Discrete Mathematics 2

Problem set \#4
Due: Wednesday, December 12

1. For n even, $n \geq 2$, find an intersecting family of subsets of $X,|X|=n$, of size 2^{n-1} which is not \mathcal{F}_{x} for any $x \in X$.
2. Prove that every maximal intersecting family of subsets of $X,|X|=n$, is increasing and has size 2^{n-1}. Here maximal means that for every $A \notin \mathcal{F}, \mathcal{F} \cup\{A\}$ is not intersecting, while increasing means that \mathcal{F} is closed under taking supersets.
3. Show that for every $x \in X$, the family \mathcal{F}_{x} is maximal.
4. Let \mathcal{F} be a maximal family of subsets of $X,|X|=n$, such that whenever $A, B \in \mathcal{F}$ then $A \cup B \neq X$. Prove that \mathcal{F} is decreasing (i.e., closed under taking subsets) and has size 2^{n-1}.
5. If $\mathcal{F} \subset\binom{X}{\leq r}$ is an intersecting Sperner System, $r \leq n / 2$, then $|\mathcal{F}| \leq\binom{ n-1}{r-1}$.
6. Fix $1 \leq k \leq n \leq 2 k$ and show that if \mathcal{F} is an SS consisting of proper subsets of X, each of size at least k, and not containing two sets whose union is X then $|\mathcal{F}| \leq\binom{ n-1}{k}$.
7. Complete the 1st proof of Erdős-Ko-Rado Theorem by showing that for every cyclic order σ at most r sets in \mathcal{F} form intervals of σ.
8. Show that for all $\mathcal{A} \in\binom{X}{r}$

$$
\left|\partial_{r-1} \mathcal{A}\right| \geq \frac{\binom{n}{r-1}}{\binom{n}{r}}|\mathcal{A}|
$$

9. With notation from the 2nd Proof of the E-K-R Theorem, prove Observation 1, that is, that no set of \mathcal{G}_{1} is contained in any set of \mathcal{G}_{0}.
10. If $1 \leq s<r<n$ and $\mathcal{F} \subset\binom{X}{r}$ is such that for every $A, B \in \mathcal{F}, A \neq B$, we have $|A \cap B| \leq s$ then

$$
|\mathcal{F}| \leq \frac{\binom{n}{s+1}}{\binom{r}{s+1}}
$$

