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INTEGERS REPRESENTABLE AS THE SUM OF POWERS OF
THEIR PRIME FACTORS

JEAN-MARIE DE KONINCK! & FLORIAN Luca®

Abstract: Given an integer « = 2, let S» be the set of those positive integers n, with at

least two distinct prime factors, which can be written as n = Zp"‘. ‘We obtain general results

pln
concerning the nature of the sets S, and we also identify all those n € S3 which have exactly
three prime factors. We then consider the set 7 (resp. Tp) of those positive integers n, with

at least two distinct prime factors, which can be written as n = Zp"‘ﬂ, where the exponents

pin
ap = 1 (resp. ap = 0) are allowed to vary with each prime factor p. We examine the size of
T(z) (resp. To(z)), the number of positive integers n & z belonging to T (resp. To).
Keywords: Prime factorization

1. Introduction

Identifying all those positive integers n such that

n=> p° (1)

pin

for some integer o > 2 is certainly a difficult problem. Since prime powers p®
(with a > 2) trivially satisfy (1), we shall examine the set S, , namely the set of
those positive integers n satisfying (1) but which have at least two distinct prime
factors.
We first obtain general results concerning the nature of the sets S,. We then
‘V
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identify all those n € S3 which have exactly 3 prime factors.
the more general equation
(a3
n= E P, (2)

pln
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where the exponents a, are allowed to vary with each prime factor p. Clearly all

prime powers have such a representation (2). So let us define T (resp. Ty ) as the

set of all positive integers n having a representation (2) with each a, > 1 (resp.

ap 2 0) but with at least two distinct prime divisors. We obtain a non trivial

upper bound for the number To(:r) of positive integers n < x belonging to Tp.
Tinallsy Lavimicbie argiimant vie 110 o S

finaily, we sivc a heuristic ar guiment ylclunug lower and upper estimates for
T'(x), the number of positive integers n < r belonging to T .

2. General observations

For each integer n > 2, let w(n) stand for the number of distinct prime factors of
n and let P(n) stand for the largest prime factor of n. We first make the following
observations. Given o > 2 and n € §,, we have:
(i) P(n) < n'/=,
(ii) Letting r = w(n), then r > 3 and r is odd; this is easily established by
considering separately the cases “n odd” and “n even”.
(iii) If o is even, then w(n) cannot be a multiple of 3; one can see this by
considering separately the cases “3|n” and “3 fn”.
(iv) If w(n) = a, then n cannot be squarefree, since otherwise, comparing the
arithmetic mean with the geometric mean of the prime factors of n, we get

n=¢ig2...qa =4y +q5 + ...+ 05 2 a01G2...¢a = N,

a contradiction, since o > 2.
(v) If n € Sy, then, in view of (i) and (iii), r := w(n) is odd, r > 5; moreover:
* if r=>5,then n=50r8 (mod 24},
* if r=7,then n =7, 10, 15 or 18 (mod 24),
* otherwise r > 11.
(vi) A computer search shows that S3 contains at least 6 elements, namely:

378 =2-3%.7=2% 1+ 3% 4+ 7°,
2548 =27 . 7% .13 = 23 + 7% 4 13%,
2836295="5-7-11-53.139 =55+ 73 + 113 4 533 4 1393,

4473671462 =2-13-179.593.1621 = 23 + 13% + 179 + 593° + 16213,

23040925705 =57 - 167 - 1453 - 2713 = 5% 4+ 7% 4+ 167° + 1453% + 2713°,
21467102506 955 = 5. 7%.313.1439-27791 = 53 4+ 73 4 3133 4 14393 4 277013

vvvvv poi8 18] LxD &~ v LR T v ] 1Y 27 [IE=R I R3S

(vii) If n € Sy, then w(n) =7 or w(n) > 11. To show this, first let r = w(n).
We know from (ii) that r > 3 and odd; but from (iii), it follows that r # 3;
hence, r = 5. But r # 5; indeed, if r = 5, then first assume that 5|n; in
this case, since p? =1 (mod 5) for all primes p # 5,

n=625+q;+q5+qi+gs=0+4=4 (mod5),
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which contradicts 5|n; on the other hand, if n is not a multiple of 5, then
n =5 (mod 5), again a contradiction. Hence, r 2 7. Finally, in view of
(iii), r # 9. Hence, we may conclude that r =7 or r 2 11.
(vil) It is not known if T is an infinite set. However, if there exist infinitely many
2k + 3¢

” ?

primes p of the form p = then #T = +oo, the reason being that

in this case, we have 2-3.p=2F 43¢ 4 p,

(viii) Using a parity argument, it is clear that any number n € T has an odd
number of distinct prime divisors. One can check that the smallest element
of T is 30; in fact, 30 has two representations of type (2), namely

30=2-3-5=24+34+52=2143%45.

Letting T(x) := #{n < = : n € T}, a computer search shows that T(100) =
6, T(10%) = 42, T(10%) = 109, T(10%) = 321 and T(10°) = 973. On the
other hand, the smallest odd element of T is 915, in which case we have

915=3.5.61=3%+5% +61.

3. Identifying those n € §3 with w(n)=3
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Proof. We prove this in 9 steps.

1. Write < y < z for the three distinct prime factors of n. Note that the given
relation forces z|y® + 23, so that z|y+z or z|y? — yr 4+ z*, and similarly ylz + 1z,
or ylz% - zz 4+ 2%, and z|z 4+ y, or z|2? — zy + y*.

2. Assume z|y+ . Since y + < 2y < 2z, this is possible only when z = y+z. If
z > 2, then y+z is even, and s0 it cannot be an odd prime. Thus, z =2, z = y+2,

Ltk +han
Uuy vuon

Py =8+3+(y+2)°=16 (mody),

which is impossible. Thus, zJy + =, and z|y*® — yz + z*. Since z > 3, we also
conclude that z = 1 (mod 3), because the relation y? — yz + z* = 0 (mod z)

-3 C
implies that (2y — )2 = —32% (mod z), which means that (—) =1, which is
z

equivalent to the fact that z = 1 (mod 3). Here, and in what follows, for an odd
prime p and an integer a we use (E) for the Legendre symbol of a in respect to p.
p

3. Assume that 22|n. In this case, we then get z%|y® + 23, and by the previous
2

arguments, it follows that z%|y®— yz+z*. This is impossible because y*— yr+x? =

y? — z(y — x) < y* < z%. Thus, z|n.
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4, ylz + . Write z := Ay — z, with some positive integer A. Clearly
A > 2. We then get z y (mod z). Since we also have y? — yx + 22 = 0
(mod 2}, we get y* — y(Ay) + (A\y)2 =0 (mod z). Thus, zly?(1 — A+ A?), and
therefore z|1 — X + A%, If A =2, we get 2|1 — 2 + 22 = 3, which is impossible. If
A=3,weget z[1 ~3+3%=7. Thus, z =7, and therefore 7 = 3y — z. Since y
is odd, we get = =2 and therefore ¥ = 3, which does give the solution

fh

22433 473=2.3%.7

mentioned in the statement of our theorem.

Assume now that A > 4. Then,

~1
z=/\y—w>()\—1)y=/\y-)\—\— 3)\y.
A

W

Since z|1 — A + A2, we also get

3y

¥

NM>1-A4+M22>

and therefore that 5
)
A> =,
> 4
Thus,
3Ny _ 9y?

_ >
221 7 16

Since we also have z|y? — yr + 22, we get that

2 2
— Yyx T
s Y yrta”

A
I

is a positive integer, However,

< =< =<2,
<Z<9<

therefore § = 1, and so
z = y2 —yxr + z?,
Thus,
n=x3+y3+z3=(y+$)(y2—ya:+a:2)+z3:z(y+a:)+z3,

therefore
=y4z+ 22

N3



Integers representable as the sum of powers of their prime factors 61

Looking at this last relation modulo y, we get z+2% =0 (mod y). Since yjz+z,
we also get z = —z (mod y) and therefore 22 = z° (mod y). Thus, 2> +z =0
(mod y); hence, ylz(z + 1). This is possible only when y = z + 1 and z = 2.
Thus, 2 =2, y =3, z =32 —-2-3+422 =7, so that X\ = 3, contradicting the fact

that A > 4

5. From now on, we may assume that y fz + = and therefore that y|z? — zz + 22.
If y =3, then z = 2, in which case z[23 + 3% = 35; hence, z = 7 (because z =1
(mod 3)), which is a case already treated. Thus, we may assume that y >3, and
since y|z2 — zz + z°, an argument similar to the one employed at step 2 tells us
that y=1 (mod 3).

6. Here, we observe that £ =2 (mod 3). Indeed, for if not, we must either have
z = 3, which is impossible because then 3|n, but 2% + y® + 2* = 2 (mod 3), or
z =1 (mod 3), therefore 3 f n, while 3 + 33 + 23 = 0 (mod 3).

7. Write n := 2®yPz. Since we already know that z=2 (mod 3) and y=2z=1
(mod 3), we reduce the relation

+y3+z3 ZIQyEZ

T
modulo 3 to get 1 =2% (mod 3).

H

shows that a is even.

8.1. Assume that; T = 2. We first show that a = 2. Indeed, for if not, we would
first get 8 | y3 + 23 and hence that 8|(z + y)(22 — zy + y?). Since 2° — zy + y*
odd, we get 8|y+z Thus, (y, z) € {(1 7,(7,1),(3,5),(5,3)} (mod 8).

We know that z|y3 423, and y|z3 + 23, In particular, —2y = (4/y)? (mod z), and

) (2=

and in a similar way one deduces that

Hence, we have

S () (2) (2) (3) (B) (2) = (rnpes et S
Y y < z Ky)
_ (_1)1+o+0 — 1,

a contradiction. Therefore, a = 2.
8.2. Here, we show that § € {2,3}.If =1, we get
4yz:23+y3+z3 > 3(2-y-2) = 6yz,

which is impossible, the above 1nequahty following from the AGM-inequality. Usmg
now the fact that z|y? — yz + 22 (see step 2), together with the fact that y% —
oy + 22 = y? — z(y — ) < y?, we learn that z < y®. Since

383 >3 +f+ 2= 4Pz,

e e bt L L AT —aiiai

el
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o
[44]

and therefore that 8 < 4.
8.3. Assume that 3 = 3. Rewrite the equation

8+ 43 4+ 2% = 42

3 _ ZS + 8

T4z 1
Let D := 4z— 1. Thus z = 47! (mod D). Since we also have 23 +8 = 0 (mod D),
we get 47348 = 0 (mod D) and therefore that D|1+8-43 = 513 = 33.19. Thus,

D e {1,3,3%3%,19,3-19,32.19,3%.19}. Since z must be at least the second prime
number Wthh is congruent to 1 modulo 3, we have that D > 4-13—~1 =51, and

since we also have that D = —1 (mod 4), it follows that in fact only the instance
_ D+1 31941
D = 3% .19 is possible. Therefore z = 4+ 3 1 LA = 43. However, for
2348 43348
this value of z, the number Lol i @i 465 is not the cube of a prime
number.

8.4. Assume that 8 = 2. In this case,
B <oy =,

so that
2?2 < 442,

which implies that z < 2y. But we also have that y 2|(z3 + 2%), and since y does
not divide z+z, it follows that y?|22 —zz4+2% = 22— 2z +4. Since z = 1 (mod 3),
we also have that 3|22 — 2z 4 4, and since y > 3, we have that y2|(2? — 2z+4)/3

Now write
o 22— 922 +4

V=T
where J is a positive integer. We then get

22 -2z 44 22 4% 4
= < = < == < 2,
32 3 3y 3
which means that § = 1. Thus, 3y? = 22 — 2z + 4. The original relation becomes
We=8+y+28 =y  + 2+ 22— 22 +4) =47 +3y2%(z + 2),

so that

dz=y+3(z+2)=3z+y+8,
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which implies that z = y+ 6. Thus, y = —6 (mod z), and since z | % —yz + 2% =
y>—-2y+4, weget z | (—6)2—2(—6)+4=52=4-13. Thus, z =13,y =2z—6 =7,
and we have obtained the solution

28 473 4133 =922.72.13

mentioned in the statement of our theorem.
9. From now on, we assume that £ > 2. The relation z|y® 4+ 2% implies that

. 2
y® = —2% (mod z) and therefore —yz = (zg/y) (mod z), and so

(_—yz) ~1. (3)

r

In a similar way, using the facts that y|z3 + 2% and z|z3 + 3, one gets

(592
()@ Q- O-0= Q)@

and similarly
g1 T 4
1=== - (Z})- (-],
() 6)

Thus,

and v y
(@) )
(1) o B O
) -1 y— 1 z—1 . . .
Write a := 5 b= 5 c:= 5 Multiplying the three relations above
aida her aida and Qi ~mitaArabin waninraniby s ook
oluUC Uy olUT allu uol 15 L{uauxauu., lULl}JAULlhy AiA™) EUU

1= (_ 1)a+b+c+ab+ac+bc,

which means that
=a+b+c+ab+ac+ be

must be an even number. Let us notice that it is not possible that all three numbers
a, b, c are even. Indeed, if this were so, then z = y = z = 1 (mod 4), and reducing
the equation

3 4 y3 +22=n

modulo 4, we would get 3 =1 (mod 4), which is impossible. Thus, at least one of
the numbers a, b, ¢ is odd. This, together with the fact that S is even implies
that all three numbers a, b, ¢ are odd, therefore z = y = 2z = 3 (mod 4). We
reduce now the relation

2+ 3+ 2% = 2*yP2

!
4
i
|
i
{
!
|
i

i s ot S b S b s o
] B |
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modulo 4, and since « is even (see step 7), we get 1 = 35+! (mod 4) and therefore
that 3 is odd. Thus, we may write our original equation as

z® +y3 + 2% = mPyz, (4)

where m = zo/2y(B-1)/2 j5 ap integer. Write = + y = 2¢. Notice that since
T =y =3 (mod 4), we have that £ is an odd number. Let p be an arbitrary prime
divisor of ¢. Reducing the above equation mod p, we get 23 = m?yz (mod p),

2
therefore y = (z/m) (mod p). Thus,

(
\

N’

LAR
p
Since y = ~z (mod p), we get that

1= (E) — (L“f) - (__1) ) (E) = (-1 (cTEhE (3) - (E)
p p p p z x
where in the above computation we used the quadratic reciprocity law together

with the fact that z = 3 (mod 4). Since the above formula holds for all prime
divisors p of £, we get, by multiplying all these relations, that

1= (5) = (8) = () () - () - (B
z z T T T T
In the above argument, we used only equation (4) (which is symmetric in y and z),
together with the fact that = y = z = 3 (mod 4) (which is also symmetric in
¥ and z), but we did not use size arguments (i.e. the fact that y < z). Thus, an
identical argument can be carried through to show that

()=

Multiplying these last two relations we get
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4. An upper bound for To(z)

Theorem 2. As £ — co, we have

(z) < a:exnj—(1+o(1) 1/ = logzloglo l

1
A L () =
Proof. First recall the estimate

U(z,y) = #{n <z:P(n) <y} Kzexp{-(1 +o(1))ulogu}, (5)

where u = log z/logy (see for instance Tenenbaum [4]). Now let

/3, I 6

—_
—

Yy = €Xp 1 5 lo .Ll
and set
2 1 /1
u= }ogm = BT sothat ulogu = (1 +0(1))y/ = logzloglogz. (7)
logy V 3loglogz YV 6

It follows from (5), (6) and (7) that
#{n<z:neTy Pn) <y} < zexp{—(1+o(1))ulogu} (8)

/1.
& wexpi—(l +o(1) )V 1ogzloglong

We shall therefore assume from now on that P(n) > y.
Let z be a large number with the corresponding y and u defined by (6) and
(7). Then, using Stirling’s formula, as well as the fact that

Z% = loglogy + O(1)

Py

holds as y tends to infinity, we get

(]
#{n<z:wn) 2 u} < Z 1..9.:p|_uj < [Z:J! (Z %) o

Pl Pluj €T \‘DSI 7/

VAN

(elogloga: + O(l)) Lu
Lu)

<zexp{—(1+o(1))ulogu}

7 - T TN 11 1 1
< Iexpi—(l +0(1))V glogmloglogmj .

<

e fmns e e b7 P TN
Mt i e o

35
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Hence, from here on we may assume that w(n) < u.

We now neglect those integers n < z, n € Ty with P(n) > y and such that
P(n)?|n, since the number of such integers is

< #{n<z:P(n) >y, P(n)’n}< Z % (10)
p>y "

T 3
<« 5 = Iexp{—\/alogzlogloga:}.

From here on, we shall therefore assume that Q := P(n)|n and write n =

nT

m{}. Now, writing (2) as
n:mQ:p€‘+...+pz", (11)

where p; < ... < pr = Q are the prime factors of n and each b; is non negative,
we get from (11) that

P4+ +6=0 (mod Q), (12)

PR S S, L

where 4 is 0 or 1, depending if b > 0 or b; = 0. The number appearing on the
left hand side of (12) depends only on the prime factors of m and does not depend
on @, and moreover, each one of these numbers has at most logz factors. Thus,
we may fix m < z/y and count how many candidates there may be for a given
prime number @. Since n is not a prime power, we have k > 2, and therefore
the left hand side of congruence (12) is a positive integer. Since pf" <n<z,it
follows that b; « logz + 1. In fact, b; < logz + 1 always holds except when 7 = 1

and p; = 2, in which case b1 < '—"—ﬁ;—;l. Thus, the total number of integers which

can appear on the left hand side of (12) is <« (logz+ 1)*(™ « (logr + O(1))* «
exp{(1 + o(1))uloglogz}, which means that

#{n<z:neTy P(n) >y, P(n)n,wn) < u} (13)
clogzx
< Ug exp{(1 + o(1))uloglog z}

< Texp {—(1 +o(1))4/ —é logzlog loga:} .

Theorem 2 then follows from (8), (9), (10) and (13).

5. Empirical lower and upper bounds for T(z)

Although we cannot prove that T is an infinite set, a heuristic argument shows
that : \
_&_) < T(z) < /3o, (14)

/2
P kg(l +o(1)) (loglog z)?
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Our argument goes as follows. First, we will show that, heuristically,

1 n
T(x)-—_ir;f(n), where  f(n) := g“zgp}, (15)

from which we will show that (14) follows.
Indeed, given a positive integer n such that w(n) is odd and writing n =
q1' ... ¢%, then in order to have n € T, we must find a representation of the form

n=gqr'+...+g.: (16)

Now, for each exponent «;, there are |logn/logg;| possible choices. Hence, if a
represent,ation of the form (16) is possible, then the exponents a; have been cho-
sen in the interval (1. lloen/lorg; . Therefore. since there are 717 . lloen/loga. |

lJ., LIU5 l'z/ [N o ‘:lljj 4 VI CIVIG, O1HLU Lkl U alo 111'_____1 LIUE l'l‘/ IUE qu

possible choices for the right hand side of (16), we should ‘expect’ that a represen-

tation of the form (16) will be possible with a ‘probability’ equal to — H [iog nJ
ogp
pln
thus est:abhshmg (15); note that the factor 2 5 comes from the fact that a randomly
(,[].Ubell IlLlIIerl ﬂdb an ()(1(1 LUU'L) WlE[l a pIOUdUlllEy 2
It remains to prove that (14) follows from (15).

First we prove the lower bound. Let z be a large positive real number and
let £ > 1 be an integer.

Let p; < ... < px be the first k£ primes. We shall consider only the contri-
bution to T'(z) of those positive integers n = p;...pxp < x, where p > px is a
prime number. We first get rid of the integer parts. Clearly, if i € {1,...,k}, then

llognJ logn {logn} logn ( logpi) logn ( l gpl)

= - > 1— > exp

log p; log p; log p; log p: logn log p; logn
where in the above inequalities we used the fact that logp;/logn < 1/2 and that

the 1nequahty 1 -1t > exp(—2t) holds for t € (0,1/2). Together with the fact that
logn/logp| > 1, we get

k k k

logn 108 Di logn {logp)
n) = 2 > exp(—2 > .
fm) (H logpi) ( Z p( )H logp; = logpy...logpk

te=1

== - L (lng)
T(z E n) > E 17
n<x pl.;:::sm

1 L) (lo p)k

= 2. T
p1logps ... pr log pr Pk <P<E/P1.. Px p

ROR

ES
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1 2/P1Pr (Jog t)k—1
> / (ogt)™™" 4
p1logpr ... prlogpe Jp, t
5 ! (log(z/p1 .. pe))"
>
p1logps ... prlogp k
/ k sy . oy )
K(lo oo+ b
= exp (kloglogz - Z(logpi +loglogp) + O ( (log p1 Togm—% ngk,))) .
i=1
The above chain of inequalities holds when k is such that
log(z/p1 ... pk) — logpe > log(z/p1 . .. px),
which in turn is true when
logpy + ... 4+ logpi
log px + gz = o(log x),
which holds when ,
Io + ki log pi = o(log x) (18)
g Pk log 7 g£T).

We now use the fact that, as k tends to infinity,
pr < klogk + kloglogk — k + o(k)

(see Théoréeme A (v) in {1]), together with the well known estimate

g p = n 1/2y _ N Y
Zlgp ZA( )+ 0y ") y+0<exp(c\/10gy)) y+o<(logy)2)’

Py ngy

where c is some positive constant and A denotes the von Mangoldt function, to
conclude that

k
Y logpi =pi + O ((lcj;—kk)“’) < kloghk + kloglogk — k +o(k).  (19)

i=1

Since pr < 2klogk holds for all sufficiently large k, we also have that

k
Z loglogp; € kloglogpr < klog (logk + log(2logk)) (20)
i=1
kloglogk
L kloglogk + O (—?:g”—OLE—
\ IUEW

= kloglogk + o(k).
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Introducing inequalities (19) and (20) into (17), we get

2
T(z) > exp (kloglogz—klogk—2kloglogk+k+o(k) +0 (k logk)) (21)

log z
log k?log k
= exp \IC log \————k loik ) +k+ok)+0 ( logg ))

In order to maximize the main term of the above inequality, we should choose &

I
versus z in such a way that the expression k log (k( ik ak)? ) should be as large

logz
(log log z)?
acceptable range; i.e., p1...px < T, that condition (18) is fulfilled, that with this
choice of k we have

as possible. Thus, we choose k := { J We note that k£ is in the

logz
— | =1 1
and that the error term is

kK?logk  k k(loghk)? k
logz ~ logk logz O(logk) olk)-

Hence, we may replace (21) by

) Ino N\
T(z) > exp (2(1 + o(1))k) = (1 +o(1)) s
() > exp (21 +0(1)k) = exp ( S(1+ (D) e )
which proves the left hand side of inequality (14).
We now prove the upper bound.
Fix a large number k£ and write
T(z) L7 g =Ti(z) + To(x) (22)
o ZZ “ logp nz: “ logp 1 @2
wln)<k p|n w(n)2k ‘
say. We have
T (CD) < Z -l—(log n)“’(") < Z (log n)k < (10g :1:)"'_L1 (23) :
) S n = n k+1 ?
n<z n<z =;;
w(n)<k
In particular, |
Ti(z) < (log )1 (24)

holds if % is sufficiently large.
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In the sequel, we shall be using the fact that, if & is sufficiently large, then

k
Hlogpi > (log k). (25)
Indeed, since p; > ilogi holds for all i > 2 (see [3]), one gets
logp; > logi+loglogi = (i > 3). (26)

The inequality log(1 +¢t) > ¢/2 holds for all ¢ € (0,1/2). The function t
loglogt/logt is decreasing for t > e® and its value at €€ is 1/e < 1/2. Hence,

log log ¢ 1logl
log(log ¢ + loglogi) = log log ¢ + log (1—!— 08 ogz) > loglogi + = 05 08 1
log i 2 logi
(i>e® ~15.2).
We thus get
Zloglogp, > Zlog (logi + loglogi) + O(1)
i=16
log1
= Zloglogz+Zlo ( o8 Ogl) +0(1)
log 1
i=16 i=16
1= 16 21 16 Ogl
k t
1 loglogt
> log lo, tdt+—/ dt + O(1
/16 608 2 Jis logt 1)
t=k b1 1 [*loglogt
=tloglogt| - [ —at+- [ 2885 o)
1t=16 J16 1081 < Ji6 ogt

> kloglogk,

wnere the last inequality follows for large enough & due to the fact that the function

1
/ (1 log log? _ ) dt tends to infinity with &, thus establishing (25).
16

2 logt logt
Using (25), we have

ol
13

nwe S et g Ll )

~n Hw(") log p: =~ log w(n)
w(n)2k w(n)2k
Using the fact that
| AP | PR
10 T3 I0g T
< —=" 4L (1+01
win) loglogn +(1+0(1)) (log logn)?



Integers representable as the sum of powers of their prime factors 71

logn\*
(see Pomerance [2]), together with the fact that the function ¢t +— (l(;ggrg) is

increasing for t < logn, it follows, from (27), that

e e (28)

St

To(z) < Y

Mnamuwad
ngx
w(n)2k

log z log logl
< Ni(z)exps O 0BT OB 0B 0BT ,
loglog x

Ni(z) =#{n <z |w(n) > k}.
It is easy to see, using Stirling’s formula, that

k

1 x 1 T elogloggy+0(1))k
N < E <Z 1) o ( .
o L, ma H 2. vk k (29)

1.9 €7

q<z

In particular, combining (28) and (29), for large x and k, we have that

Ty(z) <z ((IOglo,g:E)Wz\kexp!O (loga:logloglog:t\¥' (30)
\ K / ( QAN /)

log log

1
We now choose k such that & := l o8
2loglogx

table range; i.e., k = w(n) for some n < x. Furthermore, inequality (24) shows
h

J . It is clear that % is in the accep-

Ty (z) < g'/2+e(), (31)

while inequality (30) shows that

3 1 log logl
Ty(x) < zexp (Eklog loglogx — klogk — O ( o8 wb(;glocégwogw>> (32)
— zexp | 1987 | o (logzlogloglogz\\ _ 1jnion
\ 2 \ loglogx

Using (31) and (32) in (22), we obtain the upper bound in (14).

—
w
"

helpful suggestions.
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