5.2)
∣∣A(⇀a)

∣∣ ≥ ξn35 − 35|R|n34 ≥ ξ

2
n35 .
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Let A =
⋃

A(⇀a) ⊆ (V rR)35 be the set of all absorbers outside R, where
the union runs over all four tuples ⇀a ∈ V 4.

We set

p =
4ζ0ϑ⋆

ξn34

and consider a random collection Ap ⊆ A, where every absorber from A is in-
cluded independently with probability p. Standard applications of Markov’s
inequality and of Chernoff’s inequality show that with positive probability
the random set Ap satisfies the following three properties

∣∣Ap

∣∣ ≤ q3 · pn35 ,(5.3)
∣∣{ (A,A′) ∈ A2

p : A and A′ share a vertex
}∣∣ ≤ q3 · 352p2n69 ,(5.4)

and for every ⇀a ∈ V 4 we have
∣∣Ap ∩ A(⇀a)

∣∣ ≥ 1

2
· p

∣∣A(⇀a)
∣∣ .(5.5)

Consequently, there exists a collection B0 ⊆ A satisfying (5.3)–(5.5) with B0

replacing Ap. We further pass to a maximal subcollection B ⊆ B0 of mu-
tually disjoint absorbers. The choices of p and ζ0 combined with (5.2) and
ϑ⋆ < ζ⋆ < ζ0 allow us to transfer (5.3) and (5.5) to the set B as follows

(5.6)
∣∣B

∣∣ ≤ 3 · pn35 =
12ζ0ϑ⋆

ξ
n ≤ ϑ⋆

1400ℓ2
n

and for every ⇀a ∈ V 4 we have

∣∣B ∩ A(⇀a)
∣∣ (5.4)

≥ 1

2
· p
∣∣A(⇀a)

∣∣ − 3 · 352p2n69(5.7)

≥ ζ0ϑ⋆n− 3 · 352 16ζ
2
0ϑ

2
⋆

ξ2
n ≥ 1

2
ϑ2
⋆n .

It remains to connect the absorbers from B into a path. Recall that
every 35-tuple in B consists of five 7-vertex paths with ζ⋆-connectable end-
triples and that all those 5|B| paths are mutually vertex disjoint. Let P be
the collection of all these 7-vertex paths.

Finally we construct the absorbing path by connecting all paths from P .
For that we consider a maximal family of paths P⋆ ⊆ P for which there
exists a path P ⋆

A ⊆ H −R, containing all the paths from P⋆, whose end-
triples are ζ⋆-connectable and such that

(5.8) |V (P ⋆
A)| = 7 · |P⋆|+ (|P⋆| − 1) · (8ℓ+ 10)

ℓ≥3
≤ 70ℓ|B|

(5.6)

≤ ϑ⋆

20ℓ
n .
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Clearly, P⋆ 6= ∅ and thus, P ⋆
A 6= ∅. Assume for the sake of contradiction

that there is some P ∈ P r P⋆ and let (x, y, z) be the starting triple of P .
Moreover, let (a, b, c) be the ending triple of P ⋆

A. Since both triples (a, b, c)
and (x, y, z) are ζ-connectable, Proposition 3.3 tells us that there are at
least ϑ⋆n

8ℓ+10 abc-xyz-paths with 8ℓ+ 10 inner vertices in H . Since (5.8)
combined with |R| ≤ ϑ2

⋆n yields

ϑ⋆n
8ℓ+10 − (8ℓ+ 10)

(∣∣V (P ⋆
A)

∣∣ +
∣∣R

∣∣ )n8ℓ+9 > 0 ,

there is at least one connecting path disjoint to V (P ⋆
A) ∪R giving rise to a

path P ⋆⋆
A ⊆ H −R containing P⋆ ∪ {P}. This contradicts the maximality

of P⋆ and consequently the desired path PA containing all paths from P
does really exist.

In fact, Property (i) of Proposition 5.1 is a consequence of (5.8) and
part (ii) is also clear from the definition. For part (iii) of Proposition 5.1,
let Z be a set outside PA of size at most 2ϑ2

⋆n with |Z| ≡ 0 (mod 4). It fol-
lows from (5.7), that one can successively absorb quadruples of distinct ver-
tices of Z into the path, at least ϑ2

⋆n/2 times, always having at least one
unused absorber at hand. �

6. Path cover lemma

The goal of this section is to establish the following 4-uniform variant of
Lemma 2.14.

Proposition 6.1 (path cover lemma for 4-uniform hypergraphs). For
every α ∈ (0, 1/4) there is a constant ϑ0(α) > 0 such that for every positive

ϑ⋆ < ϑ0(α) there are a constant ζ⋆⋆ = ζ⋆⋆(α,ϑ⋆) > 0 and arbitrarily large nat-

ural numbers M with M ≡ 3 (mod 4) such that the following holds.
Given Setup 3.1 and a set X ⊆ V with |X| ≤ 2ϑ⋆n we can cover all but

at most ϑ2
⋆n vertices of H −X by disjoint M -vertex paths that start and end

with a ζ⋆⋆-connectable triple.

We would like to remark that the constants in this statement can be
thought of as forming a hierarchy α ≫ ϑ⋆ ≫ ζ⋆⋆ ≫ M−1 ≫ n−1. In our in-
tended application, the set X will be the union of the reservoir and the
vertex set of the absorbing path. Moreover, it will be important that we
have the liberty to take M to be substantially larger than the reciprocal of
a further constant ϑ⋆⋆ obtained by applying the connecting lemma to ζ⋆⋆.

Proof. Recall that Setup 3.1 involves a constant β > 0 as well as a nat-
ural number ℓ ≥ 3. We will assume throughout that α, β, ℓ−1 ≫ ϑ⋆ ≫ ζ⋆⋆
without calculating these dependencies explicitly. Let P ⊆ 3N be the infi-
nite arithmetic progression which the 3-uniform Proposition 2.12 delivers for
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α/4 and ζ⋆⋆ here in place of α and ξ there. Now let M ≫ ζ−1
⋆⋆ be a suffi-

ciently large natural number with M ≡ 3 (mod 4) and 3
4(M + 1) ∈ P . The

number M will play two different rôles and hoping to enhance the visibility
of this fact we set m = M .

Now let a 4-uniform hypergraph H = (V,E) on n ≫ M vertices satis-

fying the minimum pair degree condition δ2(H) ≥
(
5
9 + α

)
n2

2 as well as a

family
{
Ruv : uv ∈ V (2)

}
of robust subgraphs of its link graphs exemplifying

Setup 3.1 be given. Set

P =
{
P ⊆ H −X : P is an M -vertex path

whose end-triples are ζ⋆⋆-connectable
}

and consider a maximum collection C ⊆ P of vertex-disjoint paths. We are
to establish that the set

U = V r

(
X ∪

⋃

C∈C

V (C)

)

of uncovered vertices satisfies

(6.1) |U | ≤ ϑ2
⋆n ,

so for the rest of the proof we can assume that (6.1) is false. Our strategy
for obtaining a contradiction is that we find up to m appropriate paths in C

and show that the union of their vertex sets with U spans at least m+ 1
vertex-disjoint paths from P . For a vertex u ∈ U to have some chances to
participate in this rerouting its link hypergraph should be somewhat “typ-
ical” and our next step is to identify a set Ubad ⊆ U of bad vertices which
we will not use for incrementing C .

Recall that, as discussed between Setup 3.1 and Definition 3.2, for every
u ∈ U the link hypergraph Hu and the family

{
Ruv : v ∈ V r {u}

}
of (β, ℓ)-

robust graphs realise Setup 2.4. Due to ϑ⋆ ≪ ℓ−1, β, α and our assumption
|X| ≤ 2ϑ⋆n it follows that the hypergraph Hu −X and the family

Ψ =
{
Ruv −X : v ∈ V r (X ∪ {u})

}

of (β/2, ℓ)-robust graphs exemplify Setup 2.4 with (α/2, β/2, α3/9) here in
place of (α, β, µ) there. In particular, we can speak of ζ⋆⋆-connectable pairs
and ζ⋆⋆-bridges with respect to the constellation (Hu −X,Ψ) and in the
sequel we shall call them (ζ⋆⋆,X)-connectable pairs in Hu −X and (ζ⋆⋆,X)-
bridges in Hu −X , respectively. To clarify the relation between these con-
cepts, we remark that every (2ζ⋆⋆,X)-connectable pair of distinct vertices
from Hu −X is, in particular ζ⋆⋆-connectable in Hu. Consequently, every
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(2ζ⋆⋆,X)-bridge in Hu −X is a ζ⋆⋆-bridge in Hu. Now the vertices that we
will not touch while refuting the maximality of C are those in the set

Ubad =
{
u ∈ U : the number of (2ζ⋆⋆,X)-bridges in Hu −X

which are ζ⋆⋆-connectable in H is at most n3/8
}
.

Claim 6.2. We have |Ubad| ≤ 8ζ⋆⋆n.

Proof. Consider the set

Π =
{
(u, e) ∈ Ubad × V 3 : the triple e is a (2ζ⋆⋆,X)-bridge in Hu −X,

but not ζ⋆⋆-connectable in H
}
.

Since for u ∈ Ubad every (2ζ⋆⋆,X)-bridge in Hu −X is a ζ⋆⋆ bridge in Hu,
Lemma 3.7 tells us that

|Π| ≤ ζ⋆⋆n
4 .

On the other hand, for every u ∈ Ubad the number of (2ζ⋆⋆,X)-bridges
in Hu −X is at least (n− |X|)3/3 by Lemma 2.9 and by the definition of
Ubad all but at most n3/8 of them fail to be ζ⋆⋆-connectable in H , whence

|Π| ≥ |Ubad|
((n− |X|)3

3
− n3

8

)
≥ |Ubad|n3

8
.

Comparing our estimates on |Π| we obtain indeed that |Ubad| ≤ 8ζ⋆⋆n. �

Useful societies. Denote the vertex sets of the paths in our maximum
collection C by B1, . . . , B|C | and fix an arbitrary partition

U = B|C |+1 ∪· · · · ∪· Bν ∪· B′

with

|B|C |+1| = · · · = |Bν | = M > |B′| .
The sets belonging to the family B = {B1, . . . , Bν} will be referred to as
blocks. The size of their union B = B1 ∪· B2 ∪· · · · ∪· Bν is bounded from below
by

(6.2) |B| = n− |X| − |B′| ≥ (1− 2ϑ⋆)n−M ≥ (1− 3ϑ⋆)n .

By a society we mean a set consisting of m blocks and we shall write S for
the collection of all

( ν
m

)
societies.
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x

B1 B2 B|C | B|C |+1 Bx Bν B′

. . . . . . . . .

B

U

Fig. 6.1: Block partition of V rX for given C

Definition 6.3. A society S ∈ S with S =
⋃S is useful for a vertex

u ∈ U r S if
(i) δ1(Hu[S]) ≥

(
5
9 +

α
4

) (mM)2

2 ,
(ii) the family of graphs {Rux[S] : x ∈ S} exemplifies Setup 2.4 for Hu[S]

with (α/4, β/2, α/16) here in place of (α, β, µ) there,
(iii) and there are at least ζ⋆⋆m

3M3 triples in S3 that are ζ⋆⋆-connectable
in H and ζ⋆⋆-bridges in Hu[S] with respect to the robust graphs in

{
Rux[S] :

x ∈ S
}
.

We shall argue that if a society S is useful for many vertices in U , then
U ∪⋃S spans m+ 1 disjoint paths from P , contrary to the maximality
of |C |. The following claim provides a first step in this direction.

Claim 6.4. If a society S ∈ S is useful for a vertex u ∈ U and S =
⋃S ,

then there exist m+ 1 vertex-disjoint 3-uniform paths in Hu[S] each of

which has 3
4(M + 1) vertices and starts and ends with a triple which is ζ⋆⋆-

connectable in H .

Proof. We can apply Proposition 2.12 with (α/4, ζ⋆⋆) here in place of
(α, ξ) there to the hypergraph Hu[S], the family

{
Rux[S] : x ∈ S

}
of robust

graphs, the set

Ξ =
{
e ∈ S3 : e is a ζ⋆⋆-bridge in Hu[S] and ζ⋆⋆-connectable in H

}

of bridges and to 3
4 (M + 1) here in place of M there. This yields a collec-

tion W of vertex-disjoint 3-uniform 3
4(M + 1)-vertex paths in Hu[S] with

∣∣∣∣S r
⋃

W∈W

V (W )

∣∣∣∣ ≤ ζ⋆⋆Mm+M

such that every path in W starts and ends with a triple from Ξ. In partic-
ular, the paths in W start and end with triples which are ζ⋆⋆-connectable

Acta Mathematica Hungarica
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in H . It remains to show |W | ≥ m+ 1, which follows from the fact that due
to M = m ≥ 15 we have

|W | ≥ (1− ζ⋆⋆)Mm−M
3
4(M + 1)

≥
9
10Mm−M

4
5M

=
9

8
m− 5

4
> m. �

To conclude the proof of Proposition 6.1 we need another result on useful
societies whose proof we postpone.

Claim 6.5. For every u ∈ U r Ubad there are at least 2
3 |S| useful soci-

eties.

Since we assume that (6.1) is false, Claim 6.2 yields

|U r Ubad| ≥ (ϑ2
⋆ − 8ζ⋆⋆)n ≥ ϑ2

⋆

2
n .

By Claim 6.5 and double counting there exists a society S which is useful
for at least 2

3 |U rUbad| ≥ ϑ2
⋆n/3 vertices from U . Next, Claim 6.4 allows us

to choose for every such vertex u a collection Wu of m+ 1 paths in Hu[S]
each of which consists of 3

4(M +1) vertices and starts and ends with a triple
that is ζ⋆⋆-connectable in H . As there are no more than (Mm)! possibilities
for Wu, there exist a collection W of 3-uniform paths on S and a set U ′ ⊆ U
such that Wu = W for every u ∈ U ′ and

|U ′| ≥ ϑ2
⋆n

3(Mm)!
≥ 1

4
(M − 3)(m+ 1) ,

where the second inequality uses n ≫ M = m. Now we augment every path
in W by inserting (M − 3)/4 vertices from U ′ in every fourth position (see
Fig. 6.2), thus obtaining m+1 mutually disjoint 4-uniform M -vertex paths.
As the m+ 1 paths obtained in this way start and end with ζ⋆⋆-connectable
triples, the new paths are in P . Thus, if we remove from C the paths
whose vertex sets belong to the useful society S and add the newly con-
structed paths, we obtain a collection of paths contradicting the maximality
of C . This contradiction proves the validity of (6.1) and, hence, concludes
the proof of Proposition 6.1 based on Claim 6.5.

Proof of Claim 6.5. Fix a vertex u ∈ U r Ubad. We shall prove that
the probability that a society S ∈ S chosen uniformly at random fails to be
useful for u is exp(−Ω(m)), where the implicit constant only depends on α,
β, ℓ, ϑ⋆ and ζ⋆⋆. So a sufficiently large choice of M = m allows us to push
this probability below 1/3, as desired.

We will apply Corollary A.3 several times to the partition

V = B1 ∪· · · · ∪· Bν ∪· (B′ ∪· X)
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Fig. 6.2: Augmenting a 3

4
(M + 1)-vertex 3-uniform path to an M -vertex 4-uniform path

or to a partition derived from it by relocating up to three of the blocks B1,
. . . , Bν to the exceptional set. By (6.2) we can take η = 4ϑ⋆ in all these
applications. It will be convenient to write Bx for the block containing a
vertex x ∈ B.

We begin by estimating the probability of the unfortunate event E1 that
the minimum vertex-degree condition in Definition 6.3 (i) fails for our ran-
dom society, i.e.,

E1 =
{
S ∈ S : δ1(Hu[S]) <

(5
9
+

α

4

)M2m2

2

}
.

Since u is isolated in Hu, this event occurs whenever u ∈ S and we have

P(E1) ≤ P(u ∈ S)(6.3)

+
∑

x∈Br{u}

P(x ∈ S)P
(
eHux

(S r Bx) <
(5
9
+

α

2

)M2(m− 1)2

2

∣∣∣x ∈ S
)
,

where the reason for excluding the set Bx is that conditioned on x ∈ S the
random variable eHux

(S r Bx) is more pleasant to work with than eHux
(S).

For a fixed vertex x ∈ B r {u} we want to derive an upper bound on the
probability summed in (6.3) by applying Corollary A.3(b) with k = 2 to the
graph Hux. Our assumption on H yields

e(Hux) ≥
(5
9
+ α

)n2

2

and given the event x ∈ S, or equivalently Bx ∈ S , the variable eHux
(SrBx)

is determined by a random selection of m− 1 blocks from B r {Bx}. So by
Corollary A.3 (b) with m− 1 in place of m and ξ = α/2 we obtain

P
(
eHux

(S rBx) <
(5
9
+

α

2

)M2(m− 1)2

2

∣∣∣x ∈ S
)
≤ exp(−Ω(m)) .
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Together with (6.3) this yields

P(E1) ≤
m

ν
+

( ∑

x∈Br{u}

P(x ∈ S)

)
exp(−Ω(m)) ≤ m

ν
+Mm exp(−Ω(m))

and for sufficiently large n ≫ M = m this shows that

(6.4) P(E1) ≤ exp(−Ω(m)) .

Proceeding with the second item in Definition 6.3 we let E2 be the bad
event that, for our fixed vertex u ∈ U rUbad, the family of graphs

{
Rux[S] :

x ∈ S
}

fails to exemplify Setup 2.4 for Hu[S] with (α/4, β/2, α/16) here
in place of (α, β, µ) there. We analyse E2 by considering for every fixed
x ∈ B r {u} the event E′

2(x) that Rux[S] fails to be (β/2, ℓ)-robust and the
event E′′

2(x) that one of the estimates required by Setup 2.4 fails. Observe
that in the present context these estimates read as follows:

• |V (Rux) ∩ S| ≥
(
2
3 + α

8

)
Mm,

• eHux

(
V (Rux) ∩ S, S r V (Rux)

)
≤ 1

16αM
2m2, and

• e(Rux) ≥
(
5
9 +

α
8

)
M2m2

2 − (|SrV (Rux)|)2

2 ≥
(
4
9 + 1

6α
)
M2m2

2 .
Consider a fixed vertex x ∈ B r {u}. For any two distinct vertices

y, z ∈ V (Rux) we let Pxyz ⊆ V ℓ−1 be a set of (ℓ− 1)-tuples encoding the
inner vertices of the ℓ-edge paths in Rux from y to z and we let Pxyz be the
event that |Pxyz∩Sℓ−1| ≤ 1

2β|V (Rux)∩S|ℓ−1. By the law of total probability
we have

(6.5) P(E′
2(x) | x ∈ S) ≤

∑

yz∈V (Rux)(2)

P(y, z ∈ S)P(Pxyz | x, y, z ∈ S) .

Let us look at a fixed pair yz ∈ V (Rux)
(2). Since Rux is (β, ℓ)-robust, we

know that |Pxyz| ≥ β|V (Rux)|ℓ−1 and, therefore, the set

P ′
xyz = Pxyz ∩

(
V r (Bx ∪By ∪Bz)

) ℓ−1

corresponding to those paths in Pxyz that avoid Bx ∪ By ∪Bz satisfies

|P ′
xyz| ≥

5

6
β(̺n)ℓ−1 ,

where ̺ = |V (Rux)|/n > 2/3. For d =
∣∣{Bx, By, Bz}

∣∣ ∈ [3] we deduce from
Corollary A.3 (a) (by moving Bx, By, and Bz into the exceptional set) that

P
(
|P ′

xyz ∩ Sℓ−1| ≤ 2
3β(̺Mm)ℓ−1

∣∣ x, y, z ∈ S
)
≤ P

(
|P ′

xyz ∩ Sℓ−1|(6.6)

≤ 3
4β

(
̺M(m− d)

) ℓ−1 ∣∣ x, y, z ∈ S
)
≤ exp(−Ω(m)) .
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Similarly, Corollary A.3(a) applied with k = 1 to the set Λ = V (Rux)r
(Bx ∪By ∪ Bz) yields

P
(∣∣∣ |Λ ∩ S|

M(m− d)
− |Λ|

n

∣∣∣ ≥ 1

9ℓ

∣∣∣x, y, z ∈ S
)
≤ exp(−Ω(m)) .

In particular, the random variable ̺S = |V (Rux) ∩ S|/(Mm) satisfies

(6.7) P
(
|̺S − ̺| ≥ 1

8ℓ

∣∣∣x, y, z ∈ S
)
≤ exp(−Ω(m)) .

Now if both of the likely events |P ′
xyz ∩Sℓ−1| > 2

3β(̺Mm)ℓ−1 and |̺− ̺S | <
1/(8ℓ) hold, then ̺S > 1/2 and

|P ′
xyz∩Sℓ−1|

β(Mm)ℓ−1
>
2

3
̺ℓ−1 >

2

3

(
̺S−

1

8ℓ

)ℓ−1
≥ 2

3
̺ℓ−1
S

(
1− 1

4ℓ

)ℓ
≥ 1

2
̺ℓ−1
S .(6.8)

Adding (6.6) and (6.7) we deduce from (6.8) that

P
(
|P ′

xyz ∩ Sℓ−1| ≤ 1
2β(̺SMm)ℓ−1

∣∣ x, y, z ∈ S
)
≤ exp(−Ω(m)) ,

whence

P
(
Pxyz) ≤ exp(−Ω(m)) .

As this holds for every pair yz ∈ V (Rux)
(2) we conclude from (6.5) that

P(E′
2(x) | x ∈ S) ≤

( ∑

yz∈V (Rux)(2)

P(y, z ∈ S)

)
exp(−Ω(m))

≤
(
Mm

2

)
exp(−Ω(m)) .

Summarising the argument so far, we have proved

P
(
E′
2(x)

∣∣ x ∈ S
)
≤ exp(−Ω(m))

for every x ∈ B r {u}. Similar but easier considerations based on Corol-
lary A.3 show that

P
(
E′′
2(x)

∣∣ x ∈ S
)
≤ exp(−Ω(m))

holds as well and we leave the details of this derivation to the reader. Return-
ing now to the event E2 that the family

{
Rux[S] : x ∈ S

}
fails to exemplify
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Setup 2.4 for Hu[S] with (α/4, β/2, α/16) here in place of (α, β, µ) there we
obtain

P(E2) ≤ P(u ∈ S) +
∑

x∈Br{u}

P
(
E′
2(x) ∪ E′′

2(x)
∣∣ x ∈ S

)

≤ m

ν
+Mm exp(−Ω(m)) ,

i.e.,

(6.9) P(E2) ≤ exp(−Ω(m)) .

It remains to analyse the adverse event E3 that the third clause of Def-
inition 6.3 fails. Consider any pair of vertices yz ∈ (B r {u})2 which is
(2ζ⋆⋆,X)-connectable in Hu −X . Recall that this means that a certain
set Uyz ⊆ V rX of witnesses definable from the family of robust graphs{
Ruv −X : v ∈ V r (X ∪ {u})

}
satisfies |Uyz | ≥ 2ζ⋆⋆|V rX| and, hence,

|Uyz r (By ∪ Bz)| ≥ (3/2)ζ⋆⋆|V rX|. Corollary A.3 (a) applied to V rX ,
the block partition with exceptional set B′ ∪ By ∪Bz , and with the con-
stants η = ζ2⋆⋆, ξ = ζ⋆⋆/4 shows that

P
(
|(Uyz ∩ S)r (By ∪Bz)| ≤ ζ⋆⋆Mm

∣∣ y, z ∈ S
)
≤ exp(−Ω(m)) .

As this holds for every (2ζ⋆⋆,X)-connectable pair yz, it follows in the usual
way that

P(¬E2 and some (2ζ⋆⋆,X)-connectable pair belonging to S(2)

is not ζ⋆⋆-connectable in Hu[S]) ≤ exp(−Ω(m)) ,

where the reason for adding the conjunct ¬E2 is that it makes the notion of
connectable pairs in Hu[S] meaningful. Due to the definition of bridges in
terms of connectable pairs it follows that

P(¬E2 and some (2ζ⋆⋆,X)-bridge belonging to S3

is not a ζ⋆⋆-bridge in Hu[S]) ≤ exp(−Ω(m)) .

Since u 6∈ Ubad the set

Φu =
{
e ∈ V 3 : e is a ζ⋆⋆-connectable (2ζ⋆⋆,X)-bridge

}

has size |Φu| ≥ n3/8 and a final application of Corollary A.3 (a) with k = 3
shows that this set scales appropriately to S in the sense that

P
(
|Φu ∩ S3| ≤ M3m3/16

)
≤ exp(−Ω(m)) .
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Together with (??) this proves P(¬E2 & E3) ≤ exp(−Ω(m)) and by adding
(6.4) as well as (6.9) we finally obtain

P
(
S is not useful for u

)
≤ exp(−Ω(m)) .

This concludes the proof of Claim 6.5 and, hence, the proof of Proposi-
tion 6.1. �

7. The proof of the main result

In this section we give the routine derivation of Theorem 1.3 from the
results in Sections 3–6.

Proof of Theorem 1.3. We can assume that α > 0 is sufficiently
small. Now we choose an appropriate hierarchy of constants

α ≫ β, ℓ−1 ≫ ζ⋆ ≫ ϑ⋆ ≫ ζ⋆⋆ ≫ ϑ⋆⋆ ≫ M−1 ≫ n−1
0 .

We recall that Corollary 3.5 yields four natural numbers ℓ1, ℓ2, ℓ3, ℓ4 ≤ 50ℓ.
Let H = (V,E) be a 4-uniform hypergraph on |V | = n ≥ n0 vertices sat-

isfying the minimum pair degree condition δ2(H) ≥
(
5
9 + α

)
n2

2 . We need
to construct a Hamiltonian cycle in H . Appealing to Proposition 2.2
with µ = α3/18 we choose for every pair uv ∈ V (2) a (β, ℓ)-robust subgraph
Ruv ⊆ Huv of its link graph. Notice that H and the family of robust graphs

{
Ruv : uv ∈ V (2)

}

realise Setup 3.1. Proposition 4.1 allows us to choose a reservoir set R with
|R| ≤ ϑ2

⋆n which by Corollary 4.2 has the property that if a subset R′ ⊆ R
with |R′| ≤ ϑ2

⋆⋆n has “already been used”, then for every i ∈ [4] we can still
connect any two disjoint ζ⋆⋆-connectable triples by a path through RrR′

having ℓi inner vertices. Next we apply Proposition 5.1 to obtain an (ab-
sorbing) path PA ⊆ H −R such that

(i) |V (PA)| ≤ ϑ⋆n,
(ii) the end-triples of PA are ζ⋆-connectable,
(iii) and for every subset Z ⊆ V r V (PA) with |Z| ≤ 2ϑ2

⋆n and |Z| ≡ 0
(mod 4), there is a path Q ⊆ H with the same end-triples as PA and V (Q) =
V (PA) ∪ Z.

As the set X = R∪ V (PA) satisfies |X| ≤ (ϑ⋆ + ϑ2
⋆)n ≤ 2ϑ⋆n, Proposi-

tion 6.1 yields a collection C of M -vertex paths starting and ending with
ζ⋆⋆-connectable triples such that the set

J = V r

(
V (PA) ∪ R ∪

⋃

P∈C

V (P )

)

of uncovered vertices satisfies |J | ≤ ϑ2
⋆n.
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Now we want to form an almost spanning cycle in H by connecting the
paths in C and PA through the reservoir. For each of the first |C | of these
connections we want use ℓ1 vertices from the reservoir, which altogether re-
quires

ℓ1|C | ≤ 50ℓn

M
≤ ϑ2

⋆⋆n

vertices from the reservoir. In other words, there arises no problem if we
choose these connections one by one, thus creating a path T possessing
|C |(ℓ1 +M)+ |V (PA)| vertices. Moreover, the set V (T )∩R of used vertices
is so small that we can still make a last connection to close the desired cycle.
For this last connection we use ℓi inner vertices, where i ∈ [4] is determined
in such a way that i ≡ n− |V (T )| (mod 4). In this manner, we obtain a cy-
cle C containing the absorbing path PA such that the set Z = V r V (C) of
left-over vertices satisfies

|Z| ≡ n− |V (C)| ≡ n− |V (T )| − ℓi ≡ i− ℓi ≡ 0 (mod 4)

as well as

|Z| = |Z rR|+ |Z ∩R| ≤ |J |+ |R| ≤ 2ϑ2
⋆n .

So by property (iii) of the absorbing path we can absorb Z into PA, thus
arriving at the desired Hamiltonian cycle. Thereby Theorem 1.3 is proved.
�

Appendix A. A weighted Janson inequality

In the proof of Claim 6.5 we use a probabilistic concentration result that
follows from the following weighted variant of Janson’s inequality (see [12,
Remark 3] – we include a proof for completeness in this appendix).

Lemma A.1 (weighted Janson inequality). For a nonempty set V and
p ∈ [0, 1] let Vp be the binomial subset of V including every element of V
independently and uniformly at random with probability p. Let w : ℘(V ) −→
R≥0 be a weight function and let

X =
∑

A∈℘(V )

w(A)1A⊆Vp

be the random variable giving the total weight of ℘(Vp). Setting

∆ =
∑

A,B∈℘(V )
A∩B 6=∅

w(A)w(B)P(A ∪B ⊆ Vp)
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we have

P
(
X ≤ EX − t

)
≤ exp

(
− t2

2∆

)

for every t ∈ [0,EX].

It is straightforward to check that Janson’s original proof (see e.g. [6])
extends to this weighted setting but for the sake of completeness we give the
details.

Proof. Let Ψ: R≥0
−→ R>0 be the function s 7−→ E[e−sX ]. Clearly,

Ψ is differentiable with the derivative

(A.1) −Ψ′(s) = E[Xe−sX ] =
∑

A⊆V

w(A)P(A ⊆ Vp)E[e
−sX | A ⊆ Vp] .

For every A ⊆ V we split X = YA + ZA, where

YA =
∑

A∩B 6=∅

w(B)1B⊆Vp
and ZA =

∑

A∩B=∅

w(B)1B⊆Vp
.

Now the FKG inequality yields

E
[
e−sX | A ⊆ Vp

]
≥ E

[
e−sYA | A ⊆ Vp

]
· E

[
e−sZA | A ⊆ Vp

]
,

where in view of the independence of A ⊆ Vp and ZA the second factor is at
least Ψ(s). Applying the trivial estimate e−x ≥ 1− x to the first factor we
obtain

E
[
e−sX | A ⊆ Vp

]
≥ E

[
1− sYA | A ⊆ Vp

]
·Ψ(s)

for every A ⊆ V and by plugging this into (A.1) we arrive at

−Ψ′(s)

Ψ(s)
≥

∑

A⊆V

w(A)P(A ⊆ Vp)E
[
1− sYA | A ⊆ Vp

]

=
∑

A⊆V

w(A)P(A ⊆ Vp)− s
∑

A∩B 6=∅

w(A)w(B)P(A ∪ B ⊆ Vp) = EX − s∆ .

Integrating over s and taking Ψ(0) = 1 into account we conclude

log
(
Ψ(u)

)
=

∫ u

0

Ψ′(s)

Ψ(s)
ds ≤

∫ u

0

(
s∆− EX

)
ds =

u2∆

2
− uEX

for every u ∈ R≥0. Finally, Markov’s inequality implies

P
(
X ≤ EX − t

)
= P

(
e−uX ≥ eu(t−EX)

)
≤ exp

(
u(EX − t)

)
E[e−uX ]

≤ exp
(
u(EX − t) + u2∆/2− uEX

)
= exp(u2∆/2− tu)

Acta Mathematica Hungarica
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for every u ∈ R≥0 and the optimal choice u = t
∆ discloses

P
(
X ≤ EX − t

)
≤ exp

(
− t2

2∆

)
. �

For bounded weight functions we deduce the following version.

Corollary A.2. Suppose that |V | ≥ m ≥ k ≥ 1, where V is a finite set

and k is an integer. For p = m/|V | let Vp ⊆ V be the binomial subset of V
including every element independently and uniformly at random with prob-

ability p. If w : V (k) −→ [0, 1] denotes a bounded weight function, then the

random variable X =
∑

A∈V (k) w(A)1A⊆Vp
satisfies

P
(
|X − EX| ≥ ξmk

)
≤ 3 exp

(
− ξ2m

12k2

)

for every ξ ∈ (0, 1).

Proof. In order to make Lemma A.1 applicable we set w(A) = 0 for
every A ∈ ℘(V )r V (k). Now for t = ξmk we obtain

(A.2) P
(
X ≤ EX − ξmk

)
≤ exp

(
−ξ2m2k

2∆

)
,

where

∆ =
∑

A,B∈V (k)

A∩B 6=∅

w(A)w(B)P(A ∪B ⊆ Vp) ≤
∑

A,B∈V (k)

A∩B 6=∅

p|A∪B| .

Since for every i ∈ [k] there are at most |V |2k−i pairs (A,B) ∈ V (k) × V (k)

with the property |A ∪B| = 2k − i, we are thus lead to the upper bound

∆ ≤
k∑

i=1

|V |2k−ip2k−i ≤ km2k−1 .

Therefore (A.2) implies

(A.3) P
(
X ≤ EX − ξmk

)
≤ exp

(
−ξ2m

2k

)

and to conclude the argument it suffices to prove

(A.4) P
(
X ≥ EX + ξmk

)
≤ 2 exp

(
− ξ2m

12k2

)
.
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To this end we apply (A.3) to the weight function ŵ(A) = 1−w(A) and
to ξ/2 instead of ξ, thus learning that the random variable

Y =
∑

A∈V (k)

(
1− w(A)

)
1A⊆Vp

=

(|Vp|
k

)
−X

satisfies

P
(
Y ≤ EY − 1

2ξm
k
)
≤ exp

(
−ξ2m

8k

)
.

Rewriting this in terms of X and taking into account that the expected value

of
(|Vp|

k

)
is pk

(|V |
k

)
we obtain

(A.5) P

(
X ≥ EX +

(|Vp|
k

)
− pk

(|V |
k

)
+

ξ

2
mk

)
≤ exp

(
−ξ2m

8k

)
.

As we shall prove below, the number m+ = m(1 + ξ
2k ) satisfies

(A.6)

(
m+

k

)
≤ pk

(|V |
k

)
+

ξ

2
mk .

Assuming this estimate for a moment, we conclude from (A.5) that

P
(
X ≥ EX + ξmk and |Vp| ≤ m+

)

≤ P

(
X ≥ EX+

(
m+

k

)
−pk

(|V |
k

)
+

ξ

2
mk and |Vp| ≤ m+

)
≤ exp

(
−ξ2m

8k

)
.

Together with Chernoff’s inequality this yields

P
(
X ≥ EX + ξmk

)
≤ P

(
|Vp| > m+

)
+ P

(
X ≥ EX + ξmk and |Vp| ≤ m+

)

≤ 2 exp
(
− ξ2m

12k2

)
,

which concludes the proof of (A.4) and, hence, of Corollary A.2.
Now it remains to deal with (A.6). Since p = m/|V | ≤ 1 we have

p(|V | − j) ≥ m− j for every j ∈ [0, k − 1] and multiplying these estimates

we infer pk
(|V |

k

)
≥

(m
k

)
. Thus it suffices to prove

(A.7)

(
m+

k

)
−
(
m

k

)
≤ ξ

2
mk .
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Applying the mean value theorem to the increasing function x 7−→
(x
k

)
we

obtain
(
m+

k

)
−
(
m

k

)
≤ (m+ −m)(m+)k−1

(k − 1)!
,

so (A.7) is a consequence of

(
1 +

ξ

2k

)k−1
≤ k ! ,

which is clear for k = 1 and which for k ≥ 2 follows from

(
1 +

ξ

2k

)k−1
≤ e(k−1)/2k ≤

√
e ≤ 2 . �

The following consequence of this result is utilised multiple times in Sec-
tion 6.

Corollary A.3. Let m ≥ k and M be positive integers, and let η ∈(
0, 1

2k

)
. Suppose that V is a finite set and that

V = B1 ∪· · · · ∪· Bν ∪· Z

is a partition with |B1| = · · · = |Bν | = M < η|V |, |Z| < η|V |, and ν ≥ m. Let
S ⊆ {B1, . . . , Bν} be an m-element subset chosen uniformly at random and

set S =
⋃S .

(a) If Q ⊆ V k has size |Q| = d|V |k, then

P
( ∣∣ |Q ∩ Sk| − d(Mm)k

∣∣ ≥ ξ(Mm)k
)
≤ 12

√
m exp

(
− ξ2m

48k2k+2

)

holds for every real ξ with max(8k2η, 16k2/m) < ξ < 1.
(b) Similarly, if G denotes a k-uniform hypergraph with vertex set V and

d|V |k/k! edges, then

P
( ∣∣eG(S)− d(Mm)k/k!

∣∣ ≥ ξ(Mm)k/k!
)
≤ 12

√
m exp

(
− ξ2m

48k2k+2

)

holds for every ξ with max(8k2η, 16k2/m) < ξ < 1.

Proof. Notice that (a) implies (b). Indeed given a k-uniform hyper-
graph G we apply (a) to the ordered version of its set of edges defined by

Q =
{
(x1, . . . , xk) ∈ V k : {x1, . . . , xk} ∈ E(G)

}

and we obtain (b) immediately.
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So it remains to verify (a). Intending to invoke Corollary A.2 we move
from the hypergeometric distribution involved in choosing the set S to a
binomial distribution, where we include every block Bi independently from
the other ones with probability p = m/ν. For this transition we introduce
the following notation.

Write B = {B1, . . . , Bν} for the set of blocks and consider the event

X =
{
S ⊆ B : the set S =

⋃
S satisfies

∣∣ |Q ∩ Sk| − d(Mm)k
∣∣ ≥ ξ(Mm)k

}
.

Let Sm ⊆ B be an m-element set chosen uniformly at random and let Sp ⊆
B be a binomial subset containing every block independently and uniformly
at random with probability p = m/ν. Pittel’s inequality (see, e.g., [6, eq.
(1.6)]) informs us that – without any assumptions on the event X ⊆ ℘(B) –
we have

P(Sm ∈ X) ≤ 3
√
mP(Sp ∈ X) ,

so it suffices to show

(A.8) P(Sp ∈ X) ≤ 4 exp
(
− ξ2m

48k2k+2

)
.

We will exploit that most k-tuples in Q are crossing in the sense that their
entries belong to k distinct blocks. More precisely, if Q◦ ⊆ Q denotes the
set of theses crossing k-tuples, we contend that

(A.9)
(
d− ξ

4

)
(Mν)k ≤ |Q◦| ≤

(
d+

ξ

4

)
(Mν)k .

To justify the lower bound we remark that at most k|Z||V |k−1 members
of Q can have an entry in Z and at most k2M |V |k−1 members of Q can have
two entries from the same block, whence

|Q◦| ≥ |Q|−k|Z||V |k−1−k2M |V |k−1 ≥ (d−kη−k2η)|V |k ≥
(
d− ξ

4

)
(Mν)k .

For the upper bound we exploit

(Mν)k = |V r Z|k ≥ (1− η)k|V |k ≥ (1− kη)|V |k ,
which yields

|Q◦| ≤ |Q| = d|V |k ≤
(
d+

ξ

4

)
(1− kη)|V |k ≤

(
d+

ξ

4

)
(Mν)k .

Thereby (A.9) is proved. Now we decompose

|Q◦| =
∑

{i(1),...,i(k)}∈[ν](k)

W
(
i(1), . . . , i(k)

)
,
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where for every k-element set {i(1), . . . , i(k)} ∈ [ν](k) the number of k-tuples
in Q◦ with one entry from each of the blocks Bi(1), . . . , Bi(k) is denoted by

W
(
i(1), . . . , i(k)

)
. These numbers are bounded by

0 ≤ W
(
i(1), . . . , i(k)

)
≤ k!Mk .

Bearing in mind that Corollary A.2 requires normalised weights, we set

w
(
i(1), . . . , i(k)

)
=

W
(
i(1), . . . , i(k)

)

k!Mk

for every k-set {i(1), . . . , i(k)} ∈ [ν](k). As a consequence of (A.9), the ex-
pectation of the random variable

X =
∑

A∈[ν](k)

w(A)1A⊆[ν]p =
|Sk

p ∩Q◦|
k!Mk

,

where Sp =
⋃Sp, is

EX =
|Q◦|pk
k!Mk

=
(d± ξ/4)mk

k!
.

Therefore, Corollary A.2 applied to ξ/(2k!) here in place of ξ there yields

P(
∣∣ |Sk

p ∩Q◦| − d(Mm)k
∣∣ ≥ (3/4)ξ(Mm)k) ≤ 3 exp

(
− ξ2m

48k2k+2

)
.

So to conclude the proof of (A.8) is certainly suffices to show

P
( ∣∣Sk

p ∩ (QrQ◦)
∣∣ ≥ (1/4)ξ(Mm)k

)
≤ exp

(
− m

48k2

)
.

Now Chernoff’s inequality yields

P
(
|Sp| > (1 + 1/k)m

)
≤ exp

(
− m

48k2

)

and for this reason it suffices to prove the deterministic statement that for
every A ⊆ B with |A | ≤ m(1 + 1/k) the set A =

⋃
A satisfies

∣∣Ak ∩ (QrQ◦)
∣∣ < (1/4)ξ(Mm)k .

Since the k-tuples counted on the left side contain two entries from the same
block, we have indeed

∣∣Ak ∩ (QrQ◦)
∣∣ ≤ k2M |A|k−1 ≤ (1 + 1/k)k−1k2M(Mm)k−1

< (4k2/m)(Mm)k < (ξ/4)(Mm)k ,

Acta Mathematica Hungarica



TIGHT HAMILTONIAN CYCLES IN 4-UNIFORM HYPERGRAPHS 53

where the last inequality uses our assumed lower bound on ξ. �
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