Discrete Mathematics 2

Problem set #5Due: Wednesday, January 9

- 1. Show that for all hypergraphs \mathcal{F} with vertex set [n] and all $1 \leq i < j \leq n$
 - (a) $|\mathcal{S}_{ij}(\mathcal{F})| = |\mathcal{F}|,$
 - (b) If \mathcal{F} is k-uniform, then so is $\mathcal{S}_{ij}(\mathcal{F})$,
 - (c) If \mathcal{F} is *t*-intersecting, then so is $\mathcal{S}_{ij}(\mathcal{F})$,
 - (d) If \mathcal{F} has no matching of size s, then the same is true for $\mathcal{S}_{ij}(\mathcal{F})$.
- 2. Show that if $\nu(\mathcal{F}) = s$ and $|\mathcal{F}| = m^{(k)}(n, s)$, then also $\nu(\mathcal{S}_{ij}(\mathcal{F})) = s$.
- 3. Show that if \mathcal{F} is a k-graph on vertex set [n] and $1 \leq i < j \leq n$ then

$$\partial(\mathcal{S}_{ij}(\mathcal{F})) \subset \mathcal{S}_{ij}(\partial \mathcal{F}).$$

- 4. Prove that after finitely many shift operations S_{ij} applied to a k-graph \mathcal{F} , we will arrive at a shifted (stable) k-graph.
- 5. For a fixed n, determine the largest s for which

$$\binom{s-1}{2} + (s-1)(n-s+1) \ge \binom{2s-1}{2}$$

6. Prove that for all $k, s \geq 2$

$$m^{(k)}(sk,s) = \binom{ks-1}{k}.$$

7. Prove that for all k, n and $1 \le s \le n-1$, the maximum number of edges in a (k, k)-graph with n vertices in each partition class and with no matching of size s + 1, equals sn^{k-1} . Show also that for n = 2 there is more than one extremal hypergraph with the above property.