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uniformly at random is difficult, and no good algorithm is known in general for degrees
much greater than n'/3, even for regular graphs (see [5]). In practice, the need for such
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add edges one by one. The aim is to create an edge-maximal graph g with max, de(t) < d.
so define an unsaturated vertex to be one with degree less than d. At each step. choose an
available pair of vertices uniformly at random and add the next edge there. By available
here, we mean a pair of vertices which are non-adjacent and both unsaturated. (In the
simplest implementation of the single step, one actually repeatedly chooses a pair of
unsaturated vertices of degree less than d uniformly at random, and accepts the first pair
so obtained consisting of non-adjacent vertices.) The process finishes when no more edges
can be added; ie, the set of unsaturated vertices induces a co_mplete subgraph. A graph
with this property and with maximum vertex degree at most d is called d-maximal. Hence,
in a d-maximal graph g on n vertices, there are at most d unsaturated vertices. It follows.

as explained in [6], that
(L) \E(g)| = nd/2 — [(d* +2d)/8],
where E(g) denotes the edge set of g.

For d fixed, we prove in this paper that this process almost surely results in a graph
which is d-regular if nd is even, and otherwise has only one unsaturated vertex. which is
of degree d — 1.

More formally, we define a d-process to be a sequence (g0, g15-- -+ &X)
of graphs on the vertex set [n] = {1,2,...,11} such that for some w
following are satisfied:

i) |E@) =1 i=0,....,w,

(i) gi = 8w» i=w,...,N,

(i) 9 = E(go) SE@I S S E(gn),
(iv) gnis d-maximal.

Property (ii) is included merely for the convenience of having all sequencss o egual
length.

A random d-process is a probabilistic space whose elements are d-proogsses with prob-
abilities assigned as follows. Define u; to be the number of unsaturated vertices i
f; the number of edges for which both ends are unsaturated vertices in g;. Also define

(L2) Aiy1 = (l;l) i

We assign the probability

"
(1.3) -1—

o1 W
to the d-process (20, &15- - -»8N)-

We think of g; as being formed at time i. At time w = w(g1,---,gn), the graph becomes
d-maximal, and the process remains static until time N, which is the maximum time 2
process can possibly run for. We alternatively refer to gy = gl as g?. Tts edges can be
referred to as ey,. .., en, in the order in which they appear in the process, where €x—i.....#x
can be left undefined. Note that for fixed d, N —w is bounded above via (1.1}

We use upper case letters for the random variables corresponding to the deterministic

parameters denoted by their lower case counterparts. Thus, a random d-process is denoted

by (GO~ Gl-.
is the num
Let e be

and so th
earlier infi
of the prc¢
be blamec
with the
these diffi
Throug
and giver

given th

but the
meaniny
to have

The
randor
which

Ino
graph
this m
is assi

£ mmasan T

a graj
subse
avoid
maxi
vel
Th
d-pre
next
whic
Ti



i dyiel < 4,

B choose an
By svailable
sed. {In the
*3 a pair of
the first pair

more edges
>h. A graph
#mal. Hence,
i It follows,

i@ a graph
%, which is

g

tad /2], the

Random Graph Processes with Degree Restrictions 171

by (Go, G1,..., Gn). Referring to the earlier informal definition of a random d-process, A4;
is the number of pairs of vertices available to be chosen as E;.
Let e be an available pair of vertices of a graph g; in the above sense. Then we have

{
Pr(E; = e|Gi_y = giy) = =,

]

and so the formal definition of a random d-process has the properties specified in the
earlier informal definition. The fact that this probability is conditional on the past history
of the process in a nontrivial way is an important feature of random d-processes. It can
be blamed for the difficulties encountered in analysing random d-processes, in comparison
with the more commonly studied graph processes. To give some idea of the flavour of
these difficulties, we consider the following example.

Throughout this paper, Ind(s#) denotes the indicator function of an event . For j <k
and given pairs e;,..., e of elements of (1], let P denote the conditional probability that

E,-=e,-, l=_],,k

e

given that e;,..., e are all available pairs of G;_;. Then one might be tempted to write
1
P=T]-

H 4;

i=j
but the expression on the right of this equation is a random variable without relevant
meaning in this context, and hence the equation must be rejected. However, if we happen
to have a lower bound s; on g; for j <i < k, we are justified in writing the inequality

|
P< E 5

The terminal segment (G;, Gj+1,-..,Gy) of a random d-process can be viewed as another
random d-process for which the degree restrictions are not necessarily uniform, and in
which some pairs of vertices (those joined by edges of G;) are forbidden.

In order to make use of this observation in proofs, we need to introduce a more general
graph process. Breaking new ground in the realms of innovative nomenclature, we call
this more general process a generalized d-process. For this process, each vertex v € [n]
is assigned a natural number m(v) < d which sets a bound on its degree. (To model the
terminal segment above, we would choose m(r) = d — dg,;(v).) Then, v is unsaturated in
a graph if its degree is strictly less than m(y). Also, at the beginning of this process a
subset @ of forbidden péirs of elements in [n] is distinguished, whose elements are to be
avoided when picking an edge. The set ® viewed as a graph is assumed to have bounded
maximum degree. A graph g is (m, ®)-maximal if E(g) N ® = 0, dg(v) < m(v) for each
v € [n], and each pair of unsaturated vertices of g is in E(g) U ®.

The rules governing the random generalized process remain the same as in the ordinary
d-process: at each stage we choose an available pair uniformly at random and add the
next edge there. However, by “available pair” we now mean a pair of unsaturated vertices
which is neither already present in the graph nor a member of .

Thus we have, as for d-processes, that the number of available pairs in a graph g; is
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ai4+1 as determined by (1.2), where u; is defined as before and f; is the total number of
pairs which are either in @ or are edges of g; with both ends unsaturated {(or both). In
particular, fo = |®| provided m(v) > O for all v. Note that there will be at most Ny = [%DOJ
steps in a generalised process, where Dy = 2. m(v) is called the initial deficit. Similarly, at
any given time i, the current deficit is

(1.4) Di =) (m(v) — dg(v)),

which is Dy — 2i provided i < w. The quantity Ny — i is an upper bound on the time
remaining before time w when the process becomes static. Conversely, since @ has
bounded maximum degree, the number of unsaturated vertices in an (m, ®)-maximal
graph is bounded above, and thus, we have w = Ny — 0o(1).

For a formal definition of a generalised d-process, we amend the definition of 2 d-process
by replacing N by Ny throughout, and replacing condition (iv) by
(iv') gw, is (m, ®)-maximal.

For a random generalised d-process, the probability associated with each sequence is
again given by (1.3). _

All our asymptotic statements apply to random d-processes as Do — oo with d fixed,
but uniformly over the parameters m(v) and ®. In particular, a random d-process has a
property Q almost surely (a.s.) if limp, . Pr(Q) = 1. Naturally, if m(v) > 1 for all v, this
can be replaced by lim,_, Pr(Q) = 1. A process saturates if the final deficit, Dy or Dy, as
the case may be, is at most 1. Erdds has asked (in a private communication) the following
question: “What is the limiting distribution as n — co of the number of unsaturated
vertices of Gy ?”.

Most questions concerning graphs with bounded degrees are trivial when the upper
bound is 2 and non-trivial for larger bounds. This is not the case for the question here,
although the simpler structure of 2-processes does tend to make computations easier.

For d = 2, simulation, and also exact probability calculations up to n = 500, did not
give any strong suggestion of the correct answer. Exact calculations using the method
described in [6, Section 4] show that the probability that a random 2-process saturates
is monotonically increasing from n = 5 to n = 500, at which point it is roughly 0.879,
and simulation with n = 30,000 suggests a value there of approximately 0.9. Moreover,
based on the exact numbers for n < 500, we believe that the probability of not saturating,
muitiplied by logn, is increasing (though bounded) for all sufficiently large n . (Here and
throughout this paper we use log to denote the natural logarithm.) Balinska and Quintas
[1] have other results on these processes from simulation.

The main idea we use to analyse d-processes is that certain functions of the process
should follow long-term trends determined by the expected value of the change in the
function for a single step. This gives a differential equation (Section 2) whose solution
approximates an upper bound for the function in question almost surely (see Lemma 3.2).
To establish the required concentration of the function near its expectation, we use
Azuma’s martingale inequality. As an answer to Erdds’s question we prove the following
in Section 3.
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‘and
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2.2) 1= Dojn—2x

‘or 0 < x < Dy/2n. Then substituting (2.2) into (2.1) and solving by separating variables
‘zives
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Theorem 1.1. For fixed d, a random generalised d-process almost surely saturates.

This contrasts with an alternative model of d-maximal graphs where these graphs are
given the uniform probability distribution. This alternative model is much more amenable
to computations, and in it, as shown in [6], the sets of graphs with 0,1 or 2 unsaturated
vertices all have non-zero probability in the limit when nd is even.

The simple structure of 2-processes allows one to apply similar techniques to obtain

some other results. In particular, we prove in [7] that in G2 the number of cycles of length
l'is asymptotically Poisson and for I =3 the mean converges to

: / fogl+x)%dx _ 1887,
2 0 xe~

We note that the above result establishes a fundamental difference between G2
the 2-regular graphs with the uniform probability distribution, since in the latter case the

-expected number of triangles is asymptotically é (see [9] for example).
- One natural question on which our methods do not shed light is that of finding the

‘maximum and minimum values of
Pr(G4 = G)

over all d-maximal graphs G on n vertices, or even over all d-regular graphs G on n

vertices. This would give another measure of the difference between G and the uniform
‘probability model for regular graphs.

2. A differential equation

In this section we analyse a differential equation and obtain facts associated with its
solution, which is used for reference in Section 3.
- Let

M = maxm(v).

Léchre We can assume that M > 2. Define the functions b — b(x) and g = g(x) by the
differential equation

= Do/n . z;ib(M — ])b , nb(O) = ,{U :m(b‘) — M}l

@ b’

2 Dy _ .
——(M—l)q +IOgb(0)—IOgQ+m —log(Do/Zn .\).

. —(M — 1)g?
1= Do/ =20 =M =1)3/3

fy
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and ¢(0) = 2nb(0)/Dy < 2/M, ¢ is non-increasing and thus bounded above by 2/M.
Therefore we obtain

-2
9X) ~ 3 "1 Tog(Do/2n — X)
as x — Dg/2n. Also we now have —2 < b'(x) < 0. It is easily checked that b"(x) > 0, and
hence

(2.3)

(2.4) b(x + €) — b(x) = eb'(x) = —2e.

3. Proof of Theorem

We define a full isolate to be an isolate satisfying m(v) = M, where M was defined in
Section 2. Let I, stand for the number of full isolates in G,. Our approach to the proof of
Theorem 1.1 is initially to study the behaviour of I, during the process.

Lemma 3.1. For j = 1 and 2, and 0 < u < v < N, let P(j,u,v) be the conditionat
probability that in a random generalized d-process, the vertices in [j] remain isolated in G
given that they were such in G,. Then, allowing u = u(n), v = v(n),

Nats J
P(j,u,u)=0<(0—v—+—l)> as n— oo.
No—u

Proof. Let F| be the number of forbidden pairs (= elements of @) in G, with at least one
element in [j]. By the definition of a generalised d-process, F ! is bounded. Letting 5 be
the event that the vertices in [j] are isolated in G, we have

P(j,u,v) = Pr(fupi N...NK|H)
r—1
= [[Prtaltun...A )

I=u

v—1

= [IPr#ilor)

t=u

v—1

= [[rG.tt+D.

=u
Provided ¢ < No — O(1), the process cannot have become static, and so
P(it,t+1) = Exp(Exp(Ind(#:+1)[G))FY)
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since D,/M < U, < D, by (1.4). On the other hand, if t = No — O(1) then D, = 0(1) and
so the same conclusion holds. But D, = Do — 2t < 2N + 1 — 2t and so

v—1 .
P(j,u,0) < exp ('ZN—(,J—7+O(1)> . O

t=u

Corotiary to Lemma 3.1. If for some ri(n) — o there are a.s. o(ri(n)) full isolates at time
No — r1(n), then for some function a(n) tending to infinity, a.s. all full isolates have become
non-isolates by time No — o(n).

Proof. Suppose there are a.s. at most t(n)ry full isolates at time No—r1, where t(n) = o(1).

Apply Lemma 3.1 with j = 1 to each of them, and sum the probabilities. This shows

that the expected number of full isolates at time No —r2, 12 <71, is O(t(n)ry). Now take
= ry = o(t(n)~!) such that ¢ — co.

Note that the proof of the Corollary actuaily applies for any prescribed set of isolates,
not just the full isolates. The Corollary is one of the key observations to be exploited in
the proof of Theorem 1.1. The other is the next lemma, whose proof we postpone.

Lemma 3.2. Almost surely
L < nb(%) +0(n"®/logn)
forallt=0,...,No— {710},

In [7] we prove that for d = 2, |I,—nb(t/n)| = 0(n'/12,/Togn) for all t = 0, .., n—|n*7/*
as. This fact is then used to derive some structural results on 2-processes. For d > 2,
however, we do not believe that nb(t/n) is a close approximation to I, in general.

Proof of Theorem 1.1. This is by induction on 4. Beginning with d = 1, we consider
a random generalised 1-process. Applying Lemma 3.1 with j = 2 we see that as. for
t=Np— LNé/ 3], each pair of unsaturated vertices in @ will be intersected by at least one
edge of G,. Thus at time t the unsaturated vertices (ie. those still of degree 0) a.s. form
an independent set in @ viewed as a graph. From such a state, the process is forced to
saturate.

Now consider arbitrary d > 1 and apply Lemma 3.2. Setting k = No — [n/1%], we have,

by (2.3),

I, < nb(k/n) + 0(m"*(ogn)*?) ~ n(Do/2n— k/n) q(k/n)
20n°/10
(M — l)logn’

Thus by the Corollary to Lemma 3.1, a.s. there are no full isolates at time t = No— 0
for some ¢ — oo. If this is the case, the remaining part of our random d-process can
now be viewed as a random generalized (d — 1)-process on the unsaturated vertices of
G,, with @ being the set of all edges of G, with both endpoints unsaturated, and with
m(v) = d — dg,(v) for all vertices v. Note that now M <d —1, and the initial deficit of the
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New process equals the current deficit of the original process at time t. By induction, this

is of the correct order. Note also that our proof actually establishes Theorem 1.1 for

Proof of Lemma 32. Let F,(’) be the number of forbidden pairs containing / fy]] isolates
of G, =121t follows from (1.4) that for each generalised d-process

Dy — 2k
M

(3.1) Su < Dy — 2k — (M — 1)ig.

(Note that for ¢ — 2 the above right hand side inequality becomes an €quation. This is
why nb(t/n) approximates J, so wel] for 2-processes.) We have

2L (Ui ~ 1) + 4F® 4 250

Exp(l4, —I|Gy) U.(T, 1) —3F
TN == = t

~21, 2d
X ——gal A
S o

where 4 is g bound on the maximum degree in @, Assume that () =<t <1 and
dd <1 < T — 3. Since

(3-2) Uz = Ut+] = U[ _2: It = Il-H = 11 =2
we have that Exp(1k+t+1 — 14 |Gy = 8k) is equal to

2.Pr Gy = 8k+|Gk = g1 ) Exp(lj 4,y — LesalGe =g A Gy, = 8k+1)
8k—t

Il

Z Pr(Gry, = 8k+:|Gy = gk)EXp(Ik+r+l = LGy, = 8k+1)

—21.[(.]., 2(?
2 Pr(Gi Br+e|Gr = gy) ( o o
o iy, 49 L2401 + 1)
Uy i (uy, — 2t1 — 1)
& =20, + 51 .
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Consequently, by (3.1),

—2t10 + St%
U
—2tyix 58M
Do —2k— (M —1)iy,  Do—2k’

Exp(Iise, — IklGk = gk) <

(3.3) <

In order to make use of (3.3) we demonstrate sharp concentration of
X = Iy, — I
Define the Doob martingale
X; = Exp(X|Gy, Ext1s - - - Extr)s

0 <t<t,. Then Xy = Exp(X|Gy) and X,, = X.
We now wish to bound |X; — X, 4| for r > 1. Fix a d-process 7o = (go...-,gn,) and
write Exp(e) for EXxp(X|Gryr = Zk+t—1 U {e}). Then

(34 | X.(m0) — Xe—1(mo)] < Y Pr(Exsc = €)|Exp(er+r) — Exple)l-

Let S(e) denote the set of sequences % = (Mtss. - -, Mik4s,) Of pairs of vertices for which
nk+: = e. Turn S(e) into a probabilistic space by assigning to each 7j € S(e) the probability

Pro(71) = Pr(Eitetts- - > Ekrty = Moo - Mty |Gierr = Grra—1 U {€}),

where the probability on the right is for d-processes. Fix e and ¢/, and let Sy (respectively
S;) denote the subset of S(e) (S(¢')) containing those sequences (ks - - -, Mi+r,) for which
none of (frre41s---»Mise,) are adjacent to either e or €. The probability that E; is adjacent
to e or € is O(ux(mg) ™) for k < j < k+1; by (1.2) and (3.2). Thus

, , L
(3) Pr.(S(e)\ So) + Pro(S(e) \ ) = O (—1—) |
ui(mo)
Next, for fj € Sp define
O'(ij) = (el74ﬂk+l+l:- ) "k+n) = S(;

We say that a generalised d-process is consistent with 7 if Griiot = Zki—1 and
Eksts-- > Eitt, = Nicres---»Mk+t,- Let @ and 7' be consistent with 7 and o (7) respectively.
Then for k+t+ 1< j < k+1;, we have

luj(m) —u;(n)| <2

and hence

(3.6) —Pﬁ——uo( 1 )

Pro(o(i) uy (7o)
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Define X(ij) = X(n) for any = consistent with 7. We now have

[Exp(e) ~Exp(@)| = | 3 Pre@X(m— . Pro ()X ()|
i€S(e) Resle)
< |3 Prnxe - Pra(a(fz))X(a(ﬁ))l
€S

+(Pre(S(e) \ So) + Pr.(S(e') \ ;) . X(#)

IA

> (1x6) - X(@@)Pr.)
€Se

2
+X (@@)IPre(f) — Pre (D)) + 0 (.i—‘)

k
i
< 240 (m—) .
Here we used (3.5), (3.6), (3.1) and the facts that {X(#i) — X(o(@))} < 2 for §j € Sy and

max X(ij) <2t
FES(@US () ) !

by (3.2).

" It now follows from (3.4) and Azuma’s inequality (see for example Bollobas [3] or
McDiarmid [4]) that :

Pr(IX,l — Xol = C/2cty logn) <n*

for any ¢ > 0, where C =2 + O /(Do — 2k)). If 12 = o(No — k) then C < 3 and hence

3.7) Pr({1k+,, — I — Exp(lksr, — IIG)| > +/18ct; log n) <n=

for any ¢ > 0. Thus, in view of (3.3), the function b = b(x) as defined in (2.1) should be
an approximate upper bound for I, /n, where x = k/n.

To justify this approximation we will partition the interval [0,Ny] as follows. Let
ki = jA, A = [n'4], j = 0,..,s, where s is chosen so that lks — (No — n®/1%)| = O(n!/4).
Note that s < n*% Now we shall prove by induction on J that

(3.8) Pr(ly, < B(k;) +2A + jR) = 1 — O(jn~)
where 8(k) = nb(k/n) and R = 5n~2/5 1 V18cATogn and ¢ is as in (3.7). This is trivially
true for j = 0.

Throughout the induction we can regard n as being fixed. Let us fix j and set k = k ;. and
assume that (3.8) holds. Noting that kivy =k+Alet S = Lya—Bk+A) = —T, — 1. -7
where

3 2LA
T, = Bk+4) B(k)+Do—-2k-(M— DI’
L = Bl)—1IL,
2IA
T3 = Lya—I+ k

Do —2k— (M — DI,
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Define the events

o : S<2A+(+1R,

&, : —T; <2A+ jR,
&y . T3 <R,
2 . I, > Bk).

By the inductive hypothesis,
Pr(«;) =1 —0(jn™®).
Observe that, given %,

28(k)A
T, > ﬁ(k+A)—ﬁ(k)+D _Zk.ﬂ(g&_nﬂ(k)

Bk + A) — f(k) — b'(k/m)A
0

by (2.1), and (2.4) with e = A/n. Thus &1 A =73 A & implies of N &.
Note also that the complement of & implies

Ipa < I < Bk) < Blk+ A) + 24,

which gives .

Hence,
Pr(f} = 1—Pr(#)+Pr(f AB)
> 1—Pr(#B)+Pr(f) ALy A B)
> —Pr(#) + Pr(#,) + Pr(e/2 A %)

1 + Pr(fy A &) — Pr{B) — O(jn™°)
1-0((j+ 1)n™)
where the last step follows from Pr(«/3) = 1 — 0(n~°), which is true by (3.3) and (3.7) with

t; = A. This completes the inductive proof of (3.8) and Lemma 3.2 follows, since neither
I nor nb(k/n) can change by more than 2 on passing from k to k + 1. O

4. Open Problems

1 How big can 4 = d(n) be so that a random d-process still saturates almost surely? We
think that it does so as long as d = o(n) and that for d = cn the limit probability of
saturating depends on the constant c.

2 For fixed d, what is the rate of decay of the probability of not saturating? We are
convinced that @- is correct regardless of the value of d.

3 For d > 3, is there a function f(x) which approximates I,/n? We know that b(x) is
good for d = 2 but we doubt if it is for higher 4.
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4  When does the last vertex of degree k, 0 < k < d —2, disappear and what is the largest
number of vertices of degree &, 1 < k <d — 1, present at one time during the process?
Only the case d = 2 is within our grasp and the key is again the function b(x).

5 Ford >3, does the random d-process almost surely result in a connected graph? We
conjecture that it does. In [7] we show that this is false for d = 2, by studying the
distribution of cycles. However, we can still only conjecture that the random 2-process
a.s. results in a disconnected graph.
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