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Abstract

Involutive Nonassociative Lambek Calculus is a nonassociative ver-
sion of Noncommutative MLL [1], but the multiplicative constants are
not admitted. It extends Nonassociative Lambek Calculus (NL) by two
linear negations. InNL is a strongly conservative extension of NL. We
define and study phase spaces for InNL. Using them, we prove the cut-
elimination theorem for a one-sided sequent system for InNL; in fact,
we prove the completeness theorem for a cut-free system. In a similar
way, we prove completeness and cut elimination for an auxiliary system
InNL(k), where k ≥ 2 is even, an analogue of CNL from [22, 12]; CNL
amounts to InNL(2). These proofs also work for richer systems with
additives. Using InNL(k), we show that InNL is P-TIME (another
proof was given in [13]) and the type grammars based on InNL gener-
ate the (ε−free) context-free languages. These results remain true for
the version of InNL with multiplicative constants.

1 Introduction and preliminaries

Type grammars (categorial grammars) are formal grammars which describe
a language by assigning types to lexical atoms (words). Parsing is based on
a fixed type logic, independent of the particular language. This embodies
the paradigm of parsing as deduction. Types are formulas of the given
type logic. Natural deduction systems for type logics strictly correspond to
lambda terms in different versions of the lambda calculus (via the Curry-
Howard isomorphism), which naturally connects proof-theoretic semantics
with referential semantics; see van Benthem [7], Moortgat [28], Morrill [30].

The so-called Basic Categorial Grammars (BCGs), originated by Aj-
dukiewicz [3] and Bar-Hillel [4, 5], employ a simple redution procedure, based
on the application laws A,A\B ⇒ B and A/B,B ⇒ A. This purely applica-
tive logic was extended by Lambek [24] to Syntactic Calculus, admitting the
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connectives ⊗ (product), \ (right division), and / (left division), which sat-
isfy the residuation rules: A⊗B ⇒ C iff B ⇒ A\C iff A⇒ C/B, and the as-
sociative law for ⊗. The application laws take the forms A⊗(A\B)⇒ B and
(A/B)⊗B ⇒ A. One obtains new laws, e.g. A⇒ (B/A)\B, A⇒ B/(A\B)
(type raising), A ⇒ B\(B ⊗ A), A ⇒ (A ⊗ B)/B (co-application), and
(A\B)⊗ (B\C)⇒ A\C, (A/B)⊗ (B/C)⇒ A/C (composition).

Standard models for Syntactic Calculus are algebras of ε−free languages
on an alphabet (lexicon) Σ; ⇒ is interpreted as set inclusion and ⊗, \, / as
follows.

L1 · L2 = {uv : u ∈ L1, v ∈ L2}

L1\L2 = {v ∈ Σ+ : L1 · {v} ⊆ L2}, L1/L2 = {u ∈ Σ+ : {u} · L2 ⊆ L1}

For example, if s, pn, and n are the categories of sentence, proper noun,
and common noun, respectively (understood as some sets of strings), then
pn\s can be interpreted as the category of verb phrase, (pn\s)/pn - transitive
verb phrase, np = s/(pn\s) - noun phrase, and np/n - determiners. So the
expression ‘John admires Jane’ can be assigned s, since the sequent

pn, (pn\s)/pn, pn⇒ s

is provable in L (in fact, in the purely applicative logic), whereas ‘he admires
her’ leads to the sequent

s/(pn\s), (pn\s)/pn, (s/pn)\s⇒ s

provable in L with the aid of the composition laws.
These plane examples ignore fine aspects of grammar (tense, number,

agreement etc.). We refer the reader to [28, 30, 31] for a deeper linguistic
material and other interpretations, e.g. type-theoretic semantics.

Nowadays Syntactic Calculus is called Lambek Calculus (L) and its
nonassociative version, due to Lambek [25], Nonassociative Lambek Cal-
culus (NL). (The latter does not support the composition laws.) Both L
and NL are treated as basic type logics for type grammars; L parses expres-
sions represented as strings, whereas NL corresponds to phrase structures.
One also considers different extensions of these logics, e.g. with multiplica-
tive constants 1, 0, additives ∧,∨,>,⊥, unary modal operators ♦, �, their
residuals �↓, ♦↓, and others.

Product (also called multiplicative conjunction) need not satisfy A ⇒
A⊗A (contraction), A⊗B ⇒ A, A⊗B ⇒ B (weakening), nor A⊗B ⇒ B⊗A
(exchange). These laws correspond to three structural rules, admitted in
standard sequent systems for classical and intuitionistic logics. The logics
that omit at least some of these rules are called substructural logics [19].
Some authors define substructural logics as axiomatic and rule extensions
of L with 1, ∧, ∨ (Full Lambek Calculus), but weaker systems may also
be counted to this family. It contains many well-known non-classical logics,
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e.g. many-valued logics, fuzzy logics, relevance logics, with intuitionistic and
classical logics in the limit.

With exchange, one proves A\B ⇔ B/A (i.e. both ⇒ and ⇐) and
writes A → B for A\B. Thus, implication → is a residual operation for
the commutative product. If ⊗ is not commutative, then → splits in two
implications \ and /, also written as→ and←; hence we call them the right
and the left implication, or division, respectively.

With constant 0, one defines negation ¬A = A → 0 or, for the non-
commutative case, the right negation ∼ A = A\0 and the left negation
−A = 0/A. Assuming the double negation law ¬¬A ⇒ A or ∼ −A ⇒ A,
− ∼ A ⇒ A (the converse laws are provable), one obtains the so-called
‘classical’ versions of these logics. This term is misleading, since they remain
non-classical in general, i.e. essentially weaker than classical logic. Therefore
in this paper we use the term ‘involutive’, after [19, 18].

The term ‘substructural logic’ appeared in the literature in the early
1990-ties. Earlier, Girard [20] introduced linear logics: Propositional Lin-
ear Logic is equivalent to Full Lambek Calculus with exchange, ‘classical’
negation and exponentials !, ? (unary modalities allowing the execution of
structural rules for modal formulas). The fragment without exponentials
is called Multiplicative-Additive Linear Logic (MALL) and MALL without
∧,∨ Multiplicative Linear Logic (MLL). Noncommutative MALL with one
negation ¬A = A\0 = 0/A was studied by Yetter [35] and with two nega-
tions by Abrusci [1]. The latter was called (Classical) Bilinear Logic by J.
Lambek; see [26]. The former is also referred to as Cyclic Noncommutative
MALL [2].

The present paper does not use Girard’s original notation, which is non-
orthodox (though widely adopted in the linear logic community). For ex-
ample, Girard writes & for our ∧ but ⊕ for our ∨, > for the top element
but 0 for the bottom element (our ⊥), 1 for the multiplicative unit (the unit
element for ⊗) but ⊥ for its dual (our 0, i.e. the unit element for the dual
product). The notation used here is standard in the literature on substruc-
tural logics except that in what follows we write A∼ for ∼ A and A− for −A,
just to shorten formulas (linear logicians write A⊥ and ⊥A). In particular,
⊕ denotes here dual product (par), defined by: A⊕B = (B∼ ⊗A∼)−.

From the very beginning, linear logics were regarded as logics closely
related to type logics of type grammars. MALL is a conservative extension
of (Full) Lambek Calculus with exchange, and both noncommutative ver-
sions of MALL are conservative extensions of (Full) Lambek Calculus [2].
Often Lambek calculi are characterized as the intuitionistic fragments of the
corresponding linear logics.

Due to conservativity, every type grammar based on L with 1 can be
translated into a grammar based on a linear logic, and the latter has precisely
the same expressive and generative power as the former. Some authors
directly apply noncommutative linear logics in type grammars; see e.g. [14,
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15]. Pregroup grammars, due to Lambek [27], are based on Compact Bilinear
Logic, i.e. an extension of Bilinear Logic, where ⊗ and ⊕ (hence also 1
and 0) collapse. Proof nets (a graph-theoretic representation of proofs in
MLL) were adapted for noncommutative linear logics and Lambek calculi
and used as logical forms of expressions [31]. The role of exponentials in
PLL stimulated the study of multi-modal extensions of L and NL, where
different modal operators (modes) are introduced for a controlled usage of
structural rules (associativity, exchange); see [28, 31].

All linear logics, mentioned above, admit the associative law for ⊗.
Nonassociative linear logics were not studied so extensively. de Groote and
Lamarche [22] introduced Classical Nonassociative Lambek Calculus (CNL),
being a nonassociative version of Cyclic Noncommutative MLL. CNL does
not admit multiplicative constants. Their work is purely proof-theoretic,
focusing on proof nets for CNL. They, however, present a one-sided sequent
system for CNL, prove the cut-elimination theorem (using proof nets) and
the P-TIME complexity of CNL; they also show that CNL is a conservative
extension of NL.

[12] continues this research. It defines phase spaces for CNL and employs
them to prove cut elimination for a sequent system (dual to that of [22])
and the strong finite model property for CNL. It strengthens some results
of [22]: (1) CNL is a strongly conservative extension of NL, (2) the finitary
consequence relation for CNL is P-TIME. [12] also shows (3): the type
grammars based on CNL generate the ε−free context-free languages. The
proof of (1) employs a simple construction of a phase space and can easily be
adapted for richer logics (with additives, multiplicative constants etc.). In
particular, one can prove in this way that both versions of noncommutative
MALL are strongly conservative extensions of Full Lambek Calculus; [2]
shows the weak conservativity by more involved proof-theoretic tools.

Phase spaces are certain frames (like Kripke frames for modal logics),
used as basic models for linear logics. For nonassociative logics without
multiplicative constants they can be defined more generally, which makes
their relation to modal frames more explicit; see Section 2.

Recall that a logic possesses the finite model property, if it is complete
with respect to its finite models, and the strong finite model property, if it
is strongly complete with respect to its finite models. Models can be un-
derstood as abstract algebras (see below). The (resp. strong) completeness
means that the formulas (or sequents) provable (resp. from a fixed set of
assumptions) in this logic are precisely those which are valid in all models
of this logic (resp. true in all models for any valuation which satisfies the
assumptions). Let L and L′ be logics such that the language of L′ be richer
than that of L. L′ is called a conservative extension of L, if any formula (or
sequent) in the language of L is provable in L if and only if it is provable in
L′, and a strongly conservative extension of L, if this also holds for the prov-
ability from assumptions (in the language of L). The finitary consequence
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relation means the provability from a finite set of assumptions.
The completeness shows that our logic adequately describes the intended

reality and, for logics considered here, the (resp. strong) finite model prop-
erty implies the decidability of (resp. the finitary consequence relation for)
the given logic. If we know that the logic is decidable, then we may estimate
its complexity, and we go this way in [12] and here.

In the present paper we study a weaker logic InNL, i.e. NL augmented
with two negations ∼,−, satisfying the following laws.

A∼− ⇔ A , A−∼ ⇔ A (the double negation laws) (1)

A∼/B ⇔ A\B− (the contraposition law) (2)

CNL amounts to InNL with A∼ = A−. InNL is a nonassociative version
of Noncommutative MLL [1]. CNL and InNL do not admit the multiplica-
tive constants; the corresponding algebras need not have unit elements for
product and dual product. Their extensions with these constants are de-
noted here by CNL1 and InNL1. Following the terminology of [19], CNL
may also be called Cyclic InNL (CyInNL).

Although CNL and InNL are similar in many aspects, there is an essential
difference: CNL possesses the strong finite model property, but InNL does
not [12]. For A∼ ⇒ A− entails A− ⇒ A∼ in finite models (for any fixed
A) but not in arbitrary models. Accordingly, not all methods applicable
to CNL can be adapted for InNL. In particular, one can form finite sets of
formulas closed under the CNL-negation (up to logical equivalence), which
is impossible for the InNL-negations. We prove here that the pure InNL is
P-TIME, but the complexity of the (finitary) consequence relation for InNL
is left as an open problem.

InNL1 with additive (extensional) connectives ∧,∨ amounts to InGL (in-
volutive groupoid logic) from [18]; it is a conservative extension of InNL1.
[18] provides a two-sided sequent system for InGL, admitting cut elimina-
tion. By the subformula property, this system restricted to multiplicative
connectives and constants is good for InNL1. We, however, present a sim-
pler, one-sided sequent system, analogous to the system in [1] for Noncom-
mutative MLL. This system seems more convenient for proof search and for
proving metalogical theorems (decidability, finite model property).

Like in [12] for CNL, we define phase spaces for InNL and apply them
in the proofs of our results, e.g. the cut-elimination theorem. They are
also used to prove that the provability in InNL can be reduced to that
in an auxiliary system InNL(k), whose (finitary) consequence relation is
P-TIME; the type grammars based on InNL(k) generate the context-free
languages. This yields the P-TIME complexity of InNL and the equivalence
with context-free grammars.

The forthcoming paper [13] studies InNL by purely proof-theoretic tools.
It contains a syntactic proof of the cut-elimination theorem and another
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proof of P-TIME comnplexity, not involving InNL(k). Phase spaces are not
considered at all. The present paper fills up this gap.

Analogous results were earlier obtained for NL and its extensions (with
additives, classical connectives, intuitionistic connectives, multiplicative con-
stants, modal operators), using similar methods; see [9, 10]. Logics with
linear negation(s), however, require some refinements, elaborated in [12, 13]
and here. Let us note that NL with ∧,∨ is coNP-hard [11], and the finitary
consequence relation for this logic is undecidable [16]; it remains decidable,
if the distributive laws for ∧,∨ are assumed [10].

Now, we briefly describe the algebraic models of our logics.
The algebraic models of NL are residuated groupoids, i.e. (ordered) alge-

bras M = (M,⊗, \, /,≤) such that (M,≤) is a poset, and ⊗, \, / are binary
operations on M , satisfying the residuation laws:

a⊗ b ≤ c iff b ≤ a\c iff a ≤ c/b

for all a, b, c ∈ M . A residuated groupoid M is unital, if it contains an
element 1 such that 1 ⊗ a = a = a ⊗ 1, for any a ∈ M . For any residuated
groupoid M, the product ⊗ is isotone in both arguments, hence (M,⊗,≤)
is a p.o. groupoid. We refer to \, / as the residual operations for product.

The algebraic models of InNL are involutive residuated groupoids, i.e.
algebras M = (M,⊗, \, /,∼ ,− ,≤) such that (M,⊗, \, /,≤) is a residuated
groupoid, and ∼,− are antitone (i.e. order-reversing) unary operations on
M , satisfying the double negation laws and the contraposition law:

(DN) a∼− = a = a−∼ ,

(CON) a∼/b = a\b−

for all a, b ∈M . One easily derives other contraposition laws: a\b = a∼/b∼,
a/b = a−\b−. In a unital involutive residuated groupoid, there holds 1∼ =
1−, since 1∼ = 1∼/1 = 1\1− = 1− (in any unital residuated groupoid,
a/1 = a = 1\a). One defines 0 = 1∼.

One shows: (b− ⊗ a−)∼ = (b∼ ⊗ a∼)−, for all a, b, and defines the dual
product: a ⊕ b = (b− ⊗ a−)∼ (also called par in the literature on linear
logics). If 1 ∈ M , then 0 ⊕ a = a = a ⊕ 0. One obtains: a\b = a∼ ⊕ b,
a/b = a⊕ b−. Hence a\b = (b− ⊗ a)∼, a/b = (b⊗ a∼)−. In unital involutive
residuated groupoids, there hold: a∼ = a\0, a− = 0/a.

An involutive residuated groupoid is said to be cyclic, if a∼ = a−, for
any element a. Cyclic involutive residuated groupoids are algebraic models
of CNL; see [12].

A residuated semigroup is an associative residuated groupoid (i.e. ⊗
is associative), and a residuated monoid is a unital residuated semigroup.
One also considers algebras with operations ∧,∨ (meet and join), satisfying
the lattice laws. A residuated lattice is a lattice-ordered residuated monoid.
Residuated lattices are the algebraic models of Full Lambek Calculus.
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Now, we present NL and InNL as intuitionistic sequent systems. The
systems with negation(s) do not admit cut elimination.

The formulas of NL are built from variables p, q, r, . . . by means of con-
nectives ⊗, \, /. One defines bunches: (i) every formula is a bunch, (ii) if Γ
and ∆ are bunches, then (Γ,∆) is a bunch. Bunches can be treated as the
elements of the free groupoid generated by the set of formulas. NL-sequents
are of the form Γ⇒ A, where Γ is a bunch and A is a formula. A context is
a bunch containing a special atom x (a place for substitution). We denote
formulas by A,B,C, . . ., bunches by Γ,∆,Θ, and contexts by Γ[ ],∆[ ] etc.
Γ[∆] denotes the result of substituting ∆ for x in Γ[ ]. The axioms and the
inference rules of NL are as follows.

(NL-id) A⇒ A (NL-cut)
Γ[A]⇒ B ∆⇒ A

Γ[∆]⇒ B

(⊗ ⇒)
Γ[(A,B)]⇒ C

Γ[A⊗B]⇒ C
(⇒ ⊗)

Γ⇒ A ∆⇒ B

(Γ,∆)⇒ A⊗B

(\ ⇒)
Γ[B]⇒ C ∆⇒ A

Γ[(∆, A\B)]⇒ C
(⇒ \) (A,Γ)⇒ B

Γ⇒ A\B

(/⇒)
Γ[A]⇒ C ∆⇒ B

Γ[(A/B,∆)]⇒ C
(⇒ /)

(Γ, B)⇒ A

Γ⇒ A/B

This sequent system is due to Lambek [25]. NL1 is obtained by admitting
the empty bunch ε, satisfying (ε,Γ) = Γ = (Γ, ε), and the constant 1 (an
atom) with two new rules and one new axiom.

(1⇒)
Γ[∆]⇒ A

Γ[(1,∆)]⇒ A

Γ[∆]⇒ A

Γ[(∆, 1)]⇒ A
(⇒ 1) ε⇒ 1

We write ⇒ A for ε ⇒ A. NL1 is not a conservative extension of NL;
p/(q/q) ⇒ p is provable in NL1 but not in NL. Lambek [25] proved the
cut-elimination theorem: every sequent provable in NL is provable without
(NL-cut). His standard, syntactic proof can easily be adapted for NL1.

InNL (resp. InNL1) can be presented as an extension of NL (resp. NL1)
with new unary connectives ∼,−, new axioms (1), (2), and new inference
rules:

(r-CON)
A⇒ B

B∼ ⇒ A∼
A⇒ B

B− ⇒ A−
.

Notice that in InNL1 (r-CON) can be omitted; they are derivable in the
resulting system. CNL (resp. CNL1) can be obtained from InNL (resp.
InNL1) by adding the axioms A∼ ⇔ A−.

One easily shows that NL is strongly complete with respect to residuated
groupoids, NL1 with respect to unital residuated groupoids, and InNL (resp.
InNL1) with respect to (resp. unital) involutive residuated groupoids. Recall
that a valuation in an algebra M is a homomorphism from the formula
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algebra to M. It is extended for bunches by interpreting each comma as
product. If the empty bunch is admitted, it is interpreted as 1. Γ ⇒ A is
true for a valuation µ in M if µ(Γ) ≤ µ(A).

[12] shows that CNL is a strongly conservative extension of NL. Also
CNL1 is a strongly conservative extension of NL1. Since InNL (resp. InNL1)
is intermediate between NL (resp. NL1) and CNL (resp. CNL1), then
evidently InNL (resp. InNL1) is a strongly conservative extension of NL
(resp. NL1).

NL is a basic logic of type grammars: formulas are interpreted as syn-
tactic types of expressions, represented as phrase structures [28].

Now, we can precisely define type grammars. Let L be a logic, which
admits sequents Γ ⇒ A. A type grammar (based on L) is defined as a
triple G = (Σ, I, A0) such that Σ is a finite alphabet (lexicon), I is a map
which assigns a finite set of types (i.e. formulas of L) to each v ∈ Σ, and
A0 is a designated type. One says that G assigns type A to the string
v1 . . . vn, where vi ∈ Σ, if there exist types A1, . . . , An such that Ai ∈ I(vi)
for i = 1, . . . , n and A1, . . . , An ⇒ A (for nonassociative logics, one adds:
under some bracketing of A1, . . . , An). The language of G, denoted by L(G),
consists of all a ∈ Σ+ such that G assigns A0 to a. Two classes of grammars
are said to be (weakly) equivalent, if they yield the same classes of languages.

Several basic classes of type grammars are equivalent to the class of
ε−free context-free grammars, e.g. Basic Categorial Grammars, the type
grammars based on NL, NL1, L, L1, NL with operations of a distributive
lattice, CNL, pregroup grammars, and others (also InNL, InNL1, as it will
be shown here). This, however, does not mean that type grammars can be
identified with context-free grammars. Usually, the former are not strongly
equivalent to the latter, e.g. they do not yield the same phrase structure
languages. Furthermore, type grammars (except pregroup grammars) are
closely related to type-theoretic semantics. Nonetheless, due to this equiv-
alence, different efficient parsing methods for context-free grammars can be
applied to type grammars.

Moortgat [29] considers an extension of NL with ⊕, its (dual) residuals
and some mixed associativity and commutativity axioms, due to Grishin
[21], under the name Lambek-Grishin Calculus (LG). The corresponding
type grammars are called symmetric type grammars. [6] contains a detailed
study of these grammars; one section discusses InNL, called there Nonas-
sociative Bilinear Logic. In fact, all new axioms of LG are provable in the
associative and commutative version of InNL. Let us note that in InNL with
Grishin axioms:

A⊗ (B ⊕ C)⇒ (A⊗B)⊕ C and (A⊕B)⊗ C ⇒ A⊕ (B ⊗ C)

one proves the associative laws for ⊗ and ⊕, hence the resulting logic
amounts to Noncommutative MLL without constants.
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2 Phase spaces

By a phase space we mean a frame (M, ·, R) such that (M, ·) is a groupoid
and R ⊆M2. For X ⊆M we define:

X∼ = {b ∈M : ∀a∈X R(a, b)}, X− = {a ∈M : ∀b∈X R(a, b)}.

This yields a Galois connection: X ⊆ Y ∼ iff Y ⊆ X−, for all X,Y ⊆M .
Consequently, ∼,− reverse ⊆ and X∼−∼ = X∼, X−∼− = X−, for any
X ⊆ M . The operations φR(X) = X−∼ and ψR(X) = X∼− are closure
operations on P(M). Recall that an operation C on P(M) is called a closure
operation, if it satisfies: (C1) X ⊆ C(X), (C2) if X ⊆ Y then C(X) ⊆ C(Y ),
(C3) C(C(X)) = C(X), for all X,Y ⊆ M . A set X ⊆ M is said to be
C−closed, if X = C(X). A set X is φR−closed (resp. ψR−closed) if and
only if X = Y ∼ (resp. X = Y −) for some Y ⊆M .

Given a groupoid (M, ·) and X,Y ⊆M , one defines:

X · Y = {a · b : a ∈ X, b ∈ Y } ,

X\Y = {b ∈M : X · {b} ⊆ Y } , X/Y = {a ∈M : {a} · Y ⊆ X} .

P(M) with these operations and ⊆ is a residuated groupoid.
The symbols φR, ψR appeared in Abrusci [1] who studied phase spaces

for Noncommutative MALL. Like for other linear logics, his phase space is of
the form (M, ·, O), where O ⊆M (linear logicians write ⊥• for our O). One
can define RO = {(a, b) ∈ M2 : a · b ∈ O}. Then X∼ = X\O, X− = O/X.
Our notion is more general and natural for logics without multiplicative
constants. [12] provides an example of a commutative, associative phase
space (M, ·, R) for CNL (see below) such that R 6= RO, for any O ⊆ M .
However, if (M, ·) is a free groupoid, then always R = RO for O = {a · b :
R(a, b)}.

A closure operation C on P(M) is called a nucleus, if it satisfies: (C4)
C(X) · C(Y ) ⊆ C(X · Y ), for all X,Y ⊆ M . Assuming (C1)-(C3), (C4) is
equivalent to: for any C−closed set X and any Y ⊆ M , the sets Y \X and
X/Y are C−closed [10].

Let (M, ·) be a groupoid and C be a closure operation on P(M). By
MC we denote the family of C−closed subsets of M . MC is closed under
infinite meets (intersections), hence it is a complete lattice. For X,Y ∈MC

one defines: X⊗C Y = C(X ·Y ) and X/Y,X\Y as above. If C is a nucleus,
then MC with these operations and ⊆ is a residuated groupoid [19].

A phase space (M, ·, R) is called a phase space for InNL, if φR = ψR and
the following condition holds:

(Shift) for all a, b, c ∈M , R(a · b, c) iff R(a, b · c).

It is called a phase space for CNL, if (Shift) holds and R is symmetric.
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For any phase space (M, ·, R), R is symmetric if and only if X∼ = X−

for any X ⊆ M . Consequently, if R is symmetric, then φR = ψR. So every
phase space for CNL is a phase space for InNL.

A frame (M, ·, 1,M) such that (M, ·, 1) is a unital groupoid and (M, ·, R)
is a phase space is said to be unital. If (M, ·, 1, R) is a unital phase space,
satisfying (Shift), then R = RO for O = {a ∈ M : R(a, 1)}. Also {1}∼ =
{1}\O = O, {1}− = O/{1} = O, hence O is φR−closed and ψR−closed.
This shows that our notion of a phase space is really more general just for
non-unital phase spaces (not considered in the literature on linear logics).

Lemma 1. Let (M, ·, R) be a phase space. (Shift) is equivalent to each of
the following conditions:

(i) X∼/Y = X\Y − for all X,Y ⊆M ,

(ii) X\Y ∼ = (Y ·X)∼ for all X,Y ⊆M ,

(iii) X−/Y = (Y ·X)− for all X,Y ⊆M .

Proof. First, (Shift) is equivalent to (i) restricted to one-element sets: for
all a, b ∈ M , {a}∼/{b} = {a}\{b}−. We have: x ∈ {a}∼/b iff x · b ∈ {a}∼
iff R(a, x · b). Also: x ∈ {a}\{b}− iff a · x ∈ {b}− iff R(a · x, b). So (Shift) is
equivalent to: for all a, b, x ∈M , x ∈ {a}∼/{b} iff x ∈ {a}\{b}−.

The restricted (i) follows from (i). Also (i) follows from the restricted
(i), since for X = {ai}i∈I , Y = {bj}j∈J , we obtain:

X∼/Y = (
⋂
i∈I
{ai}∼)/Y =

⋂
i∈I

⋂
j∈J
{ai}∼/{bj} =

⋂
i∈I

⋂
j∈J
{ai}\{bj}− = X\Y −.

Here we use the distributive laws for ·, \, / and:

(
⋃
i∈I

Zi)
∼ =

⋂
i∈I

Z∼i , (
⋃
j∈J

Zj)
− =

⋂
j∈J

Z−j .

So (Shift) is equivalent to (i). The remaining equivalences can be proved in
a similar way.

If φR = ψR, then MφR = MψR
; we denote this family by MR. Clearly

MR is closed under ∼,−. We write ⊗R for ⊗φR .

Theorem 1. Let (M, ·, R) be a phase space for InNL. Then, φR is a nucleus
and (MR,⊗R, \, /,∼ ,− ,⊆), where the operations are restricted to MR, is an
involutive residuated groupoid.

Proof. Assume X ∈ MR, Y ⊆ M . There exist Z,U ⊆ M such that X =
Z∼ = U−. By Lemma 1, X/Y = U−/Y = (Y · U)−, hence X/Y ∈ MR.
Similarly, Y \X = Y \Z∼ = (Z · Y )∼, hence Y \X ∈ MR. Consequently, φR
is a nucleus.

For X ∈ MR, we have: X−∼ = φR(X) = X and X∼− = ψR(X) = X,
which yields (DN). (CON) follows from Lemma 1.

10



We refer to the algebra MR, defined above, as the complex algebra of
the phase space (M, ·, R). Let M = (M, ·, \, /,∼ ,− ,≤) be an involutive
residuated groupoid. One defines the (canonical) phase space (M, ·, R), by
setting: R(a, b) iff a ≤ b− (equivalently: b ≤ a∼). The mapping h(a) = {b ∈
M : b ≤ a} is an embedding of M into the complex algebra of this canonical
phase space. In general, the canonical relation R cannot be represented as
RO for O ⊆M .

An analogous theorem holds for phase spaces for CNL [12]. For a unital
phase space (M, ·, 1, R), one defines 1R = φR({1}). If φR is a nucleus, then
1R is a unit for ⊗R. By a phase space for InNL1 we mean a unital phase
space, satisfying (Shift) and φR = ψR. It follows from Theorem 1 that for
any phase space (M, ·, 1, R) for InNL1 the algebra MR with 1R and the
remaining components as above is a unital involutive residuated groupoid.

Usually, the symmetry of R is easy to verify. It is more difficult to
verify φR = ψR. The following lemma will be used in Section 3; it refines
Proposition 1.11 in [1].

Lemma 2. Let (M, ·, R) be a phase space, satisfying (Shift). Let G be a set
of generators for M . Then, φR = ψR if and only if, for any x ∈ G, the set
{x}∼ is ψR−closed and the set {x}− is φR−closed.

Proof. The ‘only if’ part is easy. Assume φR = ψR. Then, for X ⊆M , X∼

is φR−closed, hence ψR−closed, and X− is ψR−closed, hence φR−closed.
We prove the ‘if’ part. We show: if X is φR−closed (resp. ψR−closed)

and Y ⊆ M , then Y \X (resp. X/Y ) is φR−closed (resp. ψR−closed).
Take X = Z∼. Then Y \X = (Z · Y )∼, by Lemma 1, hence Y \X is
φR =closed. Take X = Z−. Then X/Y = (Y · Z)−, by Lemma 1, hence
X/Y is ψR−closed.

Assume the right-hand side of the equivalence. We prove that for any
x ∈ M , {x}∼ is ψR−closed and {x}− is φR−closed. This holds for x ∈ G.
Assume that this holds for y, z. We show that this folds for y · z. We
have: {y}∼ = ψR({y}∼), hence, using Lemma 1, {y · z}∼ = {z}\{y}∼ =
{z}\{y}∼∼− = {z}∼/{y}∼∼. The last set is ψR−closed, since {z}∼ is so. A
similar argument shows that {y · z}− is φR−closed.

We show that every φR−closed set is ψR−closed, and conversely. Let
X be φR−closed. Then X = Y ∼ for some Y . We have: Y ∼ =

⋂
y∈Y {y}∼.

Since every set {y}∼ is ψR−closed, then X is so. The converse can be proved
in a similar way.

We have shown MφR = MψR
. Since φR(X) equals the least φR−closed

set containing X, and similarly for ψR, we obtain φR = ψR.

This lemma remains true for unital phase spaces. Since the algebra MR

is a complete lattice, we obtain some models for NL, NL1 with additives.
If · is associative (commutative), then ⊗R is so. If · is associative, then
(Shift) obviously holds for RO. If · is commutative and admits 1, then
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RO is symmetrical. Therefore, phase spaces for PLL can be (and have
been) defined as quadruples (M, ·, 1, O) such that (M, ·, 1) is a commutative
monoid and O ⊆M .

3 Sequent systems

We present our one-sided sequent system for InNL. Propositional variables
are denoted by p, q, r, . . .. Atomic formulas (atoms) are of the form p(n),
where p is a variable and n ∈ Z. One interprets p(n), for n ≥ 0, as p∼···∼

with ∼ occurring n times, and for n < 0, as p−···− with − occurring |n| times.
The connectives are ⊗,⊕.

The elements of the free groupoid generated by all formulas are called
bunches. The meta-logical notation is like for NL. Sequents are the bunches
containing at least two formulas. Often we omit the outer parentheses in
sequents.

The axioms of our cut-free system are:

(id) p(n), p(n+1) for all variables p and n ∈ Z.

The inference rules are as follows.

(r-⊗)
Γ[(A,B)]

Γ[A⊗B]

(r-⊕1)
Γ[B] ∆, A

Γ[(∆, A⊕B)]
(r-⊕2)

Γ[A] B,∆

Γ[(A⊕B,∆)]

(r-shift)
(Γ,∆),Θ

Γ, (∆,Θ)

The algebraic models are involutive residuated groupoids. A valuation
µ must satisfy: µ(p(n+1)) = µ(p(n))∼, for any atom p(n). µ is extended
for sequents by: µ((Γ,∆)) = µ(Γ) ⊗ µ(∆). We define: M, µ |= Γ,∆ iff
µ(Γ) ≤ µ(∆)− (equivalently: µ(∆) ≤ µ(Γ)∼).

This system is a dual Schütte style system: the sequent Γ can be written
as Γ ⇒, while in Schütte style systems as ⇒ Γ. We prefer the dual style,
since it is more compatible with the syntax of intuitionistic systems (see
Section 1). A similar system for Bilinear Logic, i.e. an associative version
of InNL1 with additives, was presented by Lambek [26].

We denote this system by S-InNL. Negations ∼,− are defined in meta-
language.

(p(n))∼ = p(n+1) (p(n))− = p(n−1)

(A⊗B)∼ = B∼ ⊕A∼ (A⊕B)∼ = B∼ ⊗A∼

(A⊗B)− = B− ⊕A− (A⊕B)− = B− ⊗A−

12



One easily proves A∼− = A, A−∼ = A, by induction on A. If µ is a
valuation in an involutive residuated groupoid, then:

µ(A∼) = µ(A)∼, µ(A−) = µ(A)−, for any formula A. (3)

(3) can be proved by induction on A. We write ` Γ, if Γ is provable in
S-InNL. By induction on derivations in S-InNL one easily proves that (r-⊗)
is reversible: if ` Γ[A⊗B] then ` Γ[(A,B)]. Also ` A−, A and ` A,A∼ for
any formula A (use induction on A).

With the cut-rules

(cut∼)
Γ[A] ∆, A∼

Γ[∆]
(cut−)

Γ[A] A−,∆

Γ[∆]

S-InNL is strongly complete with respect to involutive residuated groupoids
(see Theorem 3).

We want to prove that the cut-rules are admissible in S-InNL by a model-
theoretic argument. We need an auxiliary system S0, which arises from
S-InNL, after one has replaced (r-shift) with the following rules:

(r-⊕3)
A,Γ B,∆

A⊕B, (∆,Γ)
(r-⊕4)

Γ, A ∆, B

(∆,Γ), A⊕B

(r-⊕3) is derivable in S-InNL, by (r-⊕2) and (r-shift), and (r-⊕4) is derivable,
by (r-⊕1) and (r-shift). By `0 we denote the provability in S0.

In opposition to an analogous result for CNL in [12], for InNL we need
two proof-theoretic lemmas. The complete proofs of these lemmas can be
found in [13].

Lemma 3. The rule (r-shift) is admissible in S0.

Proof. We prove: `0 (Γ1,Γ2),Γ3 iff `0 Γ1, (Γ2,Γ3). The only-if part is
proved by induction on the proof of (Γ1,Γ2),Γ3 in S0, and the converse
implication in a similar way. We only consider the case for (r-⊕2).

We consider two subcases. 1◦. The active bunch (A⊕B,∆) occurs in Γi
for some 1 ≤ i ≤ 3. We apply the induction hypothesis. 2◦. (A ⊕ B,∆) =
(Γ1,Γ2). Then Γ1 = A⊕ B, Γ2 = ∆, and the premises are A,Γ3 and B,∆.
One derives A⊕B, (∆,Γ3), by (r-⊕3).

Consequently, ` Γ if and only if `0 Γ, for any sequent Γ. We need two
new rules.

(r-∼∼)
A,Γ

Γ, A∼∼
(r-−−)

Γ, A

A−−,Γ

Lemma 4. The rules (r-∼∼) and (r-−−) are admissible in S-InNL.
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Proof. It suffices to prove that these rules are admissible in S0. For (r-∼∼),
we prove: if `0 D,Θ then `0 Θ, D∼∼, by the outer induction on the number
of connectives in D and the inner induction on the proof of D,Θ in S0. For
(r-−−) the argument is similar.

Assuming our claim for all D′ having less connectives than D, we run
the inner induction. If D,Θ is an axiom (id), where D = p(n), Θ = p(n+1),
then Θ, D∼∼ equals p(n+1).p(n+2), which is an axiom, too.

Assume that D,Θ is the conclusion of a rule. If D is not the active
formula of the rule (this may only happen for (r-⊗), (r-⊕1), (r-⊕2)), then
one applies the (inner) induction hypothesis to the premise which contains
D (this must be Γ[B] in (r-⊕1) and Γ[A] in (r-⊕2)), next applies the same
rule.

Assume that D is the active formula of the rule. This may happen
for (r-⊗) and (r-⊕3). We only consider (r-⊗). So D = A ⊗ B and the
premise is (A,B),Θ. By Lemma 3 and the outer induction hypothesis, we
obtain `0 A, (B,Θ), `0 (B,Θ), A∼∼, `0 B, (Θ, A∼∼), `0 (Θ, A∼∼), B∼∼,
`0 Θ, (A∼∼, B∼∼), hence `0 Θ, D∼∼, by (r-⊗).

As a consequence, ` A−,Γ if and only if ` Γ, A∼; we write Γ ⇒ A for
A−,Γ. We define:

[A] = {Γ :` Γ⇒ A}.

A sequent Γ is said to be valid in InNL, if M, µ |= Γ for all involutive
residuated groupoids M and all valuations µ in M. We prove that S-InNL
is weakly complete.

Theorem 2. For any sequent Γ, ` Γ if and only if Γ is valid in InNL.

Proof. It is easy to verify that the axioms (id) are valid and all rules preserve
validity (in fact, they preserve the truth for µ in M). We only consider (r-
shift) in the top-down direction. Assume M, µ |= (Γ,∆),Θ. Then µ(Γ) ⊗
µ(∆) ≤ µ(Θ)−. So µ(∆) ≤ µ(Γ)\µ(Θ)− = µ(Γ)∼/µ(Θ). We obtain µ(∆)⊗
µ(Θ) ≤ µ(Γ)∼, which yields M, µ |= Γ, (∆,Θ). Hence the only-if part holds.

For the ‘if’ part, we construct a counter-model for any unprovable se-
quent. We consider a phase space (M, ·, R) such that (M, ·) is the free
groupoid generated by the set of formulas (so Γ ·∆ = (Γ,∆)) and: R(Γ,∆)
iff ` Γ,∆. Due to (r-shift), this phase space satisfies (Shift).

For any formula A, we have: [A] = {Γ : R(A−,Γ)} = {Γ : R(Γ, A∼)},
which yields:

[A] = {A−}∼ = {A∼}−, [A∼] = {A}∼, [A−] = {A}−. (4)

Consequently, [A] is φR−closed and ψR−closed, for any formula A. We
obtain φR = ψR, by Lemma 2. So (M, ·, R) is a phase space for InNL.
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By Theorem 1, the algebra (MR,⊗R, \, /,∼ ,− ,⊆) is an involutive resid-
uated groupoid. We define a valuation µ.

µ(p) = [p] where p = p(0)

µ(p(n+1)) = µ(p(n))∼ for n ≥ 0, µ(p(n−1)) = µ(p(n))− for n ≤ 0

By induction on the number of connectives in A, we prove:

A ∈ µ(A) ⊆ [A] for any formula A . (5)

A = p(n). We proceed by induction on |n|. For n = 0, we have µ(p) =
[p] and p ∈ [p], since p, p∼ is an axiom. Assume (5) for n ≥ 0. From
µ(p(n)) ⊆ [p(n)] = {p(n+1)}− (use (4)) we obtain {p(n+1)}−∼ ⊆ µ(p(n))∼ =
µ(p(n+1)) (use (3)), and p(n+1) ∈ φR({p(n+1)}) = {p(n+1)}−∼, hence p(n+1) ∈
µ(p(n+1)). From {p(n)} ⊆ µ(p(n)) we obtain µ(p(n+1)) ⊆ {p(n)}∼ = [p(n+1)]
(use (3), (4)). In a similar way, assuming (5) for n ≤ 0, we obtain (5) for
n− 1.

A = B ⊗ C. We need the following property.

(P1) If X ∈MR and (B,C) ∈ X, then B ⊗ C ∈ X.

Assume that X ∈ MR and (B,C) ∈ X. Fix Y such that X = Y ∼. For all
Γ ∈ Y , ` Γ, (B,C), hence ` Γ, B ⊗ C, by (r-⊗). So B ⊗ C ∈ X.

By the induction hypothesis, (5) holds for B and C. From B ∈ µ(B)
and C ∈ µ(C) we obtain (B,C) ∈ µ(B) · µ(C) ⊆ µ(B) ⊗ µ(C) = µ(B ⊗
C), hence B ⊗ C ∈ µ(B ⊗ C), by (P1). Also µ(B) ⊆ [B] = {B−}∼ and
µ(C) ⊆ [C] = {C−}∼. Hence, for all Γ ∈ µ(B), ` B−,Γ, and for all
∆ ∈ µ(C), ` C−,∆. By (r-⊕3), ` C− ⊕ B−, (Γ,∆), for all Γ ∈ µ(B),
∆ ∈ µ(C). Consequently, µ(B) · µ(C) ⊆ {(B ⊗ C)−}∼ = [B ⊗ C], which
yields µ(B ⊗ C) = φR(µ(B) · µ(C)) ⊆ [B ⊗ C], since [B ⊗ C] is φR−closed.

A = B ⊕C. Since B and B− have the same number of connectives, and
similarly for C and C−, then (5) holds for B− and C− by the induction
hypothesis. So C− ⊗ B− ∈ µ(C− ⊗ B−) ⊆ [C− ⊗ B−]. We obtain [C− ⊗
B−]∼ ⊆ µ(C− ⊗ B−)∼ ⊆ {C− ⊗ B−}∼, which yields (5) for B ⊕ C, since
B ⊕ C ∈ {B ⊕ C}−∼ = [C− ⊗ B−]∼, µ(C− ⊗ B−)∼ = µ(B ⊕ C) and
{C− ⊗B−}∼ = [B ⊕ C]. This finishes the proof of (5).

Assume 6` Γ,∆. From A ∈ µ(A), for any formula A, one easily proves
Θ ∈ µ(Θ) for any bunch Θ, by induction on the number of commas in
Θ. So Γ ∈ µ(Γ) and ∆ ∈ µ(∆). By the assumption, Γ 6∈ µ(∆)−, hence
µ(Γ) 6⊆ µ(∆)−. Consequently, Γ,∆ is not valid.

Corollary 1. The rules (cut∼), (cut−) are admissible in S-InNL.

Proof. Both rules preserve the truth for µ in M, hence the validity.
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This model-theoretic proof of the cut-elimination theorem, similar to
the proofs for associative linear logics in [23, 32], is not constructive. A
constructive, syntactic proof is given in [13].

Theorem 3. S-InNL with (cut∼), (cut−) is strongly complete with respect
to involutive residuated groupoids.

Proof. Let Φ be a set of sequents. With the cut-rules, every sequent Γ,∆ is
deductively equivalent to a sequent A,B; A arises from Γ by replacing each
comma by ⊗, and so for B and ∆. We assume that all sequents in Φ are of
the latter form.

Now, ` denotes the provability in S-InNL with the cut-rules. Notice that
(r-∼∼), (r-−−) are derivable. For (r-∼∼), we derive Γ, A∼∼ from A∼, A∼∼

and A,Γ, by (cut−).
We consider a phase space (M, ·, R), defined as in the proof of Theorem

2 except that: R(Γ,∆) iff Φ ` Γ,∆. We define [A] = {Γ : Φ ` Γ ⇒ A},
where Γ⇒ A is as above. The equations (4) hold. Accordingly, (M, ·, R) is
a phase space for InNL. We consider the involutive residuated groupoid MR

and the valuation µ, defined there. One proves (5) and a stronger claim:

µ(A) = [A] for any formula A. (6)

We need the following property.

(P2) If X ∈MR and A ∈ X, then [A] ⊆ X.

Assume that X ∈ MR and A ∈ X. Fix Y such that X = Y ∼. Then,
Φ ` Γ, A for all Γ ∈ Y , and consequently, Φ ` Γ,∆ for all Γ ∈ Y , ∆ ∈ [A]
(use (cut−)). So [A] ⊆ X.

Accordingly, A ∈ µ(A) yields [A] ⊆ µ(A). Hence (5) entails (6).
If (A,B) ∈ Φ, then [A] ⊆ [B−] (use (cut−), (r-−−)), hence µ(A) ⊆

µ(B)−, by (6), (3). If Φ 6` Γ,∆, then µ(Γ) 6⊆ µ(∆)−, as in the proof of
Theorem 2.

The sequent system S-InNL1 is an extension of S-InNL. We add the
empty bunch ε and constants 1 and 0. Sequents are all nonempty bunches.
We add one new axiom and two new rules.

(a.0) 0 (r-1)
Γ[∆]

Γ[(1,∆)]

Γ[∆]

Γ[(∆, 1)]

We assume (ε,Γ) = Γ = (Γ, ε). In rules (r-⊕1), (r-⊕2) we admit ∆ = ε,
and similarly for (cut∼), (cut−). In the derivable rules (r-⊕3), (r-⊕4) both
Γ and ∆ may be empty; in (r-∼∼), (r-−−) Γ may be empty.

The algebraic models are unital involutive residuated monoids. We de-
fine: M, µ |= Γ iff µ(Γ) ≤ 0. In metalanguage 1∼ = 1− = 0, 0∼ = 0− = 1.
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All results, proved above and appropriately modified, are true for S-
InNL1. The proofs are quite similar, but they need certain modifications
(more cases).

These systems can be augmented with additive connectives ∧,∨, in-
terpreted as meet and join in lattice-ordered (l.o.) involutive residuated
groupoids. All results of Sections 2 and 3 remain true for these extensions.
In a similar way, one can prove these results for associative (commutative)
logics of this kind.

4 InNL versus InNL(k)

Let a be an element of an involutive residuated groupoid. We use the nota-
tion a(n) in the same meaning as in Section 3, e.g. a(2) = a∼∼, a(−2) = a−−.
Let k be a positive integer. An involutive residuated groupoid is said to
be k−cyclic, if a(k) = a for any a ∈ M . If k is odd, then a ≤ b entails
b(k) ≤ a(k). So for an odd k, ≤ is the identity relation and a ⊗ b = b ⊕ a
in any k−cyclic involutive residuated groupoid. In what follows we assume
that k is even. Observe that a− = a(k−1) in k−cyclic algebras of this kind.

InNL(k) is InNL from Section 1 with the new axiom A(k) ⇔ A. This
logic is strongly complete with respect to k−cyclic involutive residuated
groupoids. Clearly InNL(2) amounts to CNL.

We introduce a sequent system S-InNL(k). The atoms are of the form
p(n) for 0 ≤ n < k. All axioms and rules are as for S-InNL, but n, n+ 1 are
computed modulo k. So the axioms are: p(n), p(n+1), for 0 ≤ n < k − 1 and
p(k−1), p(0). We assume p(0) = p.

The metalanguage negations ∼,− are defined as in Section 3 (we compute
n + 1 and n − 1 modulo k). All syntactic equations from Section 3 remain
true. Also A(k) = A, since k is even. We also obtain (3) for any valuation
in a k−cyclic involutive residuated groupoid. Lemmas 3 and 4 remain true;
now S0 arises from S-InNL(k) like the former S0 from S-InNL.

Theorem 4. S-InNL(k) is weakly complete with respect to k−cyclic invo-
lutive residuated groupoids.

Proof. The whole proof of Theorem 2 can be repeated, except that we cannot
prove (at this moment) that the algebra (MR,⊗R, \, /,∼ ,− ,⊆) is k−cyclic.
Let Mµ

R be the subalgebra whose universe consists of µ(A) for all formulas
A. Clearly Mµ

R is an involutive residuated groupoid and µ is a valuation in
Mµ

R. By (3), µ(A)(k) = µ(A(k)) = µ(A), hence Mµ
R is k−cyclic. If 6` Γ,∆,

then Mµ
R, µ 6|= Γ,∆, and consequently, Γ,∆ is not valid.

Accordingly, (cut∼), (cut−) are admissible in S-InNL(k). With these
rules S-InNL(k) is strongly complete with respect to k−cyclic involutive
residuated groupoids. Again the proof of Theorem 3 can be repeated, and
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we consider Mµ
R as above. Consequently, S-InNL(2) is a cut-free system for

CNL, different from those in [22, 12]. It can be shown that MR in the proof
of Theorem 4 is k−cyclic (use the infinite De Morgan laws for ∼ in MR).

We return to S-InNL. For any bunch Γ and m ∈ Z, by I(Γ,m) we denote
the bunch arising from Γ, after one has replaced each atom p(n) by p(n+m).

Lemma 5. For any sequent Γ and m ∈ Z, Γ is provable in S-InNL if and
only if I(Γ,m) is provable in S-InNL.

Proof. Assume that Γ is provable in S-InNL. In a proof of Γ substitute
p(n+m) for p(n), for any atom p(n). We obtain a proof of I(Γ,m). This yields
the only-if part and entails the ‘if’ part, since Γ = I(I(Γ,m),−m).

Let Γ be a sequent, and let m be the greatest positive integer n such that
some atom p(−n) occurs in Γ; if there is none, we set m = 0. The provability
of Γ is equivalent to the provability of I(Γ,m), which contains no p(n) with
n < 0; such a sequent is said to be −−free.

Lemma 6. Let Γ be a −−free sequent. Let m be the greatest integer n such
that some atom p(n) occurs in Γ. Let k > m + 1. Then, Γ is provable in
S-InNL if and only if Γ is provable in S-InNL(k).

Proof. Assume that Γ is provable in InNL. Then Γ is valid in InNL, and
consequently, in k−cyclic involutive residuated groupoids. By Theorem 4,
Γ is provable in S-InNL(k).

Assume that Γ is provable in S-InNL(k). There exists a (cut-free) proof
of Γ such that every formula in this proof is a subformula of a formula in Γ.
Consequently, no atom p(k−1) appears in this proof, hence no axiom p(k−1), p
is used. This proof is a proof in S-InNL.

Therefore, if a sequent Γ is not valid in InNL, then it is not valid in some
k−cyclic involutive residuated groupoid. This result for InGL was obtained
in [18] with the aid of a two-sided sequent system for InGL. Our proof seems
simpler and works for this richer logic as well.

InNL(k) has similar properties as CNL (which amounts to InNL(2)):

(T1) an interpolation property: if Φ ` Γ[∆], where Γ[∆] 6= ∆, then there
exists D ∈ T (an interpolant of ∆) such that Φ ` Γ[D] and Phi ` ∆⇒
D, where T is the closure of the set of formulas appearing in Φ∪{Γ[∆]}
under subformulas and ∼ (T is finite, if one uses S-InNL(k)),

(T2) the strong finite model property: the sequents provable in InNL(k)
from a finite set Φ coincide with those which follow from Φ in finite
models,

(T3) the languages generated by the type grammars based on InNL(k) are
precisely the (ε−free) context-free languages,
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(T4) the (finitary) consequence relation for InNL(k) is P-TIME.

(T1)-(T4) can be proved quite similarly as their particular cases for CNL
in [12]. We skip the details. Let us only note some essential points.

Let k be fixed. Given a finite set of formulas T , its closure under sub-
formulas and ∼ can be computed in polynomial time (in the size of T and
k), since one applies ∼ k − 1 times to each formula; we denote this closure
by T̄ .

(T1) can be proved by induction on proofs in S-InNL(k). If ∆ is a
formula, then D = ∆. Let us only consider the rule (r-shift): top-down,
with premise (Γ,∆′),Θ and conclusion Γ, (∆′,Θ), where ∆ = (∆′,Θ). Let
D′ be an interpolant of Γ in the premise. Then D∼ is an interpolant of
(∆′,Θ) in the conclusion.

(T2) can be proved like Theorem 3 for S-InNL(k) except that M is the
free groupoid generated by T̄ , where T is the set of formulas appearing in
Φ ∪ {Γ}. We only consider T̄−proofs, i.e. the proofs in S-InNL(k) which
employ formulas from T̄ only. We write Φ `T̄ Γ, if there exists a T̄−proof
of Γ from Φ. We define [A]T̄ = {Γ ∈ M : Φ `T̄ Γ}, and replace [A] by [A]T̄
in the whole reasoning. We obtain µ(A) = [A]T̄ for any A ∈ T̄ . Thus, if
Φ `T̄ Γ does not hold, then Γ is not true for µ. Although the resulting frame
is infinite, its complex algebra is finite. By (T1), there exist only finitely
many sets of the form {Γ}∼, since {Γ}∼ equals the union of sets [D]T̄ for
some formulas D ∈ T̄ . Consequently, there are only finitely many closed
sets, hence MR is finite.

(T3) follows from (T1). Let G = (Σ, I, A0) be a type grammar based
on InNL(k). Let T denote the set of all formulas involved in I plus A0.
By (T1), every T̄−sequent Γ ⇒ A, provable in InNL(k) can be proved
on the basis of provable T̄−sequents of the form (A1, A2) ⇒ B and B ⇒
C (restricted sequents) with the aid of (NL-cut). This yields a context-
free grammar equivalent to G. Its terminal symbols are those of G, the
nonterminal symbols are the formulas from T̄ , the production rules are the
reversed, restricted T̄−sequents provable in InNL(k), and A0 is the start
symbol. It is known that every ε−free context-free language is generated by
a type grammar based on NL, and NL can be replaced by InNL(k), since
InNL(k) is a strongly conservative extension of NL.

Finally, (T4) holds, since all restricted T̄−sequents, provable in InNL(k),
can be proved in S-InNL(k), limited to restricted T̄−sequents; see the proof
for CNL in [12].

From (T2)-(T4) we infer the main results of this section. Analogous
results can be obtained for InNL1.

(T5) InNL possesses the finite model property.

(T6) The type grammars based on InNL generate the ε−free context-free
languages.
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(T7) InNL is P-TIME.

Remark. This proof of P-TIME complexity assumes that the size of
p(n) is defined as |n| + 1, where n denotes the absolute value of n. This is
reasonable, if |n| is small (which is the case for types appearing in linguistic
applications) or p(n) is understood as a metalanguage abbreviation of p with
|n| negations. Another proof, given in [13], yields a polynomial algorithm
with |n| defined as the length of the binary (or decimal) representation of n.

Accordingly, a context-free grammar equivalent to the given type gram-
mar G based on InNL can be constructed in polynomial time in the size
of G. On the contrary, an analogous construction for the type grammars
based on L (due to Pentus [33]) is exponential; no polynomial construction
exists, if the hypothesis P=NP is false. This follows from the fact that L is
NP-complete [34].

5 Final comments

We briefly discuss the significance of our results for type grammars.
Since a leitmotive of type grammars is a reduction of parsing to formal

proofs in appropriate logical calculi, independent of the particular language,
this theory develops and studies different logics suitable for this purpose.
This research is located on the borderline of logic and linguistics: logical
ideas are applied in grammar and, conversely, linguistics stimulates new
logical formalisms. Linear logics belong to this area. This paper contributes
to nonassociative linear logics, which have not been much worked out ear-
lier. Our interest in these logics is motivated by their close relations to
Nonassociative Lambek Calculus and other systems of this kind.

InNL and CNL are strongly conservative extensions of NL. In Section
1, we have already explained that this allows us to use the former instead
of the latter in type grammars. If one translates NL-types into InNL-types
in the formalism of S-InNL, then formulas with negations appear. For ex-
ample, pn\s is translated as pn∼ ⊕ s and (pn\s)/pn as (pn∼ ⊕ s)⊕ pn−. If
(n\n)/(s/pn) is assigned to ‘whom’ in ‘girl whom John admires’, this type
is translated as (n∼⊕n)⊕ (pn−−⊗ s−). Types of the latter form were used
in e.g. [14, 15]. In pregroup grammars ⊗ and ⊕ collapse; one writes AB for
both A⊗B and A⊕B, Ar for A∼ and Al for A−. So the type of ‘whom’ is
written as nrn[pn]llsl (product is associative).

Due to conservativity, our results for InNL, CNL are stronger than their
analogues for NL: the former entail the latter, but not conversely. For ex-
ample, from the fact that InNL-grammars are equivalent to context-free
grammars it follows that NL-grammars are so (for NL-grammars, this was
known earlier). Interestingly, these conservativity results also hold for as-
sociative (commutative) linear logics versus their intuitionistic fragments,
but it was not known until [2] has appeared. ([12] shows a simpler, general
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method for such conservativity proofs with the aid of phase spaces.) Cer-
tainly, the authors of [32] did not know it. They developed intuitionistic
phase spaces in order to prove the finite model property for intuitionistic
linear logics, which was earlier proved by Lafont [23] for MALL (with a
claim that this proof also works for noncommutative logics). Intuitionistic
phase spaces are interesting for themselves, but the main results of [32] (the
finite model property) simply follow from Lafont’s results, by conservativity.

Logics with negation(s) exhibit interesting symmetries (dualities), ab-
sent in their intuitionistic fragments. For instance, the application law
A⊗ (A\B)⇒ B and the co-application law B ⇒ (B ⊗A)/A are related by
the duality: a ≤ b iff b− ≤ a−.

Why the consequence relation is relevant in type grammars? At this
point, the present author differs in opinions from most linguists working
in type grammar. They, as a rule, adhere to radical lexicalism: the whole
language-dependent grammatical information has to be contained in the
type lexicon (i.e. the map I), and parsing is to be done within a pure logic.
In some situations, it seems reasonable to admit parsing within a theory,
i.e. a logic augmented with nonlogical assumptions (axioms). Lambek [27]
used such assumptions in pregroup grammars, e.g. s1 ⇒ s, s2 ⇒ s, where
s is the type of statement, s1 of statement in present tense, s2 of statement
in past tense, and many other arrows of this kind (poset arrows). One
can consider L, NL etc. augmented with the assumptions corresponding
to the production rules of a fixed context-free grammar. Then, the type
logic can infer interesting consequences. For instance, L transforms the
given context-free grammar into an equivalent basic categorial grammar
[8]. One can approximate a stronger logic by a weaker, but more efficient,
logic. In particular, L (which is NP-complete) can be approximated by NL
augmented with finitely many sequents provable in L (but not closed under
substitution). For instance, (pn\s)/pn ⇔ pn\(s/pn) is provable in L, but
not in NL. One can add this particular law to NL, without assuming the
general pattern (A\B)/C ⇔ A\(B/C) (which yields the associative law
for ⊗), just for a more flexible treatment of transitive verb phrases in the
nonassociative framework. Since the finitary consequence relation for NL
is P-TIME [9], this approximation leads to an efficient parsing procedure.
The same holds for Cyclic MLL versus CNL. For InNL, the complexity of
the consequence relation is not known.

The operations X∼ and X−, defined in Section 2, are a special case of
polarities XB and Y C, considered in lattice theory. For R ⊆ U ×V , X ⊆ U ,
Y ⊆ V , one defines:

XB = {v ∈ V : ∀u∈X R(u, v)}, Y C = {u ∈ U : ∀v∈Y R(u, v)}.

This yields a Galois connection and two closure operations BC and CB; let
us denote them by ψ and φ. One obtains two dual (complete) lattices: the
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first consists of ψ−closed subsets of U and the second of φ−closed subsets
of V (so-called concept lattices).

Clark [17] considered syntactic concept lattices, where U = Σ∗, V =
Σ∗ ×Σ∗ (the set of contexts) and, for a fixed language L ⊆ Σ∗, one defines:

RL(u, (v1, v2)) iff v1uv2 ∈ L .

The ψ−closed subsets of Σ∗ are interpreted as the syntactic categories de-
termined by the language L (the main category). In fact, the lattice of
syntactic categories is a residuated lattice with \, / defined as in the algebra
of languages. Syntactic concept lattices are models of Full Lambek Calculus.
It is easy to adapt this construction for languages of phrase structures, as
processed by nonassociative type grammars.

Accordingly, algebras of closed sets, defined similarly as in Section 2,
possess sound linguistic interpretations. In our phase spaces U = V , and
we impose additional constraints upon R: (Shift), φ = ψ. The relation
RL, defined as above (for nonassociative contexts), need not satisfy them,
if L is, say, the set of declarative sentences of a natural language, repre-
sented as phrase structures. Nonetheless, every nonassociative syntactic
concept lattice can be isomorphically embedded into a lattice-ordered invo-
lutive residuated groupoid (this follows from the strong conservativity). A
linguist, working with InNL instead of NL, may interpret the formulas of
InNL in the extended model. This resembles the mathematical construction
of complex numbers, extending real numbers. Although complex numbers
do not possess such intuitive interpretations as reals (e.g. as lengths, weights
etc.), they give rise to a more regular and deeper mathematical theory.

At the end, let us point out evident connections with classical modal
logics. It is well-known that ⊗, \, / can be treated as binary modal operators.
We focus on linear negations. Given a modal frame (M,R), where R ⊆M2,
and X ⊆ Mone defines ♦(X) = {u ∈ M : ∃v∈XR(u, v)}, �(X) = (♦(Xc))c

(here Xc denotes the complement of X), and similarly ♦↓,�↓ with respect
to the converse relation R∪. These operations satisfy the unary residuation
laws: ♦(X) ⊆ Y iff X ⊆ �↓(Y ), and ♦↓(X) ⊆ Y iff X ⊆ �(Y ) (so ♦,�↓

and ♦↓,� form residuation pairs).
For a phase space, (M, ·, R), we haveX∼ = �↓(Xc), X− = �(Xc), where

the modalities are defined for (M,Rc). Consequently φR(X) = �↓♦(X),
ψR(X) = �♦↓(X). The condition φR = ψR can be expressed by the modal
axiom �↓♦p ⇔ �♦↓p, where ⇔ stands for biconditional of classical logic.
Also p∼ ⇔ �↓¬p, p− ⇔ �¬p, where ¬ stands for classical negation. (Shift)
can be expressed by p∼/q ⇔ p\q−.
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