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1. Introduction

This survey paper is thought to update the stage of knowledge about the
limit distribution of the number of small subgraphs of a random graph
K, ,- It can be viewed as a supplement to Chapter IV of Random Graphs
by Béla Bollobas [ Bo 85].

The model we deal with is a random graph K, ,, the finite probabilistic
space whose elements are all graphs on vertex set V,,={l,...',n} and the
probability assigned to any particular graph with [ edges is

p‘(l—p)(;)“ , 0<p=pm)<l1.

Originally, another random graph model, K, y, was investigated
the most. However, the two models happen to be asymptotically (as
n—c0) equivalent and all results presented below can be translated into
K, n under equation N=(})p. (For the best equivalence theorem see
[Lu 907).

We consider here only subgraphs of fixed size, i.e. not depending on n.
This restriction could easily be dropped to gain an order o(logn) but this
would decrease the clarity of the presentation. Another restriction we
impose in the paper is that we count subgraphs isomorphic to one fixed
graph and not to a member of a family of graphs. This allows us to
present our results in the purest form.

The history of the subject is a little bit peculiar. It was originated
by a result of Erdos and Rényi [ER 60] (Theorem 0 below), which
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gave rise to the notion of balanced graphs. It took then twenty one years
until Bollobds [Bo 81] generalized that result to arbitrary graphs
(Threshold Theorem below). Recently, three simpler proofs were found
and we present them in Section 3. Two of them as well as Bollobas’
proof are based on Theorem 0. Most surprisingly, the third proof (Proof 1
in Section 3) uses exactly the same method of second moment applied
by Erdés and Rényi for proving Theorem O but makes no reference to
balanced graphs.

In Summer 1987 an exponential bound for the probability of nonexistence
of a copy of G in K, , was proven. A trivial consequen .¢ of that powerful
result is again Bollobas’ Threshold Theorem. Here we treat.that result
briefly since another paper [JLR 907 in this volume is entirely devoted to it.

Meanwhile, the distributional questions have been posed, attacked,
and partially solved on the threshold. This is the content of Section 4.
Despite the existence problem, balanced graphs play a crucial role here. We
gather their properties in the preliminary Section 2. :

Beyond the threshold the normality of the number of copies of an
arbitrary graph G in K, , has been suspected. In Section 5 we fully confirm
this prediction.

In the course of the paper we use the asymptotic notation a, =<b,
which means that both a,=O(b,) and b,=0(a,) hold. For the graph
theory notation see Section 2.

2. Density and balance of graphs

The aim of this section is to present a number of structural results on
graphs, which will play an important role in our further investigations of the
problem of subgraphs of random graphs. They involve only the number of
vertices, number of edges and the notion of a subgraph. Givena graph G, |G|
and () stand for its number of vertices and edges, respectively. We write
Il ¢ G U 1 is a subgraph of G. The density of G is defined as d(G)=e(G) /|G|,
and the maximum subgraph density as m(G)=max {d(H): H<G}. A graph
( I balanced if m(G)=d(G). Any subgraph of G with the density equal to
m(G) is called extreme. Every extreme subgraph is both balanced and
induced. Every component of a balanced graph is extreme. Also, all regular
graphs are balanced. A graph G is said to be strictly balanced if G itself is the
only extreme subgraph of G. For instance, all connected regular graphs are
such ones. Another class of strictly balanced grapha are k-trees and, in
particular, trees. For the definition of k-trees see, for example, [Mo 60].
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Given two graphs G,=(V,, E,;), i=1, 2, we define G,* G, =(V;+ V,, E,+ E,),
+=u, . Our first result deals with unions of balanced graphs having the
same density. It happens that when taking such unions one never decreases
the density. Moreover, it remains unchanged if and only if all pairwise
intersections are extreme or empty. In the proof below as well as in the proof
of our next result we prefer to deal with differences rather than ratios.
Having this in mind, note that every graph function of the form
f(G)=a|G|+be(G) is modular, ie. f(G,UG,)=f(G,)+f(G,)—f(G{NG,).
Parts of Theorem 1 below can be found in [Bo 81, KR 83, Ka 84].

Theorem 1. Let G,,.,G, be balanced graphs with density d and let
F,=) G,. Then
i=1

) dF)>d,
(i) d(F,)=d if and only if, for all 1<i<j<r,
d(GinG;)=d or G;NG;=9.

Proof. Let f(H)=d |H|—e(H). The thesis is equivalent to

0 SfF,)<0,

(i) f(F,)=0 if and only if, for all 1<i<j<r, f(GiNG;)=0.

We shall depend heavily on the modularity of fand on the fact that for
alli=1,...,r and for all Hc G, f(H)>0 with equality for extreme subgraphs

only. We shall use the induction on 7. Since f(F,) = —f(G;nG,), the thesis
is true in the case r=2. Assume it is true for r—1. To prove (i) note that

JF,) =f(F,-1)—f(F,-1nG,) < 0. 1)

Now assume that f(F,)=0 and suppose, to the contrary, that, say,

£(G,nG,_,)>0. By (1), f(F,_,)=0 and we arrive at a contradiction with

the induction assumption. Finally, assume that, for all 1<i<j<r,

f(G;nG;)=0. Then F,_;NG, is the union of r—1 graphs of density d,
=1

as F,_,nG,= | (GinG,). By the induction assumption f(F,.,NG,)=0
i=1

and f(F,. ,)=0, 50, by (1), f(F,)=0. 0

Theorem 1 has the following consequence. Let G, G,,... be all extreme

subgraphs of G. Then | J, G, is also extreme and so the maximal (in respect
to containment) extreme subgraph of G is well defined. We call it the core of
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G and denote by G. At this point it is worth mentioning that any minimal
extreme subgraph of G is strictly balanced.

Our next result, conjectured by Karofiski and Rucidiski in [KR 82], goes
in the opposite direction. Instead of looking for a balanced subgraph of G,
we establish the existence of a balanced supergraph of G with the same
density as &. This leads to a “sandwich-type” conclusion that for every
graph G there exist graphs H and F, both balanced, such that

HeGeF and d(H)=m(G)=d(F).

Theorem 2 [GRR 85]. For every graph G there exists a balanced graph
F such that G F and m(G)=d(F).

Proof (outline). We outline here the proof from [RV 86].If G= G then there
is nothing to prove. Let G* minimizes f(H)=m(G) |H|—e(H) over all
G4 He G, and let xeV(G*)—V(G). Furthermore, let B be an auxiliary
graph satisfying, with v=|B| and e=e(B),

e(H)»< e

for all He B, ‘Hl_l\.v_,_l’

@

nnd
(GH)Fm(G)o—e—~m=0. (3)

Ihe oxlstence of B can be shown by first constructing for all v and e,
feu1eea()), n graph satislying (2) alone, and then by proving that
(%) has & solution (v,e) for which the above system of inequalities holds.

Let Gy =GuUB, V(GrB)= {x}. Using (2), it can be easily shown that
m(G,)=m(G). Condition (3) 1is equivalent to f(G*uB)=0.
Summarizing, G<G,, m(G)=m(G,) and |G,|—|G,|<|G|- G|, since
G, G*uBRG. Repeating this construction at most |G| |G| times we
arrive at the required graph F.

We conclude this section with some elementary graph enumeration facts.
Let aut(G) denote the number of automorphisms of a graph G.
Set ¢(G) for the number of graphs on’ vertex set {1,...,]G|} which are
isomorphic to G. For HcG, VH)={1,.,[H|}, set c(H,G) for the
number of graphs on vertex set {1,...,]G|} which contain H and are
isomorphic to G.
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Observation. a) c(G)=|G|!/aut(G).
b) Let f(H, G) be the number of copies of H in G. Then

c(H,G)=f(H, G)(|G|-|H|)! aut (H)/aut(G).

Proof. Part a) follows easily from Burnside’s Lemma (see [HP 73]).
Part b) is equivalent to the identity

@, G)c(G)=({§'l)c(H) ¢(H,G). 0
3. Four roads to the threshold

Let G be a graph and let X,(G) count the subgraphs of a random
graph K, , isomorphic to G.

Theorem 0 (Erdds and Rényi, 1960). If G is balanced then
{0 if np*©@=o0(1),

lim P(K, ,>G)=
1 if np!@-c0.

B—* 00
Threshold Theorem (Bollobas, 1981). For arbitrary graph G,

{0 if np™@=o0(1),

lim P(K, ,> G)=
1 if np"9>c0.

n=* o0

Proof 1. For any extreme subgraph H of G,

P(X,(G)>0)< P(X,(H)>0)< EX,(H)
- (|;;|>C(H) e < Il pe® — (npm @) H1,

which proves the first statement.
Let G,,G,...G;, 1=(%)c(G), be all copies of G in the complete graph
on vertex set {l,...,n}. Define the indicator random variables I by
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I"’—{l if Gk, ,,
v 0 otherwise

jw1,2,..,1, Clearly, I and I*) are independent if and only if G; and G;
are edge-disjoint and so

var X (G)= z ZCOV(IE,",I‘,{))x Z 2161 1| p2e(@=e(ED
11, j€1 HeG
e(H)>0

provided p-41.
From Chebyshev's inequality it follows that for arbitrary random
variable X, P(X =0)<var X/(EX)?, provided EX #0. Thus

P(X,(G)=0)=0( ¥ n~'#p=«®@)=0o(1) provided np"®—co.
¢f§§fo . D

The simplicity of the above proof is striking in comparison with the
original proof in [Bo 81]. Another, trivially looking proof, goes as follows.

Proof 2. Let HcGcF, H and F balanced, d(H)=m(G)=d(F). By
Theorem 0,

P(K, > G)SP(K,,_,DH)=0(1) if np"“‘”:np“"’:o(l)
and

P(K, ,2G)>PK, ,oF)=1-o0(1) if np"@=np*®-c0. 0O

The nontrivial part of this proof, however, is contained in the proof of
Theorem 2.

Our third approach is closest to Bollobas’ proof. It is also based on
Theorem 0.

Proof 3. As a matter of fact, we shall prove the following more general
statement.

Theorem 3. For all sequences p=p(n), 0<p(n)<1,
P(Kn.pDG)_P(Kn.p:’G)=o(1)i

where G is the core of G.
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Proof of Theorem 3. Assume G #G and let

Ty
ma?ﬁ’ic%f)l——%‘r«li)‘ Since d(H)<d(G), a<m(G).

Pick any B, a<f<m(G). Let I and J be sets of integers defined by
I={n:p<n=Y*}, J={n: p>(loglogn/n)/m@}
Set {a,}; for the subsequence of a, determined by I. By Theorem0
'{rIl’](K,,',DG)},=o(l)and so {P(K, ,=G)};=0(1).Set p= (loglog n/n)!/m(©),
en :
{PK, 26}, >{PK,,26)},>{PK,;>G)},=1-0()

by Theorem 0, provided that P(K, ; > G)~P(K, ; > G).
Consequently, without loss of generality one can assume that

n- 1/ﬂ<p(n) < (loglog n/n)‘/‘"(c) y
We split {1,...,n} =V(:)UV(;), V('x')" V‘;) =0, |V‘;’|~ - We have

P(K,,>G, V({B)n VY #0)=0% p*®@/logn)=o(1)
and so,
P(K,__,:JG)—P(K,",[V";)]DG)=0(1).
Let G,,..,G, be the copies of G in the complete graph on vertex set
V. A graph G, is called a V@ -extension of G, if G, is isomorphic
to G, G,=G; and V(G,)—V(G,)c V9, i=1,..,l. Let o, be the event that

G,.... G,_; ¢K, ,and G,cK, ,, i=1,..l. Moreover, let %, be the event
that there is at least one V@-extension of G;in K, ,, i=1,...,I. We have

!
P(K,,=6)= Y. P(K, ,>G/s) P(sf)> > P@/ /) Pty
= i=1

=P(@,/o,)P(K, ,[VP]>6)=P(Y,>0)P(K, ,[V]>G),
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where Y, is the number of V4 -extensions of G, in a random graph

K:-ran.p [V(;)]UGI . Easi]y,

EYH =(n/logn) 1G1-|GI pl(G)— &(G)

and

vk - Y (n/logn 2161~ 1GD=(HI=1GD p2(e(G) - @)~ e -G

G§ HcG
80
varY, i 13! . e(B) - eH)
P(Y,'=0)<-(——E——}—’~)?=O(- Z (n 1l°gn)lal |Glp¢(G) O(H))
] GQHcG

=O((logn)'“!/np*)=0((logn)'! n*#~1)=0(1).

This completes the proof of Theorem 3. |

For np™®-¢ the above result was also proved in [BW**].

The last road to the threshold is the most recent one and appeared
as a corollary of the following result.

Recall that for p 41,

VREX (G Y« n?IG\ -l p2e(@)-etm)

HeG
eH)>0

We call H a leading overlap of G if HcG, e(H)>0 and var X,(G)=
O(n 161~ 111 p2¢@)-ei))

Theorem 4. ([JLR 907]) Let H be a leading overlap of G. Then there exist
constants ¢,,c, >0 such that

exp{—c, EX,(H)} <P(X,(G)=0)<exp{—c, EX,(H)}.

Proof. The left-hand inequality follows immediately by the FKG-
inequality (see [Bo 86]). Two quite different proofs of the right-hand
inequality are given in [JER 90]. Here, however, we present yet another
proof due to Boppana and Spencer [BS 89].

Let R be a random subset of R, |2|< o, with P(weR)=p,, weR,
and the events “weR” mutually independent. Furthermore, let
£2,,...,82, be subsets of 2 and let 4; denote the event “Q,cR”, i=1,...,1.
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1 =1
Obviously P(NA4;)= [] P(4,| N 4,). Let us fix i and denote by S the set
=1 j=1

i=
of all j<i with 2,n£2,#0 . Then

i-1
P(4,| NA)=PA){1- Y P(4;|4,n N 4,)}
i=1 jeS 3¢S

>P(Al)(1—j>:sP(AJ|Ai>.

the last inequality following from the fact that

P(4,nA)P( A)<P(4,n4;n U 4,),
s¢S 8¢S

an easy consequence of the FK G-inequality. Thus

P(‘sz)€exp{—izl P(Ai)+zzP(AlnAj)}

:
or, in terms of indicators I;=I(4;) with X= Y I,,
i=1

P(X=0)<exp{—EX+Y Y E(I,1)}, @)

where the double summation is taken over all unordered pairs {i,j}
with 2,nQ;#0. Let us denote this double sum by M.

The remainder of the proof is not contained in [BS 897] but is based on
a personal communication from Spencer (see [Sp**]). Note that (4) is also
true for any subset of indices J<[[], i.e.

log P(X =0)< —;E(I,)+ZJZ E(II). ()

Now let J be a random subset of [I] with P(ieJ)=2 and the events
“jeJ” mutually independent. Taking the expectation of both sides of
(5) we get

logP(X=0)< —AEX+A*M

which, minimized over A, gives
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P(X =0)<exp{—(EX)*/4M }

provided EX <2 M (this ensures that 1< 1). Otherwise, directly from ),
we have

P(X =0)<exp{—0.5EX}.

Applying all the above with Q= [n]?, p,=p=p(n), 2,=the edge set of G,,
Ii=19,i=1,..,1=(3) c(G),v=|G|, we complete the proof since if EX <2 M,

M =var X (G)=(EX,(G)* EX (H)
and EX >2M means that G is a leading overlap of itself. |

The set of leading overlaps of G keeps changing as K, ,evolves (ie. as the
decay of p(n)—0 decreases) and there are induced subgraphs of G which
never become leading. Whole information can be read out from the
structure of G (see [JER 90] for details). In particular, if np™—c0(0)
arbitrarily slowly then the smallest (largest) extreme subgraph H is leading
and, of course, EX,(H)— 0 (0). This, once again, implies the Threshold
Theorem.

4. On the threshold

Theorem 3 means that the problem of the existence of a copy G in K.,
can be reduced to balanced graphs G only. On the threshold, i.e. when
np™ @~ ¢, 0<c< oo, the same can be concluded even with respect to the
limit distribution of X,(G). Our next result makes this precise. From now
on, given H < G, we define an extension of H, a copy of H, as any copy G,
ol G such that H,< G,. Moreover, we denote by X,(H,, G) the number
of extensions of H,, in K, ,UH,. The following result was suggested by
T. Luczak.

Theorem 5. For arbitrary graph G and for every £>0, if np™@ ~¢,0<c<]1,
then lim P(|X (G)/EX (G, G)— X (B)|> &) =0.

LAl

Proof. Set Y,=X,(Gy,G). We have P(|X,(G)/EY,—X,(G)|>&)<

logn

P(X,(G)>logn)+ Y P(IX,(G)/EY,~X,([@)|>e and X,(8)=k)<
k=0
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logn
EX,(G)/logn+ Y, P(there is a copy of G in K, , with the number of
k=0
extensions Y, satisfying |Y,—EY,|>%EY,)<o(1)+(logn)n'® pei®!
x P(|Y,—EY,| > EY,)<0(1)+O((logn)® var Y, /(EY,)*)=o(1).
The second inequality in the above sequel is due to the fact that each
copy of G is an extension of exactly one copy of G. il

In view of Theorem 5, in what follows, we focus on the case of a balanced
graph G. Then all moments of X,(G) converge to positive constants.

Lemma 1 [RV 85]. Let b be the r-th binomial moment of X,(G). If G is
balanced and np*©~c, c>0, then

r|G| ct
b=lim b= Y, Za(G.1), r=1,2,..

n—o0 t=|G| **

where a(G,t) is the number of unordered r-tuples of distinct copies of G,
{G,,...G,}, such that V(\J G)={1,..,t} and d( |J G))=d(G).
i=1 1=1

Proof. Let I)),.... ¥ be the same as in Proof 1 of the Threshold Theorem
(see Section 3). Then, by Theorem 1,

= 5 Euts)=33(5)aGrop

1sh<..<i,.€1 t

=(1 +o(1))§ (':) (G, t)p*“P ~ Y, ,i: %(G,t),

where «(G,t,s) is defined similarly as «(G,t) with an additional

assumption that e({ ) G;)=s. ™
=1

It is unfortunate that the sequence b, grows usually too fast to satisfy the
Carleman criterion (see [ChT 78]) and therefore it does not determine
uniquely any distribution. However, in two special cases we are successful.
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Corollary 1. Assume np*@~c>0.

a) ([Bo 81, KR 83, RV 85]), X,(G)3Po(c'°Yaut(G)) if and only if G
is strictly balanced.

b) If a balanced graph G has exactly one extreme subgraph H different
from G then for every k=0, 1,...

lim P(X ,(G)=k)=P( Z Y,=k), where
Z, 1., Y,,.. are independent Poisson random variables with
EZ=c"®/aut(H) and EY;=cl!S~1¥l aut(H)/aut(G), i=1,2,...

Proof. a) From Theorem 1, d(|)G;)=d(G) if and only if G;nG;=@
for all i%j. Thus

o] B D
(G, t)= J<IG|'-". [G|> T—!(C(G)) if t=r|G|,

0 otherwise,

and so b,= (c!//aut(G)y/r!, ie. b, is the r-th binomial moment of the
distribution Po(c'//aut(G)). On the other hand, if G is not strictly
balanced, ie. G contains a proper extreme subgraph H, then

1 1
by 2 (c'5Y/aut(G))? + s c2ICI- 11,

which excludes any Poisson distribution by Corollary 7 from
[ChT 78, p. 254].

b) We shall show that Zb z=exp{loe**—1)}, Ay=cB/aut(H),
Ay w101~ 1E] gyt (H )/aut(G) whxch is the generating function of binomial
moments of the random variable z Y;. From Theorem 1, d(U G,)=d(G)

if and only if every component of G, consists of a copy of H with a
number of its extensions. If k is the number of components of
()G, then V() G,) can be split into two disjoint sets, namely k|H|
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vertices belonging to the copies of H and r(|G|—|H|) vertices in the
extensions. Thus

g o) Lot e i
2t \k|H|) \[H|...|H|] k! \|G|-|H]|,-..|G|—|H|
X S S kKL C(H, G,

where t=k|H|+7(|G|~ |H|) and S(r,k) are the Stirling numbers of the
second kind. So,
br= 2 )'lk)'vl.s(r-k)/r!: r=12,..
k=1
and

Ybz'=Y Y Ak z) S k)/ri=exp{io(e**—1)}
r=0 r=0 k=0

1, r=0
where by=1 and S(r,0)= {0, A
Since b,=0O(C"r") for some C>0, the Carleman criterion is satisfied
and the proof is complete. [

Note that part b) of the above result agrees with our intuition. The
distribution of Z is the same as the limit distribution of X, (H) since H is
strictly balanced (see part a)). Moreover, the distribution of ¥ coincides
with the limit distribution of X,(H,, G) where H, is any copy of H in the
complete graph K, on vertex set {1,..,n}. Below we state this observation
in a slightly more general form. A special case of it was proved in
[RV 86].

Theorem 6. Let H< G be such that for all HEKGG [e(K)—e(H)]/
[IK|~|H|1 <[e(G)—e(H)1/L|G|~|H|]. Then

lim P(X,(H,,G)=k)=e™*2*/k!, k=0,1,..,

R=* 00

provided n!®!~ 18l pe@—e® L 0<c< oo, where A=c*c(H, G)/|G|-|H|)!
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Proof. One can easily prove the thesis using the method of moments as we
did in Corollary 1a. However, this is the right time to make the reader
familiar with a method proposed by Barbour [Ba 82], which requires
only checking the first and the second moment. His idea was to estimate
the distance between the sequence of random variables in question, X,
and the sequence of appropriate Poisson distributed random variables,
defined as

d(X,)= sup |P(X,ed)- Y e EX(EX,)/k1].
} ked

A<({0,1,2,...

Barbour proved that if o is a family of I-element sets of pairs of
clements from {1,...,n} and the indicators I, xe o, are defined by
1 if acK

== 2 4 =
A {0 otherwise thea, for X, 21‘,1“'
dX,)<2p'+ ) Y E(,I,)/EX,. (6)

atf anf #¢

Let Gy, G,,... be all extensions of a given copy H, of H. Then, with &/
being the family of edge-sets E(G,)—E(H,), we have

d(X,(H,G)=0( Y, nl6l=IKl pet@-el)_o(1),
HEK§G

since [e(G)—e(K)1/(G|~|K)>[e(G)—e(H)1/(|G|~|H]). |

The above approach could have been used to prove Corollary 1a as
well. Note also that if H is an extreme subgraph of a balanced graph G
then the assumption of Theorem 6 reduces to the requirement that
whenever HcK <G and K is extreme then either K=G or K=H.
This is obviously the case in Corollary 1b).

Bollobds and Wierman [BW**] propose a recursive method which
allows one, after tedious calculations, to find, in principle, the limit
distribution of X, (G) for arbitrary G. They define a special grading of G,
(o€ G, ...G,=G which is a refinement of that introduced by Bollobas in
[ Bo 81]. Here G, is the union of all strictly balanced extreme subgraphs of
G, G, is G, plus the union of all minimal subgraphs of G— E(G,) for
which the ratio of edges to vertices not in G, is exactly d(G), and so on.
A branching conditioning argument gives the asymptotic independence of
X,(Gy) and the numbers of extensions of G, to G,y q,r=0,..,t—1 attached

Small subgraphs of random graphs M7

at various possible places to the copies of G, already existing in Koyt
From this, it is not too far to the limit distribution of X (G).

Let us illustrate the method with a simple example. Let Gy, G
and G,=G be as follows.

R T

Denote by Y, (i) the number of nontriangular neighbors of the lexico-
graphically i-th triangular vertex of K, ,. Similarly, let Z¥(j) be the
nontriangular degree of the j-th nontriangular neighbor of the i-th
triangular vertex. Then, for each 4 and /,

d d2
P(X,(G)=D)= Y, Y pi Pk T),
k=1 11,0 0x=1 t(“’.....ﬁ':).i=l.....3k
and
42

P(X,(G)=D< i 2% Pkl D)+ P(X,(Go)>d)+3dP(Y,(i)>d?),
¢

k=11

where P(k, I, T)=P(X,(Go)=k, (i) =1, ZO() =9, j=1,...1,,i=1,.,3k),
¥ 3k

and the indices under )" satisfy Y. (I,—1)(t® +...+t{?)=1. As the authors
i=1

claim, P(k,1, T)~ P(X,(Go)=k) [ [P(Y,6)=k) [T PP (i)=£0] and we

i
are home, since X,(G,), Y,(i), Z?(j) all convergje to appropriate Poisson
distributions.

The above procedure can be repeated, provided enough time, for any
particular balanced graph G, giving the limit distribution of X »(G), which
strongly depends on the structure of G. There is no hope, however, for any
compact general formula. In the simplest case when G consists of m,
components isomorphic to a strictly balanced graph H,, i=1,...,k,

i=1 \I"y

where Y are independent Poisson random variables satisfying X S(H)BY,
Another special case, opposite to the above, is when the extreme subgraphs
of G form an ascending sequence H, c H,c...c H,=G. Then the method
of Bollobis and Wierman might be helpful to confirm our prediction that

L
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W(i-1)
X,(H) 2 Wi)= Y YP, i=2,.k,
-

where W(1), Y| are appropriate independent Poisson random variables.
The case k=2 coincides with Corollary 1b.

Quite a different approach has been proposed by Janson in [Ja 87]. He
defines a random graph G,(t) as a collection of (3) iid. random variables
T,, ee[n]2. For each t this is a random graph K, , with p=P(T,<t).
Such a general setting turns each graph characteristics into a random
process and thus the advanced theory of Poisson processes can be applied.
That enables one, for instance, to get

X,G) %Y i(Y"),
. i=1j=1\ 2

where G is a k-cycle with two pendant edges sharing the root, whereas Z, Y,
are appropriate independent Poisson random variables. Janson’s approach
seems to work for all graphs G consisting of a strictly balanced graph H and
an independent set of vertices, each joined to exactly d(H) vertices of H.

As we have seen earlier, our basic Lemma 1 is of not much use for
the problem of limit distribution of X «(G). It brings, however, some
information about the limit of P(X,(G) >0). We conclude this section with
a short proof of the fact that on the threshold it can be neither 0 nor 1.

Corollary 2 [RV 85]. If np™9 ~.c>0 then

0<liminf P(K,, ,>G)<limsup P(K, ,>G)<1.

n-*oo n—

Proof. Either Theorem 2 or 3 allows us to restrict ourselves to balanced
graphs G. Let H be a strictly balanced and extreme subgraph of G. Then
P(K, ,2G)<P(K, ,oH)-1-¢"*, 2=c"/aut(H), and the right-hand
side is proved. Now assume, to the contrary, that lim, , P(K,. ,=2G)=0
for some n,. This means that X,..(G)30 but this is a contradiction,
since EX? =0(1) and EX,,.+ 0 (see [ChT 78, p. 254, Cor. 7]). )

5. Beyond the threshold

It is natural to expect that, as np™@— oo,
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2(G)—EX,(G)

X
%(6)= A/ var V.(G)

First general result in this direction is due to Karoriski and Ruciriski
[KR 83], who proved the asymptotic normality of X »(G) under restric-
tions that G is strictly balanced and for every £>0, np*©@=o0(n*). The
method of proof was taken from [ER 60] (see also [Sch 79] and [Ka 82])
and relied on a combinatorial identity relating the moments of X A(G) to
those of the Poisson distribution Po(EX,(G)). The idea behind this
approach is that since the distribution of X,(G) is close to Po(EX (G))
on the threshold, it should be so near the threshold. But then EX 2(G)— 00
and, in turn, Po(EX,(G)), after standardization is close to N (0,1).
Basically, the same idea was utilized in Barbour’s approach [Ba 82].
Recall that a sequence of random variables X, is Poisson convergent if

% N(0,1) holds.

d(X,)= sup |P(X,ed)— Y e *2%/k!|=0(1), i,=EX,.
ked

A<={0,1,..}

Easily, d(X,)=o0(1) and 1,~co imply that (X,—2,)/+/2, 3 N(,1).
The question when X ,(G) is Poisson convergent is answered in our next
theorem. It improves some earlier results from [Ba 82] and [Ka 84].

Theorem 7 [Ru 88]. X,(G) is Poisson convergent if and only if np*©@—0
or np*>0, where a=min {(e(G)— e(H))/(|G| - |H|): HS G} (x>d(G) if and
only if G is strictly balanced).

Proof. (a sketch) For every Ac {0,1,...},
|P(X,,EA)——P(X,EA)|=O().,,)=0(1) if np?©@-0,

Also, Barbour’s bound (6) from Section 4 is of the same order of
magnitude as

z nIGI"lﬂlpe(G)"‘H):o(l) if np*—0,
HEG

and the sufficiency follows. To prove the necessity note that if
n*q—ce[0,00) then P(X,(G)=l)~e “*~P(K(n,p) is complete). On
the other hand, for all k=1,2,.. and all >0, e **/k!<k™ ' and
so lim,_, ,, P(Y,=1)=0. Here g=1—p and I=(,&)c(G).
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The case n? g—oco is more complicated and we restrict ourselves to
the case when both np®*~co and np™—co. Then A,=o(varX,(G)) and,
by Theorem 8, X, % N(0,1). Hence, it follows from Slutsky’s theorem
[ChT 78, p.249] that (X,—A4,) /\[l,, 2, 0, which contradicts the Poisson
convergence. {1

Comment. If G is strictly balanced, X,(G) is Poisson convergent in the
same range of p(n) in which G is the only leading overlap of itself,
ie. var X, (G)~A4,. O

At the other end of the range of p, for p constant, the asymptotic
normality of X (G) was established by Nowicki [No 897]. Then Nowicki
and Wierman [NW 88] made an attempt to close the gap but only showed
that X,(G) & N(0,1) if np*®@~ !> o and n?(1—p)— 0, G arbitrary.

In both papers the approach through incomplete U-statistics was
applied. Moreover, Nowicki [No 89] and independently Machara
[Ma 87] proved asymptotic normality of Y,(G), the number of induced
copies of G in K, , for constant p#e(G)/('3). (As long as p—0 there is no
difference between the asymptotic behavior of X,(G) and Y,(G).) The
case p=e(G)/('§) was settled in [BKR 89] by using the orthogonal
projection method. In particular, for some G the limit distribution is then
non-normal. Despite Nowicki, Maehara used the old method of moments
in a manner he had done earlier in [Ma 80]. That proof was an
inspiration for our final result, which brings full solution to the problem of
asymptotic normality of X ,(G).

Theorem 8 [Ru 88]. For arbitrary graph G,

X.(G) B NO,1) iff np" >0 and n?q— 0.
Moreover if
n*q-c then X,(G) 3 (—Po($). 0
For a detailed proof see [Ru 88]. Here we present the proof only
for the simplest case 0<lim,,, p(n)<1 which, nevertheless, will

give the reader a glimpse of the underlying idea of a complete proof.
Set u, for the k-th factorial moment of X ,(G). We shall prove that

(k)1 e
Hae™ gk M1 =0(1**1/2), k=1,2,..,
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which implies the thesis. We express

= YO E{(I$—p*@).. (A8~ p)} = T aliy i),

where )’ is taken over all (iy,..,i,), 1<i,,..i;<l, such that graphs
k
Gi, -G, satisfy for each he{l,...k}, e(G,n U G,)>0.
J=1,j#h
In the case p~c, 0<c<1, g, is a polynomial in n of degree equal to
k

the maximum number of vertices in | () G, |. For even k, the maximum
=1

is achieved only when for each he{1,... k} there is exactly one Jj#h such
that (G, " G;)=1. Thus

2% \1 .
Pa™~\a,. .2 k1 #2-

If k is odd, such “perfect matching” is impossible. Hence
#2k+1=O(n(2k+l)|G|—2(k+1))=O(”k2+112 n—l). D

Recently Theorem 8 was supplied by the rate at which X,(G) converges
to N(0,1). This was made possible by an extensive use of Stein’s normal
approximation (see [BKR 897). The result says that the distance between
the distribution of X a(G) and of N(0,1) in a special metric is O(1/n./q)
if p>4 and O((EX,(H))™*) if p<$ where H is a leading overlap of G.
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