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Abstract. Nonassociative Lambek Calculus (NL) is a pure logic of
residuation, involving one binary operation (product) and its two resid-
ual operations defined on a poset [26]. Generalized Lambek Calculus GL
involves a finite number of basic operations (with an arbitrary number of
arguments) and their residual operations [7]. In this paper we study a fur-
ther generalization of GL which admits operations whose arguments and
values can be of different sorts. This logic is called Multi-Sorted Lambek
Calculus mL. We also consider its variants with lattice and boolean op-
erations. We discuss some basic properties of these logics (completeness,
decidability, complexity and others) and the corresponding algebras.

1 Introduction

Nonassociative Lambek Calculus (NL) was introduced in Lambek [26] as a
weaker variant of Syntactic Calculus [25], the latter nowadays called (Associa-
tive) Lambek Calculus (L). Lambek’s motivation for NL was linguistic: to block
some overgeneration, appearing when sentences are parsed by means of L. For
example, John likes poor Jane and John likes him justify the following typing:

John, Jane: n, likes: (n\s)/n, poor: n/n, him: (s/n)\s ,

which yields type s of *John likes poor him in L, but not NL.
Besides linguistic interpretations, usually related to type grammars, these

calculi became popular in some groups of logicians, as basic substructural logics.
L admitting Exchange and sequents ⇒ A (i.e. sequents with the empty an-
tecedent) is equivalent to the {⊗,→}−fragment of Linear Logic of Girard, and
without Exchange to an analogous fragment of Noncommutative Linear Logic
of Abrusci. Full Lambek Calculus (FL), i.e. L with 1, 0 (optionally) and lat-
tice connectives t,u, and its nonassociative version FNL are treated as basic
substructural logics in the representative monograph [11] (FNL is denoted GL
from ‘groupoid logic’, but we use the latter symbol in a different meaning). Re-
call that substructural logics are nonclassical logics whose Gentzen-style sequent
systems omit some structural rules (Exchange, Weakening, Contraction). This
class contains (among others) relevant logics (omit Weakening) and multi-valued
logics (omit Contraction); they can be presented as axiomatic extensions of FL.

Studies in substructural logics typically focus on associative systems in which
product ⊗ is associative. Nonassociative systems are less popular among logi-
cians, although they are occasionally considered as a close companion of the



former. In the linguistic community, some work has been done in Nonassociative
Lambek Calculus, treated as a natural framework for parsing structured expres-
sions. This approach is dominating in Moortgat’s studies on type grammars;
besides nonassociative product and its residuals \, /, Moortgat considers differ-
ent unary modalities and their residuals which allow a controlled usage of cer-
tain structural rules [30]. Recently, Moortgat [31] also admits a dual residuation
triple, which leads to some Grishin-style nonassociative systems. Nonassocia-
tive Lambek Calculus was shown context-free in [5] (the product-free fragment)
and [20] (the full system). A different proof was given by Jäger [15], and its re-
finement yields the polynomial time complexity and the context-freeness of NL
augmented with (finitely many) assumptions [6].

A straightforward generalization of NL admits an arbitrary number of gen-
eralized product operations of different arities together with their residuals. The
resulting system, called Generalized Lambek Calculus, was studied in the au-
thor’s book (Logical Foundations of Ajdukiewicz-Lambek Categorial Grammars,
in Polish, 1989) and later papers [6, 9, 7] (also with lattice and boolean opera-
tions). In this setting the associative law is not assumed, as not meaningful for
non-binary operations.

The present paper introduces a further generalization of this framework:
different product operations are not required to act on the same universe. For
instance, one may consider an operation f : A × B 7→ C with residuals fr,1 :
C × B 7→ A and fr,2 : A × C 7→ B and another operation g : A′ × B′ 7→ C ′

with residuals gr,1, gr,2. Here A,B,C represent certain ordered algebras: posets,
semi-lattices, lattices, boolean algebras etc., and one assumes the residuation
law: f(x, y) ≤C z iff x ≤A fr,1(z, y) iff y ≤B fr,2(x, z).

This approach seems quite natural: in mathematics one often meets residu-
ated operations acting between different universes, and such operations can also
be used in linguistics (see section 2). The resulting multi-sorted residuation logic
extends NL, and we show here that it inherits many essential proof-theoretic,
model-theoretic and computational properties of NL. For instance, without lat-
tice operations it determines a polynomial consequence relation; with distribu-
tive lattice or boolean operations the consequence relation remains decidable in
opposition to the case of L.

The multi-sorted framework can further be generalized by considering cate-
gorical notions, but this generalization is not the same as cartesian-closed cat-
egories, studied by Lambek and others; see e.g. [28, 27]. Instead of a single cat-
egory with object-constructors A × B,AB ,B A, corresponding to the algebraic
a⊗ b, a\b, b/a, one should consider a multicategory whose morphisms are resid-
uated maps. We do not develop this approach here.

In section 2 we define basic notions, concerning residuated maps, and provide
several illustrations. In particular, we show how multi-sorted residuated maps
can be used in modal logics and linguistics.

In section 3 we consider multi-sorted (heterogeneous) residuation algebras:
abstract algebraic models of multi-sorted residuation logics. We discuss canonical
embeddings of such algebras into complex algebras of multi-sorted relational



frames, which yield some completeness theorems for multi-sorted residuation
logics. The multi-sorted perspective enables one to find more uniform proofs of
embedding theorems even for the one-sort case.

The multi-sorted residuation logics are defined in section 4; the basic system
is Multi-Sorted Lambek Calculus mL, but we also consider some extensions of
it. In general, basic properties of one-sort residuation logics are preserved by
multi-sorted logics. Therefore we omit most proofs. Some events, however, only
appear in the multi-sorted world (e.g. classical paraconsistent theories).

Some ideas of this paper have been presented in the author’s talk ‘Many-
sorted gaggles’ at the conference Algebra and Coalgebra Meet Proof Theory,
Prague, 2012 [8].

2 Residuated maps

Let (P1,≤1), (P2,≤2) be posets. A map f : P1 7→ P2 is said to be residuated, if
the co-image f−1[x↓] of any principal downset x↓ ⊆ P2 is a principal downset in
P1 [4]. Equivalently, there exists a residual map fr : P2 7→ P1 such that

(uRES) f(x) ≤2 y iff x ≤1 f
r(y)

for all x ∈ P1, y ∈ P2.
NL is a logic of one binary operation ⊗ on a poset (P,≤) such that, for any

w ∈ P , the maps λx.x⊗w and λx.w⊗x from P to P are residuated. Equivalently,
the binary operation ⊗ admits two residual operations \, /, satisfying:

(bRES) x⊗ y ≤ z iff y ≤ x\z iff x ≤ z/y ,

for all x, y, z ∈ P .
It is natural to consider a more general situation. A map f : P1×· · ·×Pn 7→ P ,

where (Pi,≤i), for i = 1, . . . , n, and (P,≤) are posets, is said to be residuated, if,
for any i = 1, . . . , n, the unary maps λx.f(w1, . . . , x : i, . . . , wn) are residuated,
for all w1 ∈ P1, . . . , wn ∈ Pn. (Here x : i means that x is the i−th argument
of f ; clearly wi ∈ Pi is dropped from the latter list.) Equivalently, the map f
admits n residual maps fr,i, for i = 1, . . . , n, satisfying:

(RES) f(x1, . . . , xn) ≤ z iff xi ≤i f
r,i(x1, . . . , z : i, . . . , xn) ,

for all x1 ∈ P1, . . . , xn ∈ Pn, z ∈ P , where:

fr,i : P1 × · · · × P : i× · · · × Pn 7→ Pi .

Every identity map I(x) = x from P to P is residuated, and its residual is the
same map. We write P̄(n) for P1×· · ·×Pn. If f : P̄(n) 7→ P and g : Q̄(m) 7→ Pi are
residuated, then their composition h : P1× · · ·Pi−1× Q̄(m)×Pi+1 · · · ×Pn 7→ P
is residuated, where one sets:

h(. . . , y1, . . . , ym, . . .) = f(. . . , g(y1, . . . , ym), . . .) .



Warning. The residuated maps are not closed under a stronger composition
operation which from f, g1, . . . , gk yields h(x̄) = f(g1(x̄), . . . , gk(x̄)), where x̄
stands for (x1, . . . , xn). This composition is considered in recursion theory.

Consequently, posets and residuated maps form a multicategory; posets and
unary residuated maps form a category. Notice that an n−ary residuated map
from P̄(n) to P need not be residuated, if considered as a unary map, defined
on the product poset. This can easily be seen, if one notices that an n−ary
residuated map must be completely additive in each argument, it means:

f(. . . ,
∨
t

xt
i, . . .) =

∨
t

f(. . . , xt
i, . . .) ,

if
∨

t x
t
i exists. (If P1, . . . , Pn, P are complete lattices, then f is residuated iff it

is completely additive in each argument.) Treated as a unary residuated map, it
should satisfy a stronger condition: preserve bounds with respect to the product
order:

f(
∨
t

(xt
1, . . . , x

t
n)) =

∨
t

f(xt
1, . . . , x

t
n) .

A more concrete example is as follows. Let (P,≤) be a bounded poset, and
let ⊗ be a binary residuated map from P 2 to P . We have ⊥ ⊗ > = ⊥ and
> ⊗ ⊥ = ⊥. Then ⊗−1[{⊥}] contains the pairs (⊥,>), (>,⊥) whose l.u.b. (in
the product poset) is (>,>). But, in general, >⊗> 6= ⊥, hence ⊗−1[{⊥}] need
not be a principal downset. If all universes are complete lattices, then every
unary residuated map from the product lattice is an n−ary residuated map in
the above sense.

If f is a residuated map from (P,≤P ) to (Q,≤Q), then fr is a residuated map
from (Q,≥Q) to (P,≥P ), and f is the residual of fr. For an n−ary residuated
map f : P1×· · ·×Pn 7→ Q, fr,i is a residuated map from P1×· · ·×Qop×· · ·×Pn

to P op
i , where P op denotes the poset dual to P ; the i−th residual of fr,i is f , and

the j−th residual (j 6= i) is g(x1, . . . , xn) = fr,j(x1, . . . , xj : i, . . . , xi : j, . . . , xn).
Accordingly there is a symmetry between all maps f, fr,1, . . . , fr,n, not explicit
in the basic definition. These symmetries will be exploited in section 3.

Residuated maps appear in many areas of mathematics, often defined as
Galois connections. A Galois connection between posets (P1,≤1), (P2,≤2) is
a pair f : P1 7→ P2, g : P2 7→ P1 such that, for all x ∈ P1, y ∈ P2, x ≤1

g(y) iff y ≤2 f(x). Clearly, f, g is a Galois connection iff g is the residual of f
when ≤2 is replaced by its reversal. In opposition to residuated maps, the first
(second) components of Galois connections are not closed under composition
(hence residuated maps lead to a more elegant framework [4]).

Residuated maps in mathematics usually act between different universes, like
in the classical Galois example: between groups and fields. On the other hand,
the logical theory of residuation focused, as a rule, on the one-universe case,
and similarly for the algebraic theory. One considers different kinds of residu-
ation algebras, e.g. residuated semigroups (groupoids), (nonassociative) residu-
ated lattices, their expansions with unary operations, and so on, together with
the corresponding logics; see e.g. [4, 11]. Typically all operations are (unary or bi-
nary) operations in the algebra. The situation is similar in linguistic approaches,



traditionally developed in connection with type grammars based on different
variants of the Lambek calculus.

We provide some examples of residuated maps.
P(W ) is the powerset of W . A residuated map from P(V1)× · · · × P(Vn) to

P(W ) can be defined as follows. Let R ⊆W × V1 × · · · × Vn. For (X1, . . . , Xn),
where Xj ⊆ Vj , for j = 1, . . . , n, one defines:

fR(X1, . . . , Xn) = {y ∈W : (∃x1 ∈ X1, . . . , xn ∈ Xn)R(y, x1, . . . , xn)} .

fR is residuated, and its residual maps are:

fr,i
R (X1, . . . , Y : i, . . . , Xn) = {x ∈ Vi : fR(X1, . . . , {x} : i, . . . , Xn) ⊆ Y } .

For n = 1 and V1 = W , fR is the ♦−modality determined by the Kripke frame
(W,R), R ⊆ W 2; see e.g. [3]. Precisely, it is the operation corresponding to ♦
in the complex algebra of the frame. Analogously, for Vi = W , i = 1, . . . , n, fR

corresponds to the ♦ determined by the multi-modal frame (W,R), R ⊆Wn+1.
To get the correspondence, the truth definition should be: y |= ♦ϕ iff, for some
x, R(y, x) and x |= ϕ, and similarly for the multi-modal case. If one defines:
‖ϕ‖ = {x ∈ W : x |= ϕ}, then ♦(‖ϕ‖) = ‖♦(ϕ)‖, where the first ♦ is the
operation fR, and the second one is the corresponding modal connective.

If R is not symmetric, then fr
R does not equal the �−modality corresponding

to ♦, namely �(X) = −♦(−X). One often writes �↓ for fr
R. Modal logics are

usually presented with the modal pair ♦,�, but without �↓. Some exceptions are
temporal logics with their residual pairs F,H and P,G, and some substructural
modal logics. Let us notice that every normal modal logic which is complete with
respect to a class of Kripke frames can conservatively be expanded by adding
�↓, the residual of ♦. Such expansions inherit basic properties of normal modal
logics, and they can be studied by certain methods of substructural logics.

Dynamic logics make the connection between R and ♦ explicit; one writes
〈R〉 for the ♦ determined by R, and [R] for its De Morgan dual; instead of R
one writes a program term interpreted as R.

A greater flexibility can be attained by treating ♦ as a binary map from
(P(W 2)) × P(W ) to P(W ): ♦(R,X) = {y ∈ W : (∃x ∈ X)R(y, x)}. In this
setting ♦ = fS , where S ⊆W ×W 2 ×W consists of all tuples (y, (y, x), x) such
that x, y ∈ W . Notice that S is a logical relation, since it is invariant under
permutations of W .

Consequently the binary ♦ is residuated. We have:

♦r,2(R,X) = [R]↓(X) = [R^](X) = {x ∈W : ♦(R, {x}) ⊆ X}.

The other residual:

♦r,1(X,Y ) = {(x, y) ∈W 2 : ♦({(x, y)}, Y ) ⊆ X} =

= {(x, y) ∈W 2 : x ∈ X t y 6∈ Y }
yields the greatest relation R such that ♦(R, Y ) ⊆ X. It is not a standard
operation in dynamic logics, but it may be quite useful. If ϕ,ψ are formulas,



♦r,1(‖ϕ‖, ‖ψ‖) is interpreted as the largest (nondeterministic) program R such
that, for any input satisfying the pre-condition ¬ϕ, every outcome of R satisfies
the post-condition ¬ψ. Besides known laws of dynamic logic, in the extended
language one can express new laws, e.g.:

♦r,1(‖ϕ ∧ ψ‖, ‖χ‖) = ♦r,1(‖ϕ‖, ‖χ‖) ∩ ♦r,1(‖ψ‖, ‖χ‖) ,

♦r,1(‖ϕ‖, ‖ψ ∨ χ‖) = ♦r,1(‖ϕ‖, ‖ψ‖) ∩ ♦r,1(‖ϕ‖, ‖χ‖) .

(In general, if f is residuated, then fr,i preserves all existing meets in the i−th
argument, and sends the existing joins to the corresponding meets in any other
argument.) Clearly the binary ♦ with its residuals is an example of a multi-sorted
residuation triple. They are logical operations in the above sense.

Other examples of logical multi-sorted residuated maps are the relative prod-
uct map ◦ : P(U × V ) × P(V ×W ) 7→ P(U ×W ), the Cartesian product map
× : P(V )×P(W ) 7→ P(V ×W ), and the disjoint union map ] : P(V )×P(W ) 7→
P(V ]W ).

Given any map g : V1 × · · · × Vn 7→ W , by R(g) we denote the relation:
R(g)(y, x1, . . . , xn) iff y = g(x1, . . . , xn) (the graph of g). The residuated map
fR(g) will be denoted by pg. This construction appears in numerous applications.
We mention some examples connected with linguistics.

A standard interpretation of NL involves binary skeletal trees, i.e. trees
whose leaves but no other nodes are labeled by certain symbols. Clearly skele-
tal trees can be represented as bracketed strings over some set of symbols. Let
Σ = {a, b}. Then [a, [b, a]] represents the tree on Figure 1.

A
A

�
�c

a AA ��cb a

Fig. 1. A binary skeletal tree.

The formulas of NL are interpreted as sets of skeletal trees (over an alphabet
Σ), and the product connective ⊗ is interpreted as p∗, where ∗ is the concate-
nation of skeletal trees: t1 ∗ t2 = [t1, t2].

If skeletal trees are replaced with labeled trees whose internal nodes are la-
beled by category symbols, then instead of one operation ∗ one must use a family
of operations ∗A, one for each category symbol A. One defines: t1∗At2 = [t1, t2]A.
Often binary operations are not sufficient; one needs n−ary operations for n =
1, 2, 3, . . .. For instance, a ternary operation oA sends (t1, t2, t3) to [t1, t2, t3]A.
This leads to the formalism of Generalized Lambek Calculus.

In the above setting we admit that an n−ary operation is defined on all pos-
sible n−tuples of trees. As a result, we generate a huge universe of trees, many of



them being completely useless for syntactic analysis. This overgeneration can be
eliminated, if one restricts the application of an operation to those tuples which
satisfy additional constraints. To formalize this idea we might admit partial op-
erations, which would essentially complicate the algebraic and logical details.

Here we describe another option, involving multi-sorted operations. Let G be
a context-free grammar (CFG) in a normal form: every production rule of G is
of the form A→ B1, . . . , Bn, where n ≥ 1 and A,Bi are nonterminals, or A→ a,
where A is a nonterminal, a is a terminal symbol from Σ. The rules of the first
form are called tree rules, and those of the second form are called lexical rules.

Let TA denote the set of all labeled trees whose root is labeled by A. With
any tree rule r we associate an operation or; if r is A → B1, . . . , Bn, then
or : TB1 × · · ·TBn 7→ TA is defined as follows: or(t1, . . . , tn) = [t1, . . . , tn]A.

LA denotes the set of all lexical trees [a]A such that A→ a is a lexical rule.
DA denotes the set of all (complete) derivation trees of G whose root is labeled
by A.

The sets TA with the operations or form a multi-sorted algebra, and the sets
DA ⊆ TA with the same operations (naturally restricted) form a subalgebra of
this algebra; it is the subalgebra generated by the lexical trees. Precise definitions
of these notions will be given in section 3. Speaking less formally, if one starts
from lexical trees and applies operations or, then the generated trees are precisely
the derivation trees of G. For instance, let the rules of G be r1 : S → S,B;
r2 : S → A,B; A→ a; B → b. Figure 2 shows a tree in DS .

A
A

�
�

S

AA ��
S

A

a

B

b

B

b

\
\

\

�
�
�

S : S

A
A
A

�
��

S : S

A : A

a

B : A\S

b

B : S\S

b

Fig. 2. The tree or1(or2([a]A, [b]B), [b]B) and its typed version.

A type grammar G′ equivalent to G assigns: a : A, b : A\S, S\S. To attain
a full coincidence of derivation trees we assign types to lexical trees: [a]A : A,
[b]B : A\S, S\S. Then, NL (actually the pure reduction calculus AB) yields
essentially the derivation trees of G; see Figure 2. The label A : α means that
the tree with root A is of type α.

The grammar G′ should be modified to be fully compatible with the multi-
sorted framework. One should take [b]B : A\2S, S\1S. Then, in the algebra of
sets of trees one interprets ori as the operation pi = pori

, and \i is interpreted as



the 2-nd residual of pi. The typing of non-lexical subtrees of the above tree agrees
with basic reduction laws pi(X, p

r,2
i (X,Y )) ⊆ Y , which follow from (RES).

The above example illustrates one of many possible applications of multi-
sorted operations in language description: a type grammar describes syntactic
trees generated by a CFG. The CFG may provide a preliminary syntactic anal-
ysis, while the type grammar gives a more subtle account, or the grammars may
focus on different features (like in applications of product pregroups [24, 10]).

Another obvious option is a multi-level grammar, which handles both the
syntactic and the semantic level; a two-sorted meaning map m sends syntactic
trees into semantic descriptions (m need not be residuated, but the powerset
map pm certainly is). We can also imagine a joint description of strings (un-
structured expressions) and trees (structured expressions) with a forgetting map
from structures to strings; also expressions from two different languages with
translation maps. Other examples will be mentioned in section 4.

3 Multi-sorted residuation algebras

According to [7], a residuated algebra (RA) is a poset (A,≤) with a family F
of residuated operations on A; each n−ary operation f ∈ F admits n residual
operations fr,i, 1 ≤ i ≤ n. (In [7], o, o/i are used instead of f, fr,i.) One also con-
siders residuated algebras with lattice operations t,u and Boolean negation or
Heyting implication. The corresponding logics are Generalized Lambek Calculus
and its extensions. The term ‘residuated algebra’ was coined after ‘residuated
lattice’, used in the literature on substructural logics. Here we prefer ‘residuation
algebra’, since the operations (not the algebra) are residuated; also ‘residuated
lattice’ seems (even more) unlucky, since the residuals are not directly related
to the lattice operations.

A multi-sorted residuation algebra (mRA) is a family {As}s∈S of ordered
algebras with a family F of residuated maps; each map f ∈ F is assigned a
unique type s1, . . . , sn → s, where si, s ∈ S, and f : As1 × · · · ×Asn

7→ As. S is
the set of sorts. So a map f of type s1, . . . , sn → s admits n residual maps:

fr,i : As1 × · · · ×As : i× · · · ×Asn 7→ Asi .

The ordered algebras As are always posets, but some of them can also admit
semilattice, lattice, boolean or Heyting operations. A mRA is often denoted
A = ({As}s∈S , F ) (we also write FA for F ).

A subalgebra of A is a family {Bs}s∈S such that Bs ⊆ As and this family
is closed under the operations from FA and their residuals (dropping residuals,
one obtains a standard notion of a subalgebra of a multi-sorted algebra). Clearly
a subalgebra of a mRA is also a mRA with appropriately restricted operations.

Two mRAs A, B are said to be similar, if they have the same set of sorts S,
FA = {fi}i∈I , FB = {gi}i∈I , and fi, gi are of the same type, for any i ∈ I; we also
assume that As, Bs are of the same type, for any s ∈ S (it means: both are posets
or lattices, semilattices, etc.). A homomorphism from A to B, which are similar,
is a family {hs}s∈S such that hs : As 7→ Bs is a homomorphism of ordered



algebras, and the following equations hold, for any fj of type s1, . . . , sn → s and
all 1 ≤ i ≤ n:

(HOM1) hs(fj(a1, . . . , an)) = gj(hs1(a1), . . . , hsn(an)) ,

(HOM2) hsi(f
r,i
j (a1, . . . , an)) = gr,i

j (hs1(a1), . . . , hs(ai) : i, . . . , hsn(an)) .

We assume (HOM1) for all a1 ∈ As1 , . . . , an ∈ Asn
, and (HOM2) for all

ak ∈ Ask
, for k 6= i, and ai ∈ As. An embedding is a homomorphism {hs}s∈S

such that every hs is an embedding, it means: a ≤As
b iff hs(a) ≤Bs

hs(b), for
all a, b ∈ As.

Standard examples of mRAs are complex algebras of multi-sorted frames
({Vs}s∈S ,R) such that every Vs is a set, and R is a family of relations, each
R ∈ R having a unique type s1, . . . , sn → s, and R ⊆ Vs × Vs1 × · · · × Vsn

. The
given relation R determines a residuated map fR, as defined in section 2. The
complex mRA associated with the frame is defined as ({P(Vs)}s∈S , {fR}R∈R).
Clearly every P(Vs) is a boolean algebra of sets, and the ordering on P(Vs) is
inclusion.

If all algebras As in A are of the same type, say posets or distributive lat-
tices, admitting boolean algebras (we only consider these types; see the remarks
at the end of this section), then A can be embedded in the complex algebra of
some multi-sorted frame. This result generalizes known results on canonical em-
beddings of modal algebras, tracing back to [16, 17]. Closely related results for
gaggles (restricted to one sort) have been presented in [2]. Below we sketch a
proof for many sorts, which seems more uniform than those in [2]: we make use
of some order dualities and antitone operators to reduce the case of residual
operations to that of basic (additive) operations.

Let A = ({As}s∈S , F ) be a mRA with all ordered algebras of the same type.
We define the canonical frame Ac as follows. Vs is defined as the set of:

– all proper upsets of As, if As is a poset,
– all prime filters of As, if As is a distributive lattice (a boolean algebra).

A proper upset is a nonempty upset, different from As. A filter is an upset
closed under meets, and a proper filter is a filter being a proper upset. A prime
filter of As is a proper filter X ⊆ As such that, for all a, b ∈ As, a t b ∈ X
entails a ∈ X or b ∈ X. The prime filters of a boolean algebra are precisely its
ultrafilters.

Let g ∈ F be of type s1, . . . , sn → s. The relation R[g] ⊆ Vs×Vs1 × · · ·×Vsn

is defined as follows:

(CAN1) R[g](Y,X1, . . . , Xn) iff pg(X1, . . . , Xn) ⊆ Y ,

where pg is defined as in section 2. The complex mRA of Ac is defined as above.
The canonical embedding {hs}s∈S is defined as follows:

(CAN2) hs(a) = {X ∈ Vs : a ∈ X} .



Clearly hs : As 7→ P(Vs). Also a ≤As
b iff hs(a) ⊆ hs(b). The implication

(⇒) holds, since all elements of Vs are upsets. The implication (⇐) is obvious
for posets. If As is a distributive lattice and a ≤As b is not true, then there exists
a prime filter X ⊆ As such that a ∈ X, b 6∈ X.

hs preserves lattice operations. If As is a distributive lattice and X is a prime
filter of As, then a u b ∈ X iff a ∈ X and b ∈ X, and a t b ∈ X iff a ∈ X or
b ∈ X, so hs(a u b) = hs(a) ∩ hs(b) and hs(a t b) = hs(a) ∪ hs(b). If As is
a boolean algebra and X ⊆ As is an ultrafilter, then −a ∈ X iff a 6∈ X, so
hs(−a) = −hs(a).

We show that {hs}s∈S preserves the operations in F and their residuals. Let
g ∈ F be of type s1, . . . , sn → s. We prove:

hs(g(a1, . . . , an)) = fR[g](hs1(a1), . . . , hsn(an)) . (1)

The proof of (1) is correct for any g which in every argument preserves all
finite joins, including the empty join, if it exists (this means: g(a1, . . . , an) = ⊥
whenever ai = ⊥, for some i). For the case of posets, one only assumes that g is
isotone in each argument and preserves the empty join.

We show ⊆; the converse inclusion is easy. Let X ∈ hs(g(a1, . . . , an)), hence
g(a1, . . . , an) ∈ X. Since g is isotone in each argument, and X is an upset, then
pg((a1)↑, . . . , (an)↑) ⊆ X. One shows that for any 1 ≤ i ≤ n: (EXT) there exist
X1 ∈ hs1(a1), . . . , Xi ∈ hsi(ai) such that pg(X1, . . . , Xi, (ai+1)↑, . . . , (an)↑) ⊆ X.
Consequently, for i = n, one obtains R[g](X,X1, . . . , Xn), for some Xi ∈ hsi(ai),
i = 1, . . . , n, which yields X ∈ fR[g](hs1(a1), . . . , hsn

(an)).
(EXT) is proved by induction on i. Assume that it holds for all j < i.

If Asi
is a poset, we set Xi = (ai)↑; it is proper, since ai 6= ⊥; otherwise

g(a1, . . . , an) = ⊥, hence ⊥ ∈ X, which is impossible. Let Asi be a distributive
lattice. If pg(X1, . . . , Y : i, (ai+1)↑, . . . , (an)↑) ⊆ X holds for Y = Asi , then
Xi can be any prime filter containing ai (it exists, since ai 6= ⊥). Otherwise
one considers the family F of all proper filters Y ⊆ Asi

such that pg(X1, . . . , Y :
i, (ai+1)↑, . . .) ⊆ X. F is nonempty, since (ai)↑ ∈ F . By the maximality principle,
F has a maximal element Z. One shows that Z is prime and sets Xi = Z.

Suppose that Z is not prime. Then there exist a, b 6∈ Z such that a t b ∈ Z.
One defines Za = {y ∈ Asi : (∃x ∈ Z)a u x ≤ y}, and similarly for Zb. Za, Zb

are proper filters (we have b 6∈ Za and a 6∈ Zb) containing Z and different from
Z (we have a ∈ Za and b ∈ Zb). Accordingly Za, Zb 6∈ F . Then, for some x1 ∈
X1, . . . , xi−1 ∈ Xi−1, z1 ∈ Z, g(x1, . . . , xi−1, a u z1, ai+1, . . . , an) 6∈ X and, for
some y1 ∈ X1, . . . , yi−1 ∈ Xi−1, z2 ∈ Z, g(y1, . . . , yi−1, b u z2, ai+1, . . . , an) 6∈ X.
Define uj = xj u yj , z = z1 u z2. We have g(u1, . . . , ui−1, au z, ai+1, . . . , an) 6∈ X
and g(u1, . . . , ui−1, b u z, ai+1, . . . , an) 6∈ X. Since X is prime, the join of the
latter elements does not belong to X, but it equals g(u1, . . . , ui−1, (a t b) u
z, ai+1, . . . , an). This is impossible, since Z ∈ F .

For gr,i : As1 × · · · ×As : i× · · · ×Asn
7→ Asi

, we prove:

hsi
(gr,i(a1, . . . , an)) = fr,i

R[g](hs1(a1), . . . , hs(ai), . . . , hsn
(an)) . (2)



While the proof of (1) follows routine lines, tracing back to [16] (also see [2]),
our proof of (2) is different. We reduce (2) to (1) by applying some dualities.

By Aop
s , A

op
si

we denote the algebras dual to As, Asi , respectively; the ordering
in the dual algebra is the reversal of the ordering in the initial algebra. Thus,
one interchanges ⊥ with >, and t with u in lattices.

By g′ we denote the mapping from As1×· · ·×Aop
s : i×· · ·×Asn

to Aop
si

which
equals gr,i as a function. Since gr,i respects arbitrary meets in the i−th argument
and turns joins into meets in the other arguments, then g′ respects finite joins
in each argument. So g′ satisfies the requirements needed in the proof of (1).
We, however, must replace A by A′ in which As, Asi

are replaced by Aop
s , A

op
si

,
respectively. Precisely, we assume that now s1, . . . , sn, s are different sorts, if
even they are not different in A. Actually our argument only depends on the
fixed operations g, gr,i, not on the whole frame A, so we may modify it for the
purposes of this argument.

In the canonical frame (A′)c, (Vs)′ consists of all proper upsets of Aop
s , hence

all proper downsets of As, if As is a poset, and all prime filters of Aop
s , hence

all prime ideals of As, if As is a distributive lattice, and similarly for (Vsi
)′. The

homomorphism {ks}s∈S is defined as {hs}s∈S except that A is replaced by A′,
and similarly for the canonical frame. (1) yields:

ksi(g
′(a1, . . . , an)) = fR[g′](ks1(a1), . . . , ks(ai), . . . , ksn(an)) , (3)

where fR[g′] is defined in the complex algebra of (A′)c.
For any t ∈ S, X ⊆ At, we denote −X = At − X. For U ⊆ Vt, we denote

∼Vt U = Vt − U , U∼ = {−X : X ∈ U}. We define the auxiliary operations:
∗
t (−) : P((Vt)′) 7→ P(Vt) and (−)∗t : P(Vt) 7→ P((Vt)′), for t = s and t = si:

∗
t (U) =∼Vt (U∼) , (V )∗t =∼(Vt)′ (V ∼) , (4)

for U ⊆ (Vt)′, V ⊆ Vt. We write ∗U , V ∗ for ∗
t (U), (V )∗t .

One easily shows ∗U = (∼(Vt)′ U)∼ and V ∗ = (∼Vt
V )∼. The operations

∗(−) and (−)∗ are antitone and (∗U)∗ = U , ∗(V ∗) = V . Also, for t = s and
t = si, we have ht(a) = ∗(kt(a)), for any a ∈ At. For t = sj , j 6= i, we have
kt = ht. Since g and g′ are equal as functions, then (3) yields:

hsi
(g(a1, . . . , an)) = ∗(fR[g′](hs1(a1), . . . , (hs(ai))∗, . . . , hs(an))) . (5)

To prove (2) it suffices to show:

∗(fR[g′](V1, . . . , (Vi)∗, . . . , Vn)) = fr,i
R[g](V1, . . . , Vn) , (6)

for all V1 ⊆ Vs1 , . . . , Vi ⊆ Vs, . . . , Vn ⊆ Vsn
.

One proves (6) by simple computations, using: X ∈ ∗U iff (−X) 6∈ U , for all
X ∈ Vt, U ⊆ (Vt)′ and X ∈ V ∗ iff (−X) 6∈ V , for all X ∈ (Vt)′, V ⊆ Vt. The
following formulas are equivalent.

1. X ∈ ∗(fR[g′](V1, . . . , (Vi)∗, . . . , Vn)),
2. (−X) 6∈ fR[g′](V1, . . . , (Vi)∗, . . . , Vn),



3. ¬R[g′](−X,X1, . . . , Xn), for all Xj ∈ Vj , (j 6= i), and Xi ∈ (Vi)∗,
4. ¬R[g′](−X,X1, . . . , Xn), for all Xj ∈ Vj , (j 6= i), (−Xi) 6∈ Vi,
5. for allXj ∈ Vj , (j 6= i),Xi ∈ (Vs)′, if −Xi 6∈ Vi then ¬R[g′](−X,X1, . . . , Xn),
6. for all Xj ∈ Vj , (j 6= i), Xi ∈ (Vs)′, if R[g′](−X,X1, . . . , Xn) then (−Xi) ∈
Vi,

7. for all Xj ∈ Vj , (j 6= i), Yi ∈ Vs, if R[g′](−X,X1, . . . ,−Yi, . . . , Xn) then
Yi ∈ Vi,

8. X ∈ fr,i
R[g](V1, . . . , Vn).

For the equivalence of formulas 7 and 8, we need further equivalences. The
equivalences of formulas 2-3 and 5-6 below use the fact that, if Y is an upset of
a poset (A,≤) and a ∈ A, then a ∈ Y iff, for all b ∈ A, if a ≤ b then b ∈ Y .

1. R[g′](−X,X1, . . . ,−Yi, . . . , Xn),
2. pg′(X1, . . . ,−Yi, . . . , Xn) ⊆ −X,
3. for all aj ∈ Xj , (j 6= i), ai ∈ As, b ∈ Asi , if ai 6∈ Yi and gr,i(a1, . . . , an) ≤Aop

si
b

then b 6∈ X,
4. for all aj ∈ Xj , (j 6= i), ai ∈ As, b ∈ Asi

, if ai 6∈ Yi and b ≤Asi
gr,i(a1, . . . , an)

then b 6∈ X,
5. for all aj ∈ Xj , (j 6= i), ai ∈ As, b ∈ Asi

, if b ∈ X and g(a1, . . . , b :
i, . . . , an) ≤As

ai then ai ∈ Yi,
6. pg(X1, . . . , X : i, . . . , Xn) ⊆ Yi,
7. R[g](Yi, X1, . . . , X : i, . . . , Xn).

The proof is finished. As we point out in section 4, the embedding results im-
ply some basic completeness theorems and conservation results for multi-sorted
substructural logics. Even for the one-sort case, the above proof brings some-
thing new. Even for a basic map g : An 7→ A, hence also gr,i : An 7→ A, the
second part of the proof introduces g′ : A × · · · × Aop : i × · · ·A 7→ Aop, which
is a multi-sorted map. This shows that multi-sorted algebras can be useful for
studying standard algebras.

The canonical embedding h preserves ⊥,>; we have hs(⊥) = ∅ and hs(>) =
Vs. As shown in [21], it also preserves units for binary operations and some non-
classical negations; the complex algebra inherits such properties of basic oper-
ations as associativity and commutativity (but not idempotence) and preserves
the equations of linear logics. These results have been adapted for symmetric
residuation algebras (with one sort, but the proof also works for many sorts) in
[22], using the ∗ operators on Ac, after [8].

At this moment, the author does not know whether the embedding theorem
can be obtained for mRAs in which different As can have different types, e.g.
some of them are posets, and some others are distributive lattices. The proof of
(EXT) (see the proof of (1)) uses the fact that As is a lattice whenever Asi

is a
lattice (so the converse is needed in the proof of (2)). Obviously, the distributive
law cannot be easily avoided; non-distributive lattices cannot be embedded in
the complete lattices of sets.



4 Multi-sorted residuation logics

Generalized Lambek Calculus (GL) is a logic of RAs. Formulas are formed out
of variables by means of operation symbols (connectives) o, or,i (1 ≤ i ≤ n, if
o is n−ary). The formal language contains a finite number of operation sym-
bols. These operation symbols are multiplicative (or: intensional, according to a
different tradition). One can also admit additive (or: extensional) symbols t,u,
interpreted as lattice operations, and additive constants ⊥,>.

The algebraic form of the multiplicative GL admits sequents of the form
A⇒ B such that A,B are formulas. The only axioms are

(Id) A⇒ A ,

and the inference rules strictly correspond to the residuation laws (RES): (R-
RES) from o(A1, . . . , An) ⇒ B infer Ai ⇒ or,i(A1, . . . , B : i, . . . , An), and con-
versely, (1-CUT) from A⇒ B and B ⇒ C infer A⇒ C.

An equivalent Gentzen-style system admits sequents of the form X ⇒ A such
that A is a formula, and X is a formula structure (tree). A formula structure
is a formula or an expression of the form (X1, . . . , Xn)o such that each Xi is a
formula structure. Here (−)o is the structural operation symbol corresponding
to the n−ary multiplicative symbol o.

The axioms are (Id) and (optionally):

(⊥ ⇒) X[⊥] ⇒ A (⇒ >) X ⇒ >

and the inference rules are:

(o⇒)
X[(A1, . . . , An)o] ⇒ A

X[o(A1, . . . , An)] ⇒ A
(⇒ o)

X1 ⇒ A1; . . . ;Xn ⇒ An

(X1, . . . , Xn)o ⇒ o(A1, . . . , An)

(or,i ⇒)
X[Ai] ⇒ B; (Yj ⇒ Aj)j 6=i

X[(Y1, . . . , or,i(A1, . . . , An), . . . , Yn)o] ⇒ B

(⇒ or,i)
(A1, . . . , X : i, . . . , An)o ⇒ Ai

X ⇒ or,i(A1, . . . , An)

(t ⇒)
X[A] ⇒ C; X[B] ⇒ C

X[A tB] ⇒ C
(⇒ t)

X ⇒ Ai

X ⇒ A1 tA2

(u ⇒)
X[Ai] ⇒ B

X[A1 uA2] ⇒ B
(⇒ u)

X ⇒ A; X ⇒ B

X ⇒ A uB

(CUT)
X[A] ⇒ B; Y ⇒ A

X[Y ] ⇒ B

One can also admit constants, treated as nullary operation symbols; they do
not possess residuals. For a constant o, one admits rules (o⇒), (⇒ o) for n = 0
(the second one is an axiom):



(o⇒0)
X[()o] ⇒ B

X[o] ⇒ B
(⇒0 o) ()o ⇒ o .

If a constant has to play a special role, then one needs additional axioms
or rules. That 1 is the unit of o (binary) can be axiomatized by means of the
following structural rules and their reversals:

(1’)
X[Y ] ⇒ A

X[(()1, Y )o] ⇒ A
(1”)

X[Y ] ⇒ A

X[(Y, ()1)o] ⇒ A
.

The above system with additives has been studied in [7] and called there Full
Generalized Lambek Calculus (FGL). Here we consider its multi-sorted version,
called Multi-Sorted Full Generalized Lambek Calculus or, simply, Multi-Sorted
Full Lambek Calculus (mFL). Its multiplicative fragment is referred to as Multi-
Sorted Lambek Calculus (mL).

We fix a nonempty set S whose elements are called sorts. Each variable is
assigned a unique sort; we write p : s. One admits a nonempty set O whose
elements are called operation symbols. Each symbol o ∈ O is assigned a unique
type of the form s1, . . . , sn → s, where s1, . . . , sn, s ∈ S, n ≥ 1. If o : s1, . . . , sn →
s, then the language also contains operation symbols or,i (1 ≤ i ≤ n) such that
or,i : s1, . . . , s : i, . . . , sn → si. One also admits a (possibly empty) set C whose
elements are called constants. Each constant o is assigned a unique sort.

One recursively defines sets Fs, for s ∈ S; the elements of Fs are called
formulas of sort s. All variables and constants of sort s belong to Fs; if f is an
operation symbol (basic o or residual or,i) of type s1, . . . , sn → s, (n ≥ 0), and
Ai is a formula of sort si, for any i = 1, . . . , n, then f(A1, . . . , An) is a formula
of sort s. In the presence of additives, if A,B ∈ Fs, then A t B,A u B ∈ Fs;
optionally, also ⊥s,>s ∈ Fs. We write A : s for A ∈ Fs.

Each formula of sort s is a formula structure of sort s; if Xi : si for i =
1, . . . , n, (n ≥ 0), and o ∈ O is of type s1, . . . , sn → s, then (X1, . . . , Xn)o is a
formula structure of sort s. FSs denotes the set of formula structures of sort s.
We write X : s for X ∈FSs. An expression X ⇒ A such that X ∈FSs, A ∈ Fs

is called a sequent of sort s.
The axioms and rules of mFL are the same as for FGL, but we require that

all formulas and sequents must have some sort. Clearly mFL is not a single
system; we have defined a class of systems, each determined by the particular
choice of S and O. Every system from this class admits cut elimination, which
was first shown for NL by Lambek [26].

As an example, we consider a system with one basic binary operation ⊗; we
write / and \ for ⊗r,1 and ⊗r,2, respectively. We assume ⊗ : s, t → u, where
s, t, u are different sorts. Hence / : u, t → s and \ : s, u → t. The following laws
of NL are provable in mL (we use the infix notation).

(NL1) (A/B)⊗B ⇒ A, A⊗ (A\B) ⇒ B,
(NL2) A⇒ (A⊗B)/B, A⇒ B\(B ⊗A),
(NL3) A⇒ B/(A\B), A⇒ (B/A)\B,
(NL4) A/B ⇔ A/((A/B)\A), A\B ⇔ (B/(A\B))\B,



(NL5) A/B ⇔ ((A/B)⊗B)/B, A\B ⇔ A\(A⊗ (A\B)).

We cannot build formulas of the form (A ⊗ B) ⊗ C, (A/B)/C due to sort
restrictions. As a consequence, not all laws of NL are provable; e.g. (((A/B)/C)⊗
C) ⊗ B ⇒ A is not. With new operations one can prove a variant of this law
(((A/B)/′C) ⊗′ C) ⊗ B ⇒ A under an appropriate sort assignment. We have
A : u, B : t, A/B : s. Assuming C : v, (A/B)/′C : x, we get ⊗′ : x, v → s, hence
/′ : s, v → x. Notice that both the type of ⊗ and that of ⊗′ consists of three
different sorts.

Applying cut elimination, one proves a general theorem: every sequent prov-
able in GL (hence every sequent provable in NL) results from some sequent
provable in mL in which the type of each operation symbol consists of different
sorts (in s1, . . . , sn → s all sorts are different), after one has identified all sorts
and some operation symbols and variables. This can be shown by a transfor-
mation of a cut-free proof of X ⇒ A with all axioms (Id) of the form p ⇒ p.
In the new proof different axioms contain different variables of different sorts;
then different premises of any rule have no common variable and no common
sort. Every instance of (⇒ o) and (or,i ⇒) introduces a new operation sym-
bol together with its structural companion and one new sort. Each sequent in
the new proof satisfies the above condition. Furthermore, in each sequent, every
residuation family is represented by 0 or 2 symbols (counting structural symbols).
Consequently, every sequent A ⇒ B provable in mL contains an even number
of operation symbols (this also holds for L).

Let us look at (NL5). A ⇔ B means that both A ⇒ B and B ⇒ A are
provable. The (⇒) part of (NL5) is A/B ⇒ ((A/B)⊗B)/B. In mL one proves
A/B ⇒ ((A/B)⊗′ B)/′B (the reader can find appropriate sorts); the symbol /
appears twice in the latter sequent, and the second residuation family is repre-
sented by ⊗′, /′. For the (⇐) part, the appropriate sequent is ((A/′B)⊗′B)/B ⇒
A/B. This transformation is impossible for FGL; e.g (A u B)/C ⇒ (A/C) u
(B/C) contains 3 occurrences of /.

S may consist of one sort only, so GL is a limit system from the mL-class.
The above observations show that the apparently opposite case: each operation
symbol has a type consisting of different sorts, leads to essentially the same
(pure) logic provided that one admits infinite sets S,O.

Some possible applications of mL in linguistics have been mentioned in sec-
tion 2. Another one is subtyping. A ‘large’ type S (sentence) can be divided in
several subtypes, sensitive to Tense, Number, Mode etc.; these subtypes can be
represented by different variables (or: constants) of sort S. In NL this goal can
be accomplished by additional assumptions: Si ⇒ S, for any subtype Si. With
additives one can define S = S1t· · ·tSk and apply types dependent on features,
e.g. ‘John’ is assigned ‘npu sing, ‘boys’ type ‘npupl [19].

By routine methods, one can show that mL is (strongly) complete with respect
to mRAs based on posets, and mFL is (strongly) complete with respect to mRAs
based on (optionally: bounded) lattices. The strong completeness means that, for
any set of sequents Φ (treated as nonlogical assumptions), the sequents derivable
from Φ in the system are precisely the sequents valid in all models satisfying all



sequents from Φ (a model is an algebra with a valuation of variables). In other
words, the strong completeness of a system (with respect to a class of algebras)
is equivalent to the completeness of the consequence relation of this system (with
respect to the class of algebras).

To attain the completeness with respect to mRAs based on distributive lat-
tices, we add the distributive law as a new axiom:

(D) A u (B t C) ⇒ (A uB) t (A u C)

for any formulas A,B,C of the same sort. The resulting system is denoted by
mDFL. (D) expresses one half of one distributive law; the other half is provable
(it holds in every lattice), and the second distributive law is derivable from the
first one and basic lattice laws.

This version of mDFL does not admit cut elimination. Another version,
admitting cut elimination, can be axiomatized like DFL in [23] with a structural
operation symbol for u and the corresponding structural rules (an idea originated
by J.M. Dunn and G. Mints). We omit somewhat sophisticated details of this
approach.

mDFL is (strongly) complete with respect to mRAs based on distributive lat-
tices. Soundness is easy, and completeness can be proved, using the Lindenbaum-
Tarski algebra (its multi-sorted version). The results from section 3 imply that
mDFL is strongly complete with respect to the complex mRAs of multi-sorted
frames. Soundness is obvious. For completeness, assume that X ⇒ A is not
derivable from Φ. By the above, there exist a model (A, α) such that X ⇒ A is
not true in (A, α) (it means: α(X) ≤ α(A) is not true), but all sequents from Φ
are true in (A, α). Let {hs}s∈S be the canonical embedding of A in the complex
algebra of the frame Ac. The valuation α can be presented as {αs}s∈S , where
αs is the restriction of α to variables of sort s (the values of αs belong to As).
Then, {hs◦αs}s∈S is a valuation in the complex algebra, and the resulting model
satisfies all sequents from Φ, but X ⇒ A is not true in this model. Ignoring ad-
ditives, one can prove the same for mL. Consequently, the consequence relation
of mDFL is a conservative extension of the consequence relation of mL.

The same holds for Multi-Sorted Boolean Lambek Calculus (mBL), which
adds to mDFL a unary negation (complement) ‘−’ and axioms:

(N1) A u −A⇒ ⊥ (N2) > ⇒ A t −A .

mBL is (strongly) complete with respect to boolean mRAs (all As are boolean
algebras) as well as the complex algebras of multi-sorted frames. (One can also
assume that −A can be formed for A of some sorts only.) These results obviously
entail the strong completeness of mBL and mDFL with respect to Kripke
frames with standard (classical) clauses for boolean (lattice) operations: x |= −A
iff x 6|= A, x |= A uB iff x |= A and x |= B, and so on.

In mBL, for any operation o, one can define its De Morgan dual. This turns
any residuation family to a dual residuation family, which satisfies (RES) with re-
spect to dual orderings; in particular, it yields a faithful interpretation of Moort-
gat’s Symmetric NL (without Grishin axioms; see [31]) in BNL, i.e. NL with
boolean operations.



The consequence relation for L is undecidable; see [6]. The consequence re-
lation for mBL (hence for mDFL, mL) is decidable (so the pure logics are
decidable, too). The proof is similar to that for DFGL, GL in [9, 7]. One shows
Strong Finite Model Property (SFMP): for any finite Φ, if Φ 6` X ⇒ A, then
there exists a finite multi-sorted model (A, α) such that all sequents from Φ are
but X ⇒ A is not true in (A, α).

The proof of SFMP in [9, 7] uses some interpolation property of sequent
systems and a construction of algebras by means of nuclear completions. Different
proofs are due to [18] for BNL (presented as a Hilbert-style system), by the
method of filtration of Kripke frames, and [13] where FEP (see below) has been
proved directly for some classes of algebras. Each of them can be adapted for
multi-sorted logics.

SFMP yields the decidability of stronger logics: the universal theories of
the corresponding classes algebras. Here we refer to a standard translation of
substructural logics in first-order language: formulas of these logics correspond
to terms and sequents to atomic formulas t ≤ u. Multi-sorted logics require a
multi-sorted first-order language; in particular, A ⇒ B, where A,B are of sort
s, is translated into tA ≤s tB , where tA, tB are terms of sort s which correspond
to A,B.

A Horn formula is a first-order formula of the form ϕ1 ∧ · · · ∧ ϕn → ϕn+1,
where n ≥ 0, such that each ϕi is an atomic formula t ≤s u. An open formula
is a propositional (boolean) combination of atomic formulas (so Horn formulas
are open formulas). A universal sentence results from an open formula by the
universal quantification of all variables.

Let K be a class of algebras. The universal theory of K is the set of all
universal sentences valid in K. The Horn theory of K is the set of all universally
quantified Horn formulas valid in K.

Let a logic L be strongly complete with respect to K. Then the rules deriv-
able in L correspond to the Horn formulas belonging to the universal theory of
K. Hence the decidability of the universal theory of some class of mRAs (say,
boolean residuated groupoids) entails that the problem of derivability of rules
in the corresponding logic (here BNL) is decidable.

A general, model-theoretic theorem states: if K is closed under finite prod-
ucts (admitting the empty product, which yields the trivial algebra), then FMP
of the Horn theory of K entails FMP of the universal theory of K. For finite
languages, FMP of the universal theory of K is equivalent to Finite Embeddabil-
ity Property (FEP) of K: every finite, partial subalgebra of an algebra from K
can be embedded in a finite algebra from K. In the literature (see e.g. [11]), the
above theorem is formulated for quasi-varieties (which are closed under arbitrary
products) in the following form: SFMP for the Horn theory of a quasi-variety
K entails FEP of K, and the proof provides the embedding. Below we sketch
another proof, which yields the general result, with arbitrary relation symbols
in the language. Also, the usual one-sort algebras can be replaced by multi-
sorted algebras. If {Ai}i∈I is a class of similar mRAs, then

∏
i∈I Ai is defined

in a natural way: its algebra of sort s equals
∏

i∈I A
i
s with point-wise defined



relations and lattice (boolean) operations; also the operations in F are defined
point-wise. The basic classes of mRAs are closed under arbitrary products (they
are multi-sorted quasi-varieties), so this theorem can be applied to them.

Let us sketch the proof. Let ψ = ∀x1 . . . xnϕ be a universal sentence (ϕ is
open). ϕ is logically equivalent to a CNF- formula ϕ1 ∧ · · · ∧ ϕm, each ϕi being
a disjunction of finitely many atomic formulas and negated atomic formulas. So
ψ is logically equivalent to the conjunction of ψi, i = 1, . . . ,m, where ψi is the
universally quantified ϕi. Clearly ψ is valid in an algebra A iff each ψi is valid
in A, and the same holds for the validity in K.

Assume that ψ is not valid in K. Then, some sentence ψi is not valid. As-
suming FMP of the Horn theory, we show that there is a finite algebra in K such
that ψi is not true in this algebra. If ϕi consists of negated atomic formulas only,
then ψi is not true in the trivial algebra, which is finite (an mRA is trivial iff all
its algebras As are one-element algebras). So assume that ϕi is of the form:

¬χ1 ∨ · · · ∨ ¬χk ∨ σ1 ∨ · · · ∨ σp

where k ≥ 0, p ≥ 1, and all χj , σl are atomic. It is logically equivalent to:

χ1 ∧ · · · ∧ χk → σ1 ∨ · · · ∨ σp .

Denote δj = χ1 ∧ · · · ∧ χk → σj . Since δj logically entails ϕi, then δj is not
valid in K, for j = 1, . . . , p. By FMP of the Horn theory, there exists a finite
model (Aj , αj) over K which falsifies δj . One easily shows that the product model
(i.e. the product of all Aj with the product valuation) falsifies ϕi. Therefore ψ
is not true in this product algebra, which finishes the proof.

Since SFMP of our logics is equivalent to FMP of the Horn theories of the
corresponding classes of mRAs, then we obtain FMP of the universal theories,
which yields their decidability.

The above proof yields: ψi is valid in K iff some δj is valid in K. Accordingly,
a decision method for the universal theory of K can be reduced to a decision
method for the Horn theory of K (equivalently: for the consequence relation of
the corresponding logic). Some proof-theoretic decision methods for the latter
can be designed like for DFGL [9, 7], but we skip all details here. We note that
a Kripke frame falsifying Φ ` X ⇒ A (if it exists) can be found of size at most
2n, where n is the number of subformulas occurring in this pattern (this was
essentially shown in the three proofs of SFMP, mentioned above).

Although mFL is decidable, since it admits cut elimination (also FMP holds),
the decidability of its consequence relation remains an open problem (even for
FNL).

The consequence relation of GL is polynomial [6]; for the pure NL it was
earlier shown in [12]. Associative systems FL, DFL and their various extensions
are PSPACE-complete [14]; the proof of PSPACE-hardness (by a reduction of
the validity of QBFs to the provability of sequents) essentially relies upon the
associative law. Without associativity, by a modification of this proof we can
prove the PSPACE-hardness of the consequence relation of FNL, FGL, DFGL,
mFL, mDFL (with at least one binary operation), but the precise complexity



of the pure logics is not known. BNL, BGL, mBL are PSPACE-hard, like the
modal logic K; see e.g. [3].

In [6, 9] it has been shown that the type grammars based on the multiplicative
systems and the systems with additives and distribution, also enriched with
finitely many assumptions, are equivalent to CFGs.

BGL (i.e. GL with boolean operations) is a conservative extension of K;
it follows from the fact that both K and BGL are complete with respect to
all Kripke frames. (This is obvious, if F contains a unary operation; otherwise,
one can reduce an n−ary operation to a unary one by fixing some arguments.)
A provable formula A of K is represented as the provable sequent > ⇒ A of
BGL; a provable sequent sequent A⇒ B of BGL is represented as the provable
formula A → B of K. mBL can be treated as a multi-sorted classical modal
logic.

Interestingly, some theories based on multi-sorted classical modal logics are
paraconsistent: the inconsistency in one sort need not cause the total inconsis-
tency. In algebraic terms, it means that there exist mRAs A in which some, but
not all, algebras As are trivial (one-element). Let As = {a}, and let At be non-
trivial with ⊥t ∈ At. Then f(a) = ⊥t is the only residuated map f : As 7→ At

(notice a = ⊥s), and fr is the constant map: fr(x) = a, for all x ∈ At.
There are many natural connections between substructural logics, studied

here, and (multi-)modal logics; an early discussion can be found in [1]. Some re-
sults, discussed above, have been adapted for one-sort systems admitting special
modal axioms (e.g. T, 4, 5) in [29] (FEP, polynomial complexity). This research
program seems promising.
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