Discrete Mathematics 2

Problem set \#5

Due: Wednesday, January 9

1. Show that for all hypergraphs \mathcal{F} with vertex set $[n]$ and all $1 \leq i<j \leq n$
(a) $\left|\mathcal{S}_{i j}(\mathcal{F})\right|=|\mathcal{F}|$,
(b) If \mathcal{F} is k-uniform, then so is $\mathcal{S}_{i j}(\mathcal{F})$,
(c) If \mathcal{F} is t-intersecting, then so is $\mathcal{S}_{i j}(\mathcal{F})$,
(d) If \mathcal{F} has no matching of size s, then the same is true for $\mathcal{S}_{i j}(\mathcal{F})$.
2. Show that if $\nu(\mathcal{F})=s$ and $|\mathcal{F}|=m^{(k)}(n, s)$, then also $\nu\left(\mathcal{S}_{i j}(\mathcal{F})\right)=s$.
3. Show that if \mathcal{F} is a k-graph on vertex set $[n]$ and $1 \leq i<j \leq n$ then

$$
\partial\left(\mathcal{S}_{i j}(\mathcal{F})\right) \subset \mathcal{S}_{i j}(\partial \mathcal{F})
$$

4. Prove that after finitely many shift operations $\mathcal{S}_{i j}$ applied to a k-graph \mathcal{F}, we will arrive at a shifted (stable) k-graph.
5. For a fixed n, determine the largest s for which

$$
\binom{s-1}{2}+(s-1)(n-s+1) \geq\binom{ 2 s-1}{2}
$$

6. Prove that for all $k, s \geq 2$

$$
m^{(k)}(s k, s)=\binom{k s-1}{k}
$$

7. Prove that for all k, n and $1 \leq s \leq n-1$, the maximum number of edges in a (k, k)-graph with n vertices in each partition class and with no matching of size $s+1$, equals $s n^{k-1}$. Show also that for $n=2$ there is more than one extremal hypergraph with the above property.
