Author(s): Goc, R
Title: Monte Carlo calculation of the correlation functions for molecular rotation - Application to NMR
Abstract: The Monte Carlo method for calculating correlation functions for the rotational motion of atoms is presented. This method applies to crystalline solids and allows the determination of the correlation functions for any model of rotating atoms, molecules or ions constituting the material of interest, if only its crystal structure is known. The presented method permits the calculation of the correlation functions for a whole block of unit cells, not only for a single group of particles. The described method can be employed to calculate correlation functions used in the theoretical description of NMR, dielectric or neutron diffraction experiments. As an example the correlation functions and NMR relaxation time T-1 of solid benzene are calculated by the Monte Carlo method for the.
Addresses: Adam Mickiewicz Univ, Inst Phys, PL-61615 Poznan, Poland.
Reprint Address: Goc, R, Adam Mickiewicz Univ, Inst Phys, Umultowska 85, PL-61615 Poznan, Poland
Cited References:
ABRAGAM A, 1961, PRINCIPLES NUCL MAGN
BACON GE, 1964, P ROY SOC LOND A MAT, V279, P98
BUSTARD LD, 1980, PHYS REV B, V22, P1
HAEBERLEN U, 1980, Z NATURFORSCH A, V22, P1
HILT RL, 1964, PHYS REV A, V134, P392
LYUBARSKII GY, 1960, APPL GROUP THEORY PH
MACDONALD DH, 1998, J PHYS-CONDENS MAT, V10, P417
SLICHTER CP, 1990, PRINCIPLES MAGNETIC
VANVLECK JH, 1948, PHYS REV, V74, P1168
WOLF D, 1974, PHYS REV B, V10, P2710