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Abstract

Involutive Nonassociative Lambek Calculus (InNL) is a nonassociative version
of Noncommutative Multiplicative Linear Logic (MLL) (Abrusci in J Symb Log
56:1403-1451, 1991), but the multiplicative constants are not admitted. InNL adds
two linear negations to Nonassociative Lambek Calculus (NL); it is a strongly conser-
vative extension of NL (Buszkowski in Amblard, de Groote, Pogodalla, Retoré (eds)
Logical aspects of computational linguistics. LNCS, vol 10054. Springer, Berlin, pp
68-84,2016). Here we also add unary modalities satisfying the residuation law and De
Morgan laws. For the resulting logic InNLm, we define and study phase spaces (some
frame models, typical for linear logics). We use them to prove the cut elimination
theorem for a one-sided sequent system for InNLm, introduced here. Phase spaces are
also employed in studying auxiliary systems InNLm(k), assuming the k-cyclic law for
negation. The latter behave similarly as Classical Nonassociative Lambek Calculus,
studied in de Groote and Lamarche (Stud Log 71(3):355-388, 2002) and Buszkowski
(2016). We reduce the provability in InNLm to that in InNLm(k). This yields the
equivalence of type grammars based on InNLm with (e-free) context-free grammars
and the PTIME complexity of InNLm.

Keywords Lambek calculus - Linear logic - Phase space - Sequent system - Type
grammar - Context-free grammar

1 Introduction and Preliminaries
1.1 Overview
This paper contributes to the study of nonassociative linear logics, essentially weaker

than noncommutative linear logics, studied in Yetter (1990) and Abrusci (1991). Fur-
thermore, we consider logics without multiplicative constants 1, 0 [0 is L in the
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notation of linear logics (Girard 1987; Yetter 1990; Abrusci 1991)]. Our logics have
models whose product and par do not admit the unit elements. These logics were not
much studied earlier. de Groote and Lamarche (2002) studied Classical Nonassociative
Lambek Calculus (CNL) which amounts to Nonassociative Lambek Calculus (NL),
due to Lambek (1961), augmented with negation *, satisfying (in algebras) the double
negation law a = a and some other laws (see below). This purely proof-theoretic
paper, focusing on proof nets for CNL, provided a sequent system for CNL and proved:
(1) CNL is a conservative extension of NL, (2) CNL is PTIME.

Buszkowski (2016) studies algebras and phase spaces for CNL and uses them to
prove some new results: (1) CNL is strongly conservative over NL (this means: both
logics yield the same consequence relation in the language of NL), (2) type grammars
based on CNL are equivalent to e-free context-free grammars (CFGs), (3) the finitary
consequence relation for CNL is PTIME. Earlier, analogous results were obtained for
NL (Buszkowski 2005).

The present paper focuses on a weaker logic, called Involutive Nonassociative
Lambek Calculus (InNL), which amounts to NL augmented with two negations ~, ™,
satisfying (in algebras) the double negation laws a™~~ = a = a~ "~ and some contrapo-
sition laws. InNL is a nonassociative version of Noncommutative MLL from Abrusci
(1991) but without multiplicative constants, while CNL is an analogous version of
Cyclic Noncommutative MLL from Yetter (1990). In Buszkowski (2016) InNL is
denoted by CNL™. Not all tools applied in the study of CNL can be applied for InNL;
in particular, a finite set of formulas cannot be closed under negations in finitely many
steps.

Buszkowski (2017a) introduces and studies a one-sided sequent system for InNL
and proves the cut-elimination theorem in a syntactic way. The paper also shows that
InNL is PTIME. Phase spaces are not employed. Here this research is continued.
We consider a richer logic InNLm, i.e. InNL with (unary) modalities, which form a
residuation pair. We study phase spaces for InNNLm and use them in model-theoretic
proofs of the completeness and the cut-elimination theorems for the sequent system.
We also prove the PTIME complexity of InNLm with the aid of auxiliary logics
InNLm(k); the corresponding algebras support the k-cyclic laws a™~ = a, where
~ is iterated k times (k is even). We prove that type grammars based on InNLm are
equivalent to e-free CFGs.

The unary modalities ¢, [J¥ satisfy (in algebras) the unary residuation law:

(URES) Oa < b iffa <O'b,

for all elements a, b. NL with such modalities (NLm) was studied by Moortgat (1996,
1997) and its versions with special modal axioms and additive connectives by Lin
(2014). These modalities were also considered by other authors; see Restall (2000).
¢, 0¥ are unary counterparts of Lambek connectives ®, \, /. In InNLm we also
assume De Morgan laws for these modalities. Thus, the pair ¢, 0V behaves simi-
larly as ®, @, i.e. product and dual product (par).

WARNING In this paper we do not follow the notation of linear logics, due to Girard
(1987), where e.g. @ stands for additive disjunction (here V). Our notation follows
the standards of substructural logics (Galatos et al. 2007).
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All results of this paper hold for InNL: it suffices to omit modalities, the operation
f (in frames) and angle brackets in all systems and proofs. Furthermore, all results
of this paper remain true for InNL and InNLm with multiplicative constants 1, 0, but
we skip almost all details to keep the paper in a reasonable size. These results also
hold for multi-modal versions of these systems, containing several modalities ¢;, Dl.i
and several Lambek connectives ®;, \;, /i. Some linguistic applications are discussed
later in this section.

This paper extends the conference paper (Buszkowski 2017b), which studies phase
spaces for InNL only (modalities are not considered) and provides some results of
Sect. 4 (restricted to InNL(k)) without proof. No result of the present paper was
published earlier.

1.2 Algebras

We define the algebras corresponding to our logics. An algebra for NL is a residuated
groupoid, i.e. an (ordered) algebra (M, ®, \, /, <) such that (M, <) is a poset and
®, \, / are binary operations on M, satisfying the residuation laws:

RES)a®b <c iffb<a\c iffa<c/b,

for all a, b, c € M. The operation ® is called product, and \, / are its residuals.

A residuated semigroup is a residuated groupoid such that & is associative. Resid-
uated semigroups are models of (associative) Lambek Calculus (L), due to Lambek
(1958).

The following laws are valid in residuated groupoids:

(RG1) a ® (a\b) < b, (a/b) ® b < a (application laws),

RG2) a <b\(b®a),a < (a®b)/b (co-application laws),

(MMON) ifa <bthenc®a <c®b,a®c <b®c,c\a <c\b,a/c < bJc,
b\c < a\c, c/b < c/a (monotony laws).

A modal residuated groupoid is an algebra (M, ®,\, /, O, O+, <) such that
(M, ®,\, /, <) is aresiduated groupoid and ¢, OV are unary operations on M, satis-
fying (URES). The following laws are valid in these algebras:

(RGm) a < M Oa, O0Va < a,
(MONm) ifa < b then Oa < Ob and O¥a < OVb.

The algebraic models for InNL are involutive residuated groupoids, i.e. algebras
M, ®,\,/,”,~,<)suchthat (M, ®, \, /, <) is a residuated groupoid and ~, ~ are
unary, order reversing operations on M (this means: a < b entails b~ < a™ and
b~ < a™), satisfying the double negation laws and the contraposition laws:

DON) a" " =a=a"",
(CON) a™~ /b =a\b",

for all a,b € M. Notice that (CON) is equivalent to the following compatibility
condition:
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(COMP) a®b <c  iffb®c <a,foralla,b,c e M.

An involutive residuated groupoid is said to be cyclic, if a~ = a™, for any element a.
These algebras correspond to CNL.

(CON) stipulates a connection between negations and Lambek operations. One
derives other contraposition laws: a\b =a"~ /b~ ,a/b=a"\b".

In any involutive residuated groupoid, (¢~ ® b~)~ = (@~ ® b~)7. For ¢ <
@ Rb)"iffa” @b <" iffcQa” <b=b""iff b ®c<a"T =a " iff
a- @b~ <c  iff c < (a” ® b7)". One defines the dual product (par):

a®b=0"®a) (=0 ®a))
and obtains the following laws:

(IRG1) (@a®b)" =b"®a",(a®b)” =b~ ®&a (De Morgan laws),
IRG2) a\b=a"®db=0b"®a),a/b=a®b™ =bRa")",
(IRG3) a®db=a"\b=a/b".

We prove the first law (IRG2): ¢ < (b” ® @)" iff b” Q@ a < ¢ iffa < b~ \c™ iff
a<b/ciffa®c<biffc <a\b.

Therefore, in involutive residuated groupoids, all operations can be expressed in
terms of ® and negations. The one-sided sequent systems, considered later on, admit
the language ®, @,”,” (negations at variables only).

The algebraic models for InNNLm are modal involutive residuated groupoids, i.e.
involutive residuated groupoids with ¢, (¥, satisfying (URES) and the De Morgan
laws for modalities:

(DMm) (Oa)™ =¥ (@™), (Oa)~ = O¥(a™), for any element a.

We show that the first equation (DMm) is equivalent (on the basis of (URES) and
laws for negations) to the following compatibility condition:

(COMPm) Qa < b~ iff Ob < a™, for any elements a, b,

which is an analogue of (COMP), if one thinks of {) as a unary product. Assume the
first equation (DMm). We have: Qa < b~ iff b < (Qa)™ = Di(aw) iff Ob < a™.
Assume (COMPm). We have: b < (Qa)™ iff Qa < b~ ifft Ob < a™ iff b < Y (a™),
which yields the first equation (DMm). In a similar way one shows that (COMPm) is
equivalent to the second equation (DMm). Therefore both equations are equivalent,
and one can assume only one of them in the definition from the preceding paragraph.

If a residuated groupoid contains an element 1, satisfying l ® a = a = a ® 1 for
any element a, it is called unital. In involutive unital residuated groupoids, 1~ =17,
and one defines 0 = 17. One easily shows0®a =a =a®0,a” =a\0,a” =0/a.

1.3 Intuitionistic Sequent Systems
Our logics can be presented as intuitionistic sequent systems.

The formulas of NL are built from variables p, g, r, ... by means of connectives
®, \, /. One defines bunches: (i) every formula is a bunch, (ii) if ' and A are bunches,
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then (I", A) is a bunch. Bunches can be treated as the elements of the free groupoid
generated by the set of formulas. NL-sequents are of the form I' = A, where I' is a
bunch and A is a formula. A context is a bunch containing a special atom x (a place for
substitution). We denote formulas by A, B, C, ..., bunches by I', A, ®, and contexts
by I'[ ], A[] etc. ['[A] denotes the result of substituting A for x in I'[ ]. The axioms
and the inference rules of NL are as follows.

I'NAl=B A=A

(NL-id) A = A (NL-cut)

T[A]= B
(® é)% (= ®)(FF’ZZ)ATA;(;If13
(=) l;,[[fii\CB)?:g =\ (?’;):\}BB
(/=) 2[{21;,CA)?:§ =/ (?i);BA

InNL can be presented as an extension of NL with new unary connectives ~, ", new
axioms:

@aDN)A™T" & A,A7" & A, (aCON)A™ /B & A\B™
(A <& B means: A = B and B = A), and new inference rules:

A= B A= B

(-CON) ,
B~= A~ B = A~

CNL can be obtained from InNL by adding the axioms A~ < A~ (or replace ~ by ~
in all axioms and rules).

Using Lindenbaum-Tarski algebras, one easily shows that NL is strongly complete
with respect to residuated groupoids and InNL (resp. CNL) with respect to (resp.
cyclic) involutive residuated groupoids. Recall that a valuation in an algebra M is a
homomorphism from the formula algebra to M. It is extended for bunches by interpret-
ing each comma as product. I' = A is true for a valuation p in Mif u(I") < @(A). The
strong completeness means: the sequents provable in the logic from a set of sequents ®
(a set of assumptions, not closed under substitutions) are precisely those which follow
from & in the corresponding algebras (they are true for any algebra M and valuation
w such that all sequents from & are true).

NLm admits modalities ¢, (1% and bunches with a new structural operation (). The
definition of a bunch is extended by: (iii) if I" is a bunch, then (I') is a bunch. In
algebras, u((I')) = O(u(I")). One adds the following rules for modalities.

Fl(A)] = B F=A
O toass TV s0a
O oy TAI= B D)= A

)r[(mA)] = B r=0lA
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NL and NLm admit cut elimination: (NL-cut) is redundant in the pure logic (Lambek
1961; Moortgat 1996). NLm is strongly complete with respect to modal residuated
groupoids. InNLm is obtained from NLm like InNL from NL, with the new axiom:

(aDM) (0A)~ & O (A™M),

and similarly for CNLm. (Notice that (a.DM) for ~ is derivable in InNLm, like in alge-
bras.) These logics are strongly complete with respect to the corresponding algebras.
InNL, CNL, InNLm, CNLm, presented in this form, do not admit cut elimination. For
instance, p/q = (¢ ® p~)~ is valid (see (IRG2)), hence provable in InNL, but it is
not an axiom and can be the conclusion of (NL-cut) only.

1.4 Type Grammars

We define type grammars. Let £ be a logic, which yields provable sequents of the form
I' = A. The formulas of £ are referred to as types. By a type grammar based on L
we mean a triple G = (X, I, Ag) such that ¥ is a nonempty finite alphabet (lexicon),
I (the type lexicon) is a map which assigns a finite set of types to any v € X, and Ag
is a type (the designated type). Usually, one takes an atomic type for Ao, e.g. s—the
type of sentence (statement). We define a basic notion: G assigns a type A to a string
u € 2T (write: u : A in G); the definition depends on the form of sequents. For logics
without modalities, vy ... v, : Ain G, if there existtypes A; € I(v;),fori =1, ..., n,
and a bunch T such that I' = A is provable in £ and (Ay, ..., A,) is the sequence
resulting from I', after one has dropped all bunch parentheses (i.e. the yield of I'). (For
associative logics, like L, one simply states: Ay, ..., A, = A is provable.) For logics
with modalities, we admit the same definition, but we additionally require that I" does
not contain angle brackets. This is natural: one can ignore the phrase structure (the
tree structure) on the string, but not the modal structure. Otherwise a grammar (based
on NLm) assigning s to v would also assign s to v, since (s) = Qs is provable in
NLm, by (NL-id) and (= ¢), though s = s is not provable in NLm. The latter is
provable in a stronger logic, namely NLm with the axiom (T) A = QA.

By the language of G (or: generated by G, recognized by G) we mean the set of
all u € 7 such that u : Ag in G; this language is denoted by L(G). If G is based on
a nonassociative logic, like NL, InNL, etc., then the bunch structure of I" induces a
tree structure (phrase structure) on the generated string. Accordingly, such grammars
naturally describe languages of phrase structures rather than languages of strings, and
the latter are obtained from the former by neglecting the structure.

This paper is concerned with mathematical foundations of some logics connected
with type grammars (also interesting for themselves). It cannot discuss in detail appli-
cations in natural language processing. We only briefly point out some main lines.

Basic Categorial Grammars, tracing back to Ajdukiewicz (1935), Bar-Hillel et al.
(1960), employ a minimal logic, based on the application laws A, A\B = B,
A/B, B = A.Thus,under the type lexicon ‘John’: np, ‘Mary’: np, ‘likes’: (np\s)/np,
one derives ‘John likes Mary’: s with the induced tree structure (John (likes Mary));
np is the type of noun phrase. This logic can be axiomatized as a fragment of NL,
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admitting (NL-id) and the left introduction rules for \, /. Lambek (1958) consid-
ers a stronger logic, nowadays called Lambek Calculus (L), which yields new laws,
e.g. A\B, B\C = A\C, A/B,B/C = A/C (composition laws). Now, with ‘he:
s/(np\s), ‘her’: (s/np)\s, one derives ‘he likes her’: s. Due to the associativity of
product. the type grammars based on L are not sensitive to the tree structure of the
generated string. Therefore, many linguists prefer nonassociative logics like NL. To
improve the expressivity power of these logics one enriches them with unary modali-
ties ¢, (J¥; the multi-modal framework, elaborated in Moortgat (1996), Morrill (1994),
Moortgat (1997) and Moot and Retoré (2012), admits several pairs of unary modali-
ties and several binary products with the corresponding residuals. One assumes some
restricted associativity and commutativity laws for modal formulas, which makes
it possible to apply the corresponding structural rules in a controlled manner. This
resembles Girard’s usage of exponentials in linear logics (Girard 1987).

Let us consider an example from Moot and Retoré (2012). By (RGm), np can be
lifted up to both Df, Qnnp and Di Qanp, where the subscripts abbreviate nominative
and accusative. We assignnp to ‘John’ and ‘Mary’, D}l Onnpto ‘he’ and ‘she’, Dﬁ Qanp
to ‘him’ and ‘her’, and

(@} Ounp\s) /0L Oanp

to ‘likes’. The resulting grammar, based on NLm, assigns s to ‘John likes Mary’, ‘he
likes her’, but not to ‘her likes Mary’, ‘Mary likes he’. Notice that the typing from
the preceding paragraph does not work for ‘he likes her’ on the basis of NL, since the
sequence s/(np\s), (np\s)/np, (s/np)\s is not the yield of any I" such that " = s
is provable in NL.

Logics with linear negations are much richer, but they are conservative extensions
of their negation-free fragments. It was shown in Buszkowski (2016) that CNL is a
strongly conservative extension of NL; earlier de Groote and Lamarche (2002) had
shown that CNL is a conservative extension of NL (that means: every NL-sequent
provable in CNL is provable in NL). Since InNL is intermediate between NL and
CNL, it is also a strongly conservative extension of NL. Also CNLm is a strongly
conservative extension of NLm, hence the same holds for InNLm.

This implies that every type grammar based on NL (resp. NLm) can be treated
as a grammar based on InNL or CNL (resp. InNLm, CNLm), with no change of
the generated language (this remains true, if one adds some nonlogical axioms to
the former logic). The richer logic offers a more interesting proof machinery and
often more symmetries. For instance, in InNL, the application laws are dual to the
co-application laws by the basic duality: A = B iff B~ = AT iff B~ = A~,
which cannot be expressed in NL. In the algebraic notation: a ® (a\b) < biff b~ <
(@\b)" ®a iff b~ < (b” ®a)/a.

In Casadio (2001) and Casadio and Lambek (2002), Noncommutative MLL, which
amounts to InL (i.e. the associative InNL) with 1, is directly employed as a logic
underlying type grammars (Lambek’s name: Bilinear Logic). Lambek (1999) consid-
ers Compact Bilinear Logic (CBL), where ® = @ and 1 = 0; the algebraic models
are called pregroups and the resulting type grammars pregroup grammars. Lambek
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Table 1 Some sample types in different formalisms

Word NL-type InNL-type CBL-type
works np\s np~ ®s [np]"s
likes (np\s)/np (np~ ®s)@np~ [np)”slnpl
whom (n\n)/(s/np) (™~ ®n) @ (p~ " ®s7) n"nlnp)''s!

writes A” for A~ and A for A~ (A" is the right and A the left adjoint of A). Table 1
shows some sample types in NL, InNL, and CBL. Here n is the type of common noun,
and ‘whom’ is typed for contexts like ‘boy whom Mary likes’.

Linear logics strongly influenced some current ideas in type grammars. Proof nets
are interpreted as logical forms of expressions (Moot and Retoré 2012). Unary modali-
ties enable one to apply structural rules in a controlled manner. Some authors maintain
logics intermediate between NL or L and MLL. Moortgat (2009) considers an exten-
sion of NL with @, its (dual) residuals and some mixed associativity and commutativity
axioms, due to Grishin (1983), under the name Lambek—Grishin Calculus (LG). The
corresponding type grammars are called symmetric categorial grammars. Bastenhof
(2013) provides a detailed study of these grammars (also see Sect. 3). All new axioms
of LG are provable in the associative and commutative version of InNL.

1.5 Contents

The present paper aims to develop the theory of nonassociative multiplicative linear
logics, which—as it has been explained above—are very close to some basic logics of
type grammars. Besides their possible applications in linguistics, they seem interesting
for themselves. Nonassociative logics are more efficient than their associative versions;
the latter are NP-complete (Pentus 2006), whereas the former are PTIME. From the
theoretical perspective, the study of these weaker logics throws some new light on the
whole area. For instance, our notion of a phase space exhibits an essentially modal
character of linear negations.

This paper is organized as follows. In Sect. 2 we define and discuss phase spaces for
InNLm. Section 3 studies a one-sided sequent system for InNLm; the cut-elimination
theorem is proved in a model-theoretic way. Section 4 concerns auxiliary logics
InNLm(k). With the aid of them we show that InNLm is PTIME and the type grammars
based on InNLm are equivalent to the e-free CFGs.

2 Phase Spaces

By a phase space we mean a frame (M, -, f, R) such that - and f are a binary and
a unary operation on M and R C M?. For logics without ¢, I one omits f. For
X € M we define:

X" ={beM:Vyex R(a,b)}, X ={a€M:Vyex R(a,b)}.
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This yields a Galois connection: X € Y7 iff Y € X, forall X,Y € M. Con-
sequently, ~,” reverse Cand X~ = X, X777 = X, forany X C M. The
operations ¢g(X) = X~ and Yg(X) = X~ are closure operations on P(M).
Recall that an operation C on P(M) is called a closure operation, if it satisfies:
(CH X C C(X),(C2)if X C Y then C(X) C C(Y), (C3) C(C(X)) = C(X),
forall X,Y € M. Aset X € M is said to be C-closed, if X = C(X) (equivalently:
X =C(Y),forsome Y C M). One easily shows that X is ¢ g-closed (resp. ¥ g-closed)
ifandonlyif X =Y (resp. X = Y~ ) forsome Y C M.

Given a groupoid (M, -), f : M +— M and X, Y C M, one defines:

X-Y={a-b:aeX,beY},
X\Y={beM:X-{b}CY}, X)Y={aeM:{a}-Y C X}
OX = fIX1={f@:aeX}), O'X=Ff"XI={aeM: f(a) € X}.

‘P (M) with these operations and C is a modal residuated groupoid. (URES) amounts
to the well-known equivalence: f[X] C Y iff X € f![Y].

A closure operation C on P(M) is called a nucleus, if it satisfies: (C4) C(X) -
CY)CCX-Y),(C50C(X) CC(OX),forall X,Y € M. Assuming (C1)—(C3),
(C4) is equivalent to: (C4) for any C-closed set X and any ¥ C M, the sets Y\ X
and X /Y are C-closed, and (C5) to: (C5) for any C-closed set X, OYX is C-closed
(Buszkowski 2011). We show that (C4’) entails (C4). From X - Y € C(X - Y) we
get Y € X\C(X -Y), hence C(Y) € X\C(X - Y) by (C2) and (C4). This yields
X - CY)CCX-Y).SoX CC(X-Y)/C(Y),hence C(X) C C(X-Y)/C(Y),
which yields (C4). We show that (C5’) entails (C5). From 0X C C(0X) we get
X € OVC(OX), hence C(X) € OVC(OX), by (C2) and (C5'). This yields (C5), by
(URES).

Let (M, -, f), be as above, and let C be a closure operation on P(M). By M¢
we denote the family of C-closed subsets of M. M¢ is closed under infinite meets
(intersections), hence it is a complete lattice. For X, Y € M¢ one defines: X ®c Y =
C(X-Y),0cX =C(0X),and X/Y, X\Y, O} as above. If C is a nucleus, then M¢
with these operations (restricted to M¢) and C is a modal residuated groupoid. We
show (URES). Let X, Y € M¢. Assume OcX C Y. Then, 0X C Y, by (C1), hence
X C OVY. Assume X € VY. Then, OX C Y, hence OcX C Y, by (C2), since
Y e Mc.

A phase space (M, -, f, R) is called a phase space for InNLm, if ¢p = g and
the following conditions hold:

(Shift) foralla,b,c € M, R(a - b, c) iff R(a,b - ¢).
(mShift) foralla,b € M, R(f (a), b) iff R(a, f(b)).

It is called a phase space for CNLm, if (Shift) and (mShift) hold and R is symmetric.
Phase spaces for InNL (resp. CNL) are defined in a similar way; one forgets f and
omits (mShift).

For any phase space (M, -, f, R), R is symmetric if and only if X~ = X~ for any
X C M. Consequently, if R is symmetric, then ¢r = . So every phase space for
CNLm (resp. CNL) is a phase space for InNLm (resp. InNL).
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The following lemma shows that, in general, (Shift) yields (CON) in the powerset
algebra.

Lemma 1 Let (M, -, R) be a phase space. (Shift) is equivalent to each of the following
conditions:

() X~/Y = X\Y~ forall X,Y C M,
() X\Y~ = (Y -X)" forall X,Y C M,
(i) X=/Y = (Y - X)" forall X,Y C M.

Proof First, (Shift) is equivalent to (i) restricted to one-element sets: foralla, b € M,
{a}~/{b} = {a}\{b}~. We have: x € {a}~/{b}iff x - b € {a}” iff R(a, x - b). Also:
x € {a}\{b}” iff a - x € {b}” iff R(a - x, b). So (Shift) is equivalent to: for all
a,b,x € M, x € {a}~/{b} iff x € {a}\{b}~.

The restricted (i) follows from (i). Also (i) follows from the restricted (i), since for
X =Aaj}icr, Y = {bj}jej, we obtain:

X~/Y = (ﬂ{air) JY = Na™ /b = @b}~ = x\r~.

iel iel jeJ iel jeJ

Here we use the distributive laws! for -, \, / and:

<U2i>w=ﬂzf, Uz - Nz

iel iel jeJ jeJ

So (Shift) is equivalent to (i). The remaining equivalences can be proved in a similar
way. O

Lemma2 Let (M, -, f, R) be a phase space. (mShift) is equivalent to each of the
following conditions:

(i) (0X)~ =0V (X™), forany X € M,
(i) (0X)~ =0OYX"), forany X € M.

Proof We show that (mShift) entails (i) for one-element sets X. We have: b € ({{a})”™
iff R(f(a), b) iff R(a, f(b)) iff f(b) € {a})~ iff b € OV ({a}™). Conversely, (mShift)
follows from (i) for one-element sets. Furthermore, (i) for all one-element sets is
equivalent to (i) for all sets. This can be shown as in the proof of Lemma 1, using
the fact that ¢ distributes over | J and [I¥ over (). In a similar way, one shows the
equivalence of (mShift) and (ii). O

If g = YR, then My, = My, ; we denote this family by Mg. Clearly My is closed
under ~,”. We write ®g, Or for ®g,, Oy -

1 Product distributes over joins in both arguments and \, / distribute over meets in the upper argument and
convert joins into meets in the lower argument (Galatos et al. 2007).
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Theorem 1 Let (M, -, f, R) be a phase space for InNLm. Then, ¢ is a nucleus and
Mg with operations ®g, \, /, Or, Y, ™, and ~, restricted to MR, is a modal involutive
residuated groupoid.

Proof We prove (C4°). Assume X € Mg, Y C M. There exist Z, U € M such that
X =Z7Z"=U".BylLemmal, X/Y =U"/Y = (Y -U)", hence X/Y € Mg.
Similarly, Y\X = Y\Z™ = (Z - Y)", hence Y\X € Mpg. We prove (C5’). Assume
X € Mg. Then, X = Z™, as above. So (VX = (0Z)~, by Lemma 2, hence VX e
Mpg. Consequently, ¢ is a nucleus. So the algebra is a modal residuated groupoid.
For X € Mg, we have: X7 = ¢p(X) = X and X~~ = yg(X) = X, which
yields (DN). (CON) follows from Lemma 1, and (DMm) from Lemma 2. m]

We refer to the algebra My, defined above, as the complex algebra of the phase
space (M, -, f, R). (In the literature on linear logics, the elements of this complex
algebra are called facts.)

Lemma3 Let (M, -, f, R) be a phase space, satisfying (Shift) and (mShift). Let U C
M be a set of generators of the free algebra (M, -, f). Then, ¢r = g if and only if
forany a € U, {a}” is Yr-closed and {a}™ is ¢pr-closed.

Proof We prove the ‘only if” part. Assume ¢r = Y. So the ¢pg-closed sets coincide
with the yg-closed sets. Since {a}" is ¢g-closed, it is {¥rg-closed. Since {a}~ is Yg-
closed, it is ¢ g-closed.

We prove the ‘if” part. Assume the right-hand side of the equivalence. We show that
this condition holds for any a € M. Assume that aj, ap € M satisfy this condition.
We show that a; - ap satisfies this condition. We have {a; - a2}~ = ({a1} - {a2})”,
and this set equals {a>}\{a1}™, by Lemma 1(ii). Since {a;}” = {a1}”" ", by the
second assumption, then this set equals {ap}~ /{a1}~", by Lemma 1(i). Since {a;}~ =
{a2}~~", by the assumption, this set equals {a;™™ - a;"}~, by Lemma 1(iii), hence
it is Ypr-closed. In a similar way, one shows that {a] - a;}~ is ¢g-closed. Assume
that a satisfies this condition. We show this condition for f(a). We have: {f(a)}™ =
Qlah)™ = Di({a}”) = Di({a}”w_) = (O({a}™™))~. So this set is Yg-closed. In a
similar way, one shows that { f (a)}~ is ¢r-closed.

Now, we have:

X~ = (U{a})w =({a)".

acX aeX

X" is an intersection of {g-closed sets, hence it is Y g-closed. So every ¢g-closed
set is Y r-closed. In a similar way, one shows that every ¥ g-closed set is ¢ g-closed.
Then My, = My,, which yields ¢ = g, since ¢pg(X) is the smallest ¢g-closed
set containing X, and similarly for g (X). O

Remark 1 If (M, -, f, R) is a phase space for CNLm, then its complex algebra is a
modal cyclic involutive residuated groupoid. This directly follows from Theorem 1
and the equality X™ = X, for X € M.
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Remark 2 Our notion of a phase space exhibits a modal character of linear negations.
For X € M, we have:

X" ={beM:Vy(—R(a,b) = a ¢ X)},
X" ={aeM:Vy(—R(a,b) = b ¢ X)}.

Consequently, if [ is the necessity operation defined (in the standard way) for the
Kripke frame (M, R¢), where R® = M?— R, then X~ = [1X°. In the logical notation:
A~ & [0—A. Here —, = and < stand for negation, implication and equivalence of
classical logic. Analogously, A~ < [0¥—A, where (¥ is defined as above except
that R is replaced by its converse. One can interpret InNL and other linear logics in
classical multi-modal logics, but we will not elaborate on this issue. For a thorough
discussion of Lambek logics within the modal framework see van Benthem (1991).

Remark 3 Abrusci (1991) studied phase spaces for Noncommutative MALL. Like for
other linear logics, his phase space is of the form (M, -, O), where O € M (linear
logicians write L.* for our O). One can define Rp = {(a, b) € M?:a-be O}. Then
X~ = X\0, X~ = 0/X. Our notion is more general and natural for logics without
multiplicative constants; see Examples 1 and 2. However, if (M, ) is a free groupoid,
then always R = Rp for O ={a - b : R(a,b)}.

If R = Rop, for O € M, then (Shift) amounts to the following equivalence:
(Shift-O) (a-b)-ce€ Oiffa-(b-c) € O,foralla,b,c e M.

Clearly, (Shift-O) holds, if - is associative. Therefore, in the literature on linear logics,
which assume the associativity of product, no constraint of this kind was considered.

Remark 4 1f (M, -, 1, f, R) is a unital phase space for InNNLm (1 is the unit for -), then
¢r({1}) is the unit for ® ¢ in the complex algebra. This construction yields models for
logics with multiplicative constants. Observe that (Shift) implies: R(a, b) iff R(a-b, 1),
and consequently R = Rp for O ={a € M : R(a, 1)}.

Example1 Let M = (M, -,\,/,”,”, 0, ¥, <) be a modal involutive residuated
groupoid. One defines the canonical phase space (M, -, O, R), by setting: R(a, b) iff
a < b~ (equivalently: b < a™). One shows that this is a phase space for InNLm
and the mapping h(a) = {b € M : b < a} is an embedding of M into the complex
algebra of this canonical phase space. In general, the canonical relation R cannot be
represented as Rp for O C M.

Example 2 Let M be the set of all pairs of positive integers. We define the addition
of pairs pointwise. So (M, 4) is a commutative semigroup. The relation R C M? is
defined as follows: R(x, y) iff neither x, nor y is a sum of two pairs. Clearly R is
symmetric and satisfies (Shift). Consequently, (M, 4, R) is a phase space for CNL.
We show that R #= Rp forany O € M. Suppose that R = Ry. Since R((1, 2), (2, 1)),
we get (3,3) € O. Hence R((1, 1), (2, 2)). This contradicts the definition of R, since
2,2)={,)+{,1).
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3 Sequent Systems

We present our one-sided sequent system for InNLm. Propositional variables are

denoted by p,q,r,.... Atomic formulas (atoms) are of the form p®™, where p is
a variable and n € Z. p(”), for n > 0, means p~ " with ~ occurring n times, and
for n < 0, it means p~"~ with ~ occurring |n| times. So p@ = p, p® = p™~

p(’z) = p~~, and so on. The connectives are ®, P, O, v,

Bunches are defined as for NLm. Sequents are pairs of bunches. The metalogical
notation is like for NLm. T is reserved for sequents. I'; A denotes the sequent being
the pair of " and A.

Our sequent system is denoted by S-InNLm. Its cut-free fragment admits the
axioms:

d) p™; p*D for all variables p and n € Z

and the inference rules:

TI(A, B)]
O A e Bl
o) Y[B] A; A @) Y[A] B; A
T[(A, A B)] T[(A® B, A)]
THAT . TIA]
COyoar T yEra)
(T, A); © A
(r-Shift) =———=—= (r-mShift)
T (2, 0) T (A)

The algebraic models are modal involutive residuated groupoids. We assume that
every valuation s satisfies: u(p™+1) = u(p™)™, for any atom p™. u is extended
for bunches as for the case of NLm. We define: M, u = I'; A iff u(I') < u(A)~™
(equivalently: u(A) < w(I)™).

Negations are defined in metalanguage.

(p(")) ("+1) (p(ﬂ))— _p(" 9]

(A®B)" =B @A~ (A®B)” =B~ ®A™ (similarly for ™)
(OA)~ =% (A™) (OYA)™ = O(A™) (similarly for 7)

For example, (p7)” = p, (p7)” = p~ , (p®q~)” = q & p~. S-InNLm
is restricted to formulas in negation normal form: negations occur at variables only.
Moreover all pairs ~~ and ~ are eliminated. In metalanguage one can apply nega-
tions to arbitrary formulas. This facilitates the presentation of the system. Buszkowski
(2016) shows a more involved system for CNL with negation as a legal connective.

Notice that the rules of the cut-free S-InNLm do not manipulate negations. This
system possesses the subformula property: the sequents appearing in a proof of YT
consist of subformulas of the formulas occurring in Y. We assume that the only
subformula of p®™ is p®™. So e.g. p is not a subformula of p~.
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By induction on A, one easily proves A~~ = A, A™" = A;also, if u is a valuation
in a modal involutive residuated groupoid, then:

W(A™) = u(A)~, u(A™) = u(A)~, for any formula A. )
We define S-InNLm as the above system, enriched with the cut rules.

. [A] A; A~ _T[A] A=A
(cut”)——— (cut ) ———
I'[A] I'[A]
We want to prove that the cut-rules are admissible in the cut-free S-InNLm by
a model-theoretic argument. We need an auxiliary system Sp, which arises from S-
InNLm, after one has replaced (r-Shift) with the following rules:

(@ 3) A; T B; A (@ 4) I'nA A;B
A® B;(A,T) (A, T);A® B
and (r-mShift) with:
coty—BL ply 4
OVvA; (T) (M);vA~

Recall that a rule is derivable in a logic, if the conclusion is provable from the
premise(s), and admissible, if the conclusion is provable whenever every premise is
provable. (r- & 3) is derivable in S-InNLm, by (r- & 2) and (r-Shift), and (r- & 4)
is derivable, by (r- @ 1) and (r-Shift). Similarly, (t-0¥1) and (r-03¥2) are derivable,
by (r-00V) and (r-mShift). By F (resp. ) we denote the provability in the cut-free
S-InNLm (resp. Sp).

We need two proof-theoretic lemmas. The complete proofs of these lemmas for
InNL can be found in Buszkowski (2017a).

Lemma4 The rules (r-Shift), (r-mShift) are admissible in Sy.

Proof We prove: g (I'1, I'p); Tz iff o I'y; (I'z, I'3). The only-if part is proved by
induction on the proof of (I'1, I'2); I'3 in Sp, and the converse implication in a similar
way. (I'1, I'2); '3 is not an axiom. It can be the conclusion of (r-Q), (r- & 1), (r- & 2),
(- ®4), (-0) and (r-0%). The non-modal rules are treated as in Buszkowski (2017a).
For the modal rules, the active formula occurs in I'; for some i. We apply the induction
hypothesis to the premise of this modal rule, then apply this rule.

We prove: o (I'1); 'z iff g I'1; (I'2). The only-if part is proved by induction on
the proof of (I'1); 'y in Sp, and the converse implication in a similar way. (I'1); I'2
is not an axiom. It can be the conclusion of (-®), (--&®1), (-®2), (-0), (r-00V) and
(r-00¥2). The first four rules cause no problem: the active formula or the active bunch
(for @-rules) must be contained in I'y or I';. One applies the induction hypothesis to a
premise of this rule, then applies this rule. For (r-CJV), the interesting case is: (I'1); I's
equals (OYA); T, with the premise A; I'>. Then, OV A; (') arises by (r-00%1). For
(r-00¥2), ('y); I’y equals (I'1); OO A with the premise I'y; A. Then, I'y; (Y A) arises
by (-00%). o
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Consequently, - Y if and only if o T, for any sequent Y. We need two new rules.

AT _IA
— () ——
I'; A AT

")

Lemma5 The rules (r-~""), (r-— ) are admissible in the cut-free S-InNLm.

Proof 1t suffices to prove that these rules are admissible in Sg. For (r-~7"), we prove: if
Fo D; ® then -9 ®; D™, by the outer induction on the number of connectives in D
and the inner induction on the proof of D; ® in Sp. For (r-~ ) the argument is similar.

Assuming our claim for all D’ having less connectives than D, we run the inner
induction. If D; ® is an axiom (id), where D = p(”), O = p(”H), then ®; D™
equals p@+D; p®+2) "which is an axiom, too.

Assume that D; © is the conclusion of a rule. The non-modal rules are treated as
in Buszkowski (2017a).

(r-0). The interesting case is: D; ® equals O A; ® with the premise (A); ®. Due
to Lemma 4, we get A; (®), by (r-mShift), hence (®); A~ by the outer induction
hypothesis. Then, ®; (A7), by (r-mShift), and finally ®; O(A™7), by (r-0). Clearly
QO(A™™) equals (OA)™™.

(r-00Y%). The active bunch ((J% A) must occur in ®. One applies the inner induction
hypothesis to the premise, then applies (r-[1V).

(r-00%1). Then, D; © equals (I A; (®') with the premise A; ©". We get @'; A~
by the inner induction hypothesis, hence @; (0¥ (A™™), by (-00V2).

D, ® cannot be the conclusion of (r—DQ). O

So is needed just for the proof of Lemma 5. With S-InNLm, there would be problems
for (r-Shift) and (r-mShift). For instance, if D; (I', A) arises from (D, I'); A by (-
Shift), one cannot apply the inner induction hypothesis to the premise.

Corollary1 = A=; T ifand only if = T'; A~

We write I’ = A for A™; I" and define:
[A]={T:FT = A}.

A sequent Y is said to be valid in InNLm, if M, u = T for all modal involutive
residuated groupoids M and all valuations p in M. We prove that the cut-free S-InNLm
is weakly complete. This proof resembles earlier proofs for different substructural
logics (Lafont 1997; Galatos et al. 2007; Galatos and Jipsen 2013), but certain new
arguments are needed (notice the usage of Corollary 1 in the proof).

Theorem 2 For any sequent X, = Y if and only if Y is valid in InNLm.

Proof 1t is easy to verify that the axioms (id) are valid and all rules preserve validity
(in fact, they preserve the truth for u in M). For (r-®) and (r-{) this is obvious. For
(r-®1), (r-82) this follows from the laws a~ ® (a ® b) < b, (a ® b) ® b~ < a and
for (r-00%) from (RGm). One uses (COMP) for (r-Shift) and (COMPm) for (r-mShift).
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For the ‘if” part, we construct a counter-model for any unprovable sequent. We
consider a phase space (M, -, f, R) such that (M, -, f) is the free algebra of bunches
Ge.I' A= (,A)and f(I') = (I')) and: R(I", A) iff = T"; A. Clearly this phase
space satisfies (Shift) and (mShift), due to (r—Shift) and (r-mShift).

For any formula A, we have: [A] = {I" : R(A=,)} = {T" : R, A7)}, by
Corollary 1, which yields:

[Al={AT}"={A"}", [AT]={A}", [AT]={A}". 2

Consequently, [A] is ¢ gr-closed and yrg-closed, for any formula A. Then, for any A,
{A}™ is Yr-closed and {A}~ is ¢g-closed. We obtain ¢pr = g, by Lemma 3. So
(M, -, f, R) is a phase space for InNLm.

By Theorem 1, the algebra (Mg, Qg, \, /, Or, oy~ -, Q) is a modal involutive
residuated groupoid. We define a valuation u.

n(p) =[pl
u(ptYy = p(p™)~ forn =0, w(p™ D) = pu(p™)~ forn <0

By induction on the number of connectives in A, we prove:
A € u(A) C [A] for any formula A . 3)

A= p™. We proceed by induction on |n|. For n = 0, we have u(p) = [p]
and p € [p], since p; p~ is an axiom. Assume (3) for n > 0. From u(p(”)) -
[p™] = {p"*D}~ (use (2)) we obtain {p" D}~ < u(p™)~ = u(p™*h) (use
(1)), and p”*V € pr({pUtV}) = (p" TV}, hence p"*D € p(p™ D). From
{p™} S u(p™) we obtain u(p V) < {p™M}~ = [pTD] (use (1), (2)). In a
similar way, assuming (3) for n < 0, we obtain (3) forn — 1.

A = B ® C. We need the following property.

(P1) If X e Mgp and (B,C) € X,then B® C € X.

Assume that X € Mg and (B,C) € X.Fix Y suchthat X = Y. ForallT" € Y,
FT;(B,C),henceT; B® C,by (-®). So B® C € X.

By the induction hypothesis, (3) holds for B and C.From B € u(B) and C € u(C)
weobtain (B, C) € w(B)-u(C) € u(B)Q@ru(C) = u(BRC),hence BQC € u(B®
C), by (P1). Also u(B) € [B] = {B7} " and u(C) € [C] = {C~}". Hence, for all
I' e w(B), B7;I',andforall A € u(C), C~; A.By (-®3),- C~ @ B~; (I, A),
foralll" € u(B), A € u(C).Consequently, u(B)-u(C) S {(BRC)"}” =[BQC(],
which yields (B ® C) = ¢r(u(B) - n(C)) € [B® C], since [B ® C] is ¢pr-closed.

A = B®C.Since B and B~ have the same number of connectives, and similarly for
C and C™, then (3) holds for B~ and C~ by the induction hypothesis. So C™ ® B~ €
w(C~®B™) C [CT®B™],bytheabove. Weobtain[C"®B™]” C u(C~®B7)™ C
{C~®B~}", whichyields (3) for B@&C,since BC € {BOC} " =[C"®B7]",
UC B ) =uBeC)and{C" ® B~} =[BpC].

A = {B. We need an analogue of (P1); the proof is left to the reader.
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(P1m) if X € Mg and (B) € X, then OB € X.

By the induction hypothesis, (3) holds for B. From B € u(B) we get (B) € Ou(B) €
Or(B) = n(A). So A € u(A), by (PIm). Also u(B) € [B] = {B~}". Hence
forall T € w(B),+ B~; . By (-00%1), - ¥ (B™); (I'). Consequently, {(u(B)) €
{(0B)™}" = [OB], which yields u(A) = Or(n(B)) < [A]

The case A = [V B is similar to A = B @ C and left to the reader.

Assume I I'; A. From A € u(A), for any formula A, one easily proves ® € u(®)
for any bunch ®, by induction on the number of commas and angle brackets in ®. So
I' e w(I') and A € u(A). By the assumption, I' ¢ w(A)~, hence w(I') € w(A)™.
Consequently, I'; A is not valid. O

Corollary 2 (cut™) and (cut™ ) are admissible in the cut-free S-InNLm.
Proof Both rules preserve the truth for x in M, hence the validity. O

This model-theoretic proof of the cut-elimination theorem is not constructive. A
constructive, syntactic proof for S-InNL is given in Buszkowski (2017a).

Theorem 3 S-InNLm is strongly complete with respect to modal involutive residuated
groupoids.

Proof Let @ be aset of sequents. Every bunch I can be transformed in a formula F (T),
according to the rules: F(A) = A, F((T', A)) = FT)® F(A), F(T')) = OF(I"). In
S-InNLm every sequent I'; A is deductively equivalent to F (I"); F'(A). So we assume
that all sequents in & are of the latter form.

Now, - denotes the provability in S-InNLm. Notice that (r-~""), (r-~ ) are derivable.
For (r-77), we derive I'; A~ from A; ', using A™; A~ (valid, hence provable), by
(cut™). For (-—7),use A~ —; A~ and (cut™).

We consider a phase space (M, -, f, R), defined as in the proof of Theorem 2 except
that: R(I', A) iff ® - I'; A. We define [A] ={": T = A}, where' = A
is as above. The equations (2) hold. Accordingly, (M, -, f, R) is a phase space for
InNLm. We consider the modal involutive residuated groupoid Mg and the valuation
W, defined there. One proves (3), and its stronger form:

w(A) = [A] for any formula A. (4)

We need the following property.
(P2) If X € Mr and A € X, then [A] C X.

Assume that X € Mg and A € X. Fix Y such that X = Y"". Then, ® + I''; A for all
I' € Y, and consequently, ® - I'; AforallI" € Y, A € [A] (use (cut™)). So [A] C X.
Accordingly, A € (A) yields [A] € n(A). Hence (3) entails (4).
If (A; B) € @, then A € [B™]and [A] C [B™], by (P2), hence u(A) € u(B)~,
by (4), (2). So all sequents from & are true for w. If ® I/ I'; A, then w(I') € u(A)™,
as in the proof of Theorem 2. O
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These logics can be augmented with additive connectives A, vV and multiplicative
constants 1, 0; see Buszkowski (2017a) for such systems without modalities. All results
of Sects. 2 and 3 remain true for these extensions.

Although each sequent of S-InNLm is divided in two parts by semicolon, this does
not mean that the system is two-sided. The sequent I'; A can uniquely be represented
as the bunch (I", A). So semicolons can be replaced by commas and sequents defined
as the bunches containing at least two formulas [like in Buszkowski (2016, 2017a)].
In this paper we write semicolon for the outermost comma in a sequent in order to
emphasize its distinguished role: in opposition to other commas it is not interpreted
as product (we follow de Groote and Lamarche 2002, where semicolons are used in
a similar role). Nonetheless one cannot write ' = A for I'; A, since the sequent is
not interpreted as w(I") < w(A). For the associative version of InNL (i.e. Involutive
Lambek Calculus), an analogous sequent system operates with sequents in the form of
finite sequences Aq, ..., A,, where n > 2 (no comma is distinguished). We have, for
instance, M, u = A, B, Ciff u(A® B) < u(C)~ iff u(B® C) < u(A)™~. Similarly,
for S-InNLm with 1, 0, sequents can be identified with bunches. One definesM, u =T
iff w(I") < 0; see Buszkowski (2017a).

The truth condition w(I") < 0is dual to 1 < wu(I"), which is admitted for standard
one-sided systems for linear logics (in those systems, all commas in sequents are inter-
preted as @). Our systems follow Lambek (1995) who studies an analogous system for
Bilinear Logic. In relation to two-sided systems with sequents I' = A, the standard
one-sided systems employ sequents = A, whereas ours I' = (precisely, this holds
for our systems with 1, 0). Our systems are more compatible with the syntax of intu-
itionistic systems and more expedient for type grammars.? Let us note that S-InNLm
can easily be transformed into a standard form. The axioms are (id) p"*D; p . One
interchanges ® and @ as well as ¢ and [V in the rules for connectives and modi-
fies the second premise in the cut rules to A™; A in (cut™) and A; A~ in (cut™). All
results of this paper can be proved for the standard S-InNLm in essentially the same
way or even inferred from our results, using natural symmetries, e.g. I'; A is provable
in S-InNLm if and only if A™; "™ is provable in its standard version. Here I'"™ is
recursively defined, using the last equation of the next paragraph.

Atthe end, we mention other systems, closely related to ours. Bastenhof (2013) stud-
ies different formal systems for InNL, called Nonassociative Bilinear Logic, among
them a display system and two different, standard one-sided sequent systems. In the
latter systems negations are treated as connectives in the language of the system. A"
and A’ are written for our A~ and A~ respectively, but these are not our metalanguage
negations, e.g2. (p ® ¢q)" is a well-formed formula of these systems. In some rules the
formula A" or A" in the premise is reduced to A in the conclusion; also A" and All
can be reduced to A, while moving to the other side of the sequent. Therefore, the
cut-free systems do not possess the subformula property.> Galatos and Jipsen (2013)
introduce a two-sided sequent system for InNL with 1, 0 and A, Vv (denoted by InGL),
whose multiplicative connectives are ®, ~, — (product and two negations, written

2 The rules for connectives in S-InNLm correspond to the left introduction rules in NLm [for &, see (IRG3)].

3 Theorem 4.4.2 in Bastenhof (2013) is an analogue of our Corollary 2 for one of those systems, but its
proof is not fully correct.
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before formulas, e.g. —A). Sequents are of the form I' = A. (Since @ is not used, the
commas in A are never replaced by @; they are only used to manipulate negations.)
The negations of bunches I'", I'™ are treated as structural operators (like our angle
brackets). One assumes that these structural operators satisfy the laws of free involu-
tive groupoids e.g. '™~ =T, (I', A)™ = (A™, I'™). Although this system possesses
the subformula property, it is not easy to control the number of structural negations,
applied in a proof. Our systems avoid this problem. Galatos and Jipsen (2013) does
not consider phase spaces in our sense.

4 Studying InNLm with the Aid of InNLm(k)

Let a be an element of an involutive residuated groupoid. We use the notation a™
in the same meaning as in Sect. 3, e.g. a® =a~,a"? = a~. Let k be an even
positive integer. An involutive residuated groupoid is said to be k-cyclic, if a® = a for
any a € M (Galatos and Jipsen 2013).* Notice that a~ = a*~1 in k-cyclic algebras
of this kind, since ¢~ = a = a® = (@%~D)~ and ~ is a bijection, by (DN). In
particular, ‘2-cyclic’ means ‘cyclic’.

InNLm(k) is InNLm from Sect. 1 with the new axiom A®) < A. This logic is
strongly complete with respect to k-cyclic modal involutive residuated groupoids.
InNLm(2) amounts to CNLm.

We introduce a sequent system S-InNLm(k). The atoms are of the form p®™ for
0 < n < k. All axioms and rules are as for S-InNLm, but n, n 4+ 1 are computed
modulo k. So the axioms are: p("); p(”+1), forO<n <k—1and p(k_l); p.

The metalanguage negations =, are defined as in Sect. 3 (we compute n 4 1 and
n — 1 modulo k). All syntactic equations from Sect. 3 remain true. We use the notation
A™ for arbitrary formulas A in an obvious sense. We have A® — A since k is
even. We also obtain (1) for any valuation p in a k-cyclic modal involutive residuated
groupoid. Lemmas 4 and 5 remain true; now Sp arises from S-InNLm(k) like the
former So from S-InNLm.

Theorem 4 The cut-free S-InNLm(k) is weakly complete.

Proof The whole proof of Theorem 2 can be repeated except that we cannot prove (at
this moment) that the algebra (Mg, ®g, \, /, Or, ov,~ -, Q) is k-cyclic. We con-
sider the subalgebra MY, consisting of 1(A), for all formulas A. By (1), u(A)® =
n(A®) = n(A), hence Mk is k-cyclic. If I T'; A, then M, 1 = T'; A, and conse-
quently, I'; A is not valid. |

Accordingly, (cut™), (cut™) are admissible in the cut-free S-InNLm(k). With these
rules S-InNLm(k) is strongly complete with respect to k-cyclic modal involutive resid-
uated groupoids. Again the proof of Theorem 3 can be repeated, and we consider M’;e
as above.

Now it can be shown that My in the proof of Theorem 4 is k-cyclic. Since the cut
rules are admissible, then (4) holds. This yields [A]™) = 11(A)®™ = w(A™W) = [A™],

4 Ifkis odd, this condition entailsa ® b =b @ a and: a < b iffa = b.
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for any n € Z, hence [A]%) = [A], for any formula A. For any bunch I, {I'}™ =
{F(I")}™, by the ®-rules, (r-0) and the cut rules. Consequently {I'}” = [F(")™],
by (2). Let X € Mg. We fix Y such that X = Y™ Clearly Y™ = ('} =
MNr cy [F'(I)7]. Since the negations in Mg satisfy (DN), they satisfy the infinite De
Morgan laws in the complete lattice Mg. In particular: (/\;c; X;)™ = \/;¢; X;” and
Vier X007 = Nier Xi7 where /\;p Xi = (Nigy Xi and Vg Xi = pr(Uje Xo)-
So (Ajes Xi)® = A, c;(X)®, since k is even. Therefore:

(k)

rey ey ey

We return to S-InNLm. For any sequent Y and m € Z, by t(Y, m) we denote the
sequent arising from Y, after one has replaced each atom p™ by p®+m),

Lemma 6 For any sequent Y and m € 7, Y is provable in S-InNLm if and only if
(Y, m) is provable in S-InNLm.

Proof Assume that Y is provable in S-InNLm. In a proof of T we substitute p+"
for p™, for any atom p™. We obtain a proof of (Y, m). This yields the only-if part,
which entails the ‘if” part, since Y = t(z (Y, m), —m). O

Let T be a sequent, and let m be the greatest positive integer n such that some atom
p™™ occurs in T if there is none, we set m = 0. The provability of Y is equivalent
to the provability of 7 (Y, m), which contains no p(”) with n < 0; such a sequent is
said to be ~-free.

Lemma7 Let Y be a ~-free sequent. Let m be the greatest integer n such that some
atom p™ occursin Y. Letk > m + 1. Then, Y is provable in S-InNLm if and only if
Y is provable in S-InNLm(k).

Proof Assume that Y is provable in S-InNLm. Then Y is valid in InNLm, and con-
sequently, in k-cyclic modal involutive residuated groupoids. By Theorem 4, Y is
provable in S-InNLm(k).

Assume that Y is provable in S-InNLm(k). There exists a (cut-free) proof of Y in this
system. Every formula in this proof is a subformula of a formula in Y. Consequently,
no atom p*—1 appears in this proof, hence no axiom p*~1; p is used. This proof is
a proof in S-InNLm. O

Therefore, if a sequent Y is not provable in InNLm, then it is not valid in some
k-cyclic modal involutive residuated groupoid. An analogous result for InGL was
obtained in Galatos and Jipsen (2013) with the aid of a two-sided sequent system.

InNL(k) has similar properties as CNL, which is the same logic as InNL(2), although
the sequent system for InNL(2), presented here, differs from those in de Groote and
Lamarche (2002) and Buszkowski (2016). We prove four theorems on InNLm(k),
analogous to some results for CNL in Buszkowski (2016).

Let T be a set of formulas. By a T-sequent we mean a sequent consisting of
formulas from T'. A proof consisting of T'-sequents is called a T -proof. Now, - stands
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for the provability in INNLm(k) and 7 for the provability in InNLm(k), restricted to
T -proofs. Again we assume that all sequents in ® are of the form A; B. We show an
interpolation property for INNLm(k).

Theorem 5 Let T be closed under subformulas and ™. If ® b1 Y[Ag], then there exists
D € T (an interpolant of Ao in Y[Agl) such that ® =1 Y[D] and ® -7 Ag = D.

Proof We proceed by induction on proofs in S-InNLm(k) with & (the assumptions).
If Ag is a formula, then D = Ag. Assume that A is not a formula. Then, T[Ag]
cannot be an axiom (Id), nor a sequent from ®. For rules, we only discuss some cases.
We consider (r-62). If the active bunch (A & B, A) is contained in Ay, then D is
an interpolant of the trace of A in the left premise; in particular, A is an interpolant
of (A @ B, A). If Ay is contained in A, then D is an interpolant of Ag in the right
premise. If Ag is disjoint from the active bunch, then D is an interpolant of Ag in
the left premise. For (r-0V), if Ag = (CJYA), then D = A. We consider (r-Shift),
top-down, with premise (I, A); ® and conclusion I'; (A, ®), where Ag = (A, ©).
Then D = E™, where E is an interpolant of I in the premise; similarly, for (r-mShift),
top-down, if Ay = (A). O

Every finite set T is contained in a finite set 7', closed under subformulas and ~
(the metalanguage negation), hence also under ~, since A~ = A®~D_ The smallest set
¢(T), containing T and being closed under subformulas and ~, can be constructed in
polynomial time in the size of 7 and k. We prove a version of the subformula property
for InNLm(k) with assumptions.

Theorem 6 Let T be the set of all formulas which occur in Y or ®. If ® = Y, then
Dby T.

Proof We outline the proof. One defines a phase space (M, -, f, R) like in the proof
of Theorem 3 except that M is the free algebra generated by ¢(7') and |- is replaced
with =¢(7y. We also define [A] = {I" € M : ® =7y I' = A} for any formula A (so
[A] =@ for A ¢ ¢(T)). (1) holds for all formulas A and (2) for A € ¢(T). In (P1) one
assumes B ® C € ¢(T) and in (P1m) OB € ¢(T). (P2) holds for any A. u is defined
in the same way. (4) holds for any A € ¢(T"). Assume that ® .7y T does not hold.
Then Y is not true for p in the subalgebra (defined as in the proof of Theorem 4) of
the complex algebra of this phase space, but all sequents from @ are true for x. This
subalgebra is a k-cyclic modal involutive residuated groupoid. Therefore @ - Y does
not hold. O

For readers interested in models we note that this proof yields the strong finite
model property5 for InNLm(k). We assume that @ is finite, hence T and c¢(T') are
finite. We show that the complex algebra of this (infinite) phase space is finite. Every
¢r-closed set is an intersection of sets of the form {I"}”". By Theorem 5, {I"}™ is the
union of some sets [ D] for D € ¢(T). We showit. Let A € {I'}”. Then ® 1) T'; A,
hence there is D € ¢(T') such that ® ) I'; D and ® ) A = D.So A € [D]
and [D] € {T"}™, by (P2). Consequently, My, is finite.

5 This means: Every unprovable pattern ® - Y, where ® is finite, can be falsified in a finite model.
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Theorem 7 The languages generated by the type grammars based on InNLm(k) are
precisely the (e-free) context-free languages.

Proof This follows from Theorems 5 and 6. Let G = (X, I, Ag) be a type grammar
based on InNLm(k). Let T denote the set of all formulas involved in / plus Ag. By
Theorem 5, every c(T)-sequent I' = Aq (i.e. Ay; I'), provable in InNLm(k) and
containing no angle brackets, can be proved on the basis of provable c¢(T)-sequents of
the form (A1, A2) = B and A = B (special sequents) with the aid of (NL-cut). This
can be shown by induction on the number of commas in I'. If I" contains at most two
commas, the sequent is special. If I contains more commas, then I' = ®[(Ay, A3)].
Let D be an interpolant of (A1, A2). Then, I' = A can be derived from ®[D] = Ay
and Aj, Ay = D by (NL-cut). Clearly ®[D] has less commas than I". This yields
a context-free grammar equivalent to G. Its terminal alphabet is X, the nonterminal
symbols are the formulas from ¢(7T), the production rules are the reversed, special
c(T)-sequents provable in InNLm(k) (i.e. B — Aj, A and B — A), and Ay is
the start symbol. So L(G) is context-free. It is known that every e-free context-free
language is generated by a type grammar based on NL (Buszkowski 2005), and NL
can be replaced by InNLm(k), since InNNLm(k) is a conservative extension of NL (see
below). O

Theorem 8 The finitary consequence relation for InNLm(k) is PTIME.

Proof By a restricted sequent we mean a sequent of the form A; B, or (A, B); C,
or A; (B,C),or (A); B, or A; (B). Let T be a finite set of formulas. Let ST denote
S-InNLm(k) (with the cut rules), augmented with a finite ® (consisting of 7 -sequents
of the form A; B), whose all axioms and rules are limited to restricted c(7")-sequents.
One easily shows by induction on A that A; A~ and A™; A are provable in S” for any
A € ¢(T). We will show that all restricted ¢(T')-sequents, provable in S-InNLm(k)
from &, are provable in S T,

For this goal we consider a system S(7), whose axioms are all sequents provable
in S and the only rules are (cut™), (cut ™), limited to c(T')-sequents. Like in the proof
of Theorem 3, one shows that (r-~"") and (r-~ ) are derivable in S(T'), if the premise
is a ¢(T)-sequent. We need the following properties.

(I) A restricted c(T')-sequent is provable in S(T) iff it is provable in ST .
(II) S(T') possesses the interpolation property: if Y[Ag] is provable, then there
exists D € ¢(T) such that Y[D] and A9 = D (i.e. D™, Ag) are provable.

The ‘if” part of (I) is obvious. The only-if part of (I) is proved by induction on proofs
in S(T), using the fact: if the conclusion of a cut rule is restricted, then both premises
are restricted. (II) can also be proved by induction on proofs in S(7'). (II) holds for
axioms, e.g. if T[Ag] is (A, B); C with Ay = (A, B), then D = C~. Assume that
Y[Ao] is the conclusion of (cut™). If Ag occurs in a premise, we apply the induction
hypothesis to this premise and apply (cut™). If not, then the premises of (cut™) are
T[O[A]] and A; A~ with A9 = ®[A]. Then, D is an interpolant of ®[A] in the first
premise. For (cut™), the reasoning is similar.

One proves: for any c¢(T)-sequent Y, Y is provable in S(T') iff ® ) Y. The
only-if part is obvious. For the ‘if’ part, one shows that all rules of InNLm(k) are
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admissible in S(7). We consider (r-00V). Assume that Y[A] is provable in S(7') and
[OVA € ¢(T). Since ((JYA); A™ is provable in ST, by A; A~ and (r-CJV), then from
Y [A] one obtains T[(DiA)], by (cut™). We consider (r-mShift), top-down. Assume
that (I'); A is provable in S(7). By (II), there exist D € ¢(T') and E € ¢(T) such that
(D); E, D7; T and E~; A are provable in S(T"). By (I), (D); E is provable in ST,
hence D; (E) is provable in ST, by (r-mShift). Therefore I'; (A) is provable in S(T),
by (cut™).

In order to verify whether ® - I'; A one replaces the sequent by F(I"); F(A) and
defines T as the set of formulas occurring in the latter sequent or ®. By Theorem 6,
&= F(I'); F(A)iff @ .1y F(I'); F(A). The latter holds if and only if F(I'); F(A)
is provable ST, by the preceding paragraph and (I). All sequents provable in S can
be generated in polynomial time in the size of ¢(T'), hence in k plus the size of
{I'; A} U ®. O

In particular, Theorems 5-8 hold for CNLm. Using Lemmas 6 and 7, we obtain the
following results for InNLm.

Theorem 9 The type grammars based on InNLm generate the €-free context-free lan-
guages.

Proof Let G = (X, I, Ap) be a type grammar based on InNLm. Let 7 be the set
of types involved in [ plus A . Let [ be the greatest n > 0 such that some atom
p ™™ occurs in T (as a subtype). In G we replace each type A by T(A, [). This yields
a grammar G’ such that L(G) = L(G’), by Lemma 6. T’ denotes the set of types
involved in G’. Let m be the greatest n > 0 such that some atom p(’") occurs in T’ (as
asubtype). G is defined like G’ except that InNLm is replaced with InNLm(k), where
k=m+2.By Lemma 7, L(G) = L(G’). So L(G) is context-free, by Theorem 7.
Like in the proof of Theorem 7, one shows that every e-free context-free language is
generated by a type grammar based on InNLm. O

The next result easily follows from Lemmas 6, 7 and Theorem 8. Notice that m,
defined under the proof of Lemma 6, can be computed in polynomial time in the size
of T.

Theorem 10 InNLm is P-TIME.

Accordingly, a context-free grammar equivalent to the given type grammar G based
on InNLm can be constructed in polynomial time in the size of G. On the contrary,
an analogous construction for the type grammars based on L (due to Pentus 1993)
is exponential. Since L is NP-complete (Pentus 2006), no polynomial construction
exists, if P £ NP.

Let us note that the proofs of Theorems 7 and 8 cannot be adapted for InNLm,
since the closure of a nonempty, finite 7 under negations and subformulas is infinite.
Lemma 7 reduces the provability in the pure InNLm to that in InNLm(k). Therefore
we could prove Theorems 9 and 10 for the pure InNLm only (without assumptions),
whereas Theorem 7 could be proved for INNLm(k) with any finite . InNLm and InNL
do not possess the strong finite model property (Buszkowski 2017a). The complexity
of the finitary consequence relations for INNLm and InNL remains an open problem.
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Besides their significance in logic, consequence relations may also be useful in type
grammars. A stronger logic (less efficient) can be approximated by a weaker logic
(more efficient) by adding to the latter some particular instances of the laws provable
in the former. For instance, Moortgat (1997) adds (A ® B) ® C = A ® (B ® ¢C)
to NLm in order to parse a relative clause, but for this goal only an instance of this
law is needed (for some fixed types A, B, C). If one adds new axioms to NLm, then
the resulting logic may lack the efficiency of NLm, but a finite set of new assumptions
(i.e. particular instances of these axioms) do not affect the efficiency. This remains
true for CNLm, but the problem for InNLm is open.

NLm (resp. InNLm) is a strongly conservative extension of NL (resp. InNL). The
consequence relation for the richer logic contains that for the poorer logic. Conversely,
if ® - Y does not hold in the latter, then it does not hold in the former, since every (resp.
involutive) residuated groupoid can be augmented with ¢, OV, satisfying (URES),
(DM), by setting ¢a = Va = a.

Furthermore, InNL (resp. InNLm) is a strongly conservative extension of NL
(resp. NLm), but this requires a more involved proof. Using phase spaces for CNL,
Buszkowski (2016) shows that CNL is strongly conservative over NL, and conse-
quently, InNL is so, since it is an intermediate logic. In a similar way one can prove
that CNLm (hence also InNLm, InNLm(k)) is a strongly conservative extension of
NLm. We omit the proof. We only note that the sequent system for CNL in Buszkowski
(2016) is different from S-InNL(2). In particular, it admits the symmetry rule.

( )F;A
r-sym) ——
y A; T

This rule is admissible in the cut-free S-InNLm(2) and derivable in S-InNLm(2). Using
(r-Shift), (r-mShift) and (r-sym), one can transform every sequent Y'[A] into a unique
sequent of the form A; ®. This plays an essential role in the omitted proof.
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