Discrete Mathematics 2

Problem set #4Due: Wednesday, December 12

- 1. For n even, $n \ge 2$, find an intersecting family of subsets of X, |X| = n, of size 2^{n-1} which is not \mathcal{F}_x for any $x \in X$.
- 2. Prove that every maximal intersecting family of subsets of X, |X| = n, is increasing and has size 2^{n-1} . Here maximal means that for every $A \notin \mathcal{F}, \mathcal{F} \cup \{A\}$ is not intersecting, while increasing means that \mathcal{F} is closed under taking supersets.
- 3. Show that for every $x \in X$, the family \mathcal{F}_x is maximal.
- 4. Let \mathcal{F} be a maximal family of subsets of X, |X| = n, such that whenever $A, B \in \mathcal{F}$ then $A \cup B \neq X$. Prove that \mathcal{F} is decreasing (i.e., closed under taking subsets) and has size 2^{n-1} .
- 5. If $\mathcal{F} \subset {X \choose \leq r}$ is an intersecting Sperner System, $r \leq n/2$, then $|\mathcal{F}| \leq {n-1 \choose r-1}$.
- 6. Fix $1 \le k \le n \le 2k$ and show that if \mathcal{F} is an SS consisting of proper subsets of X, each of size at least k, and not containing two sets whose union is X then $|\mathcal{F}| \le {\binom{n-1}{k}}$.
- 7. Complete the 1st proof of Erdős-Ko-Rado Theorem by showing that for every cyclic order σ at most r sets in \mathcal{F} form intervals of σ .
- 8. Show that for all $\mathcal{A} \in {X \choose r}$

$$|\partial_{r-1}\mathcal{A}| \ge \frac{\binom{n}{r-1}}{\binom{n}{r}}|\mathcal{A}|.$$

- 9. With notation from the 2nd Proof of the E-K-R Theorem, prove Observation 1, that is, that no set of \mathcal{G}_1 is contained in any set of \mathcal{G}_0 .
- 10. If $1 \leq s < r < n$ and $\mathcal{F} \subset {X \choose r}$ is such that for every $A, B \in \mathcal{F}, A \neq B$, we have $|A \cap B| \leq s$ then

$$|\mathcal{F}| \le \frac{\binom{n}{s+1}}{\binom{r}{s+1}}$$