Discrete Mathematics 2

Problem set \#3
Due: Wednesday, November 15

1. Show that every family \mathcal{F} satisfying the property in the definition of $\alpha_{r}\left(x_{1}, \ldots, x_{n}\right)$ is $r-S S$.
2. Prove the Dual Dilworth Theorem: In every finite poset X, the size of a largest chain equals the smallest number of antichains which cover X.
Hint: use the notion of the rank of an element:

$$
r(x)=\max \left\{|L|-1: \quad L \in \mathcal{L}_{x}\right\}
$$

where \mathcal{L}_{x} is the set of all chains with the largest element x.
3. Prove the Dilworth Lemma: For positive integers a, b, every poset X of size $|X| \geq a b+1$ contains either a chain of size $a+1$ or an antichain of size $b+1$.
4. Prove the Erdős-Szekeres Theorem (1935): every sequence of $r s+1$ real numbers contains a non-decreasing subsequence of length $r+1$ or a non-increasing sequence of length $s+1$.
5. Deduce Corollary 1 from Theorem 2, that is, show how the Aharoni-Haxell (2000) hypergraph extension of Hall's Theorem implies its defect (deficiency) form.
6. Deduce Hall's Theorem from Theorem 2.
7. Let $f(r)$ be the smallest number of edges in an (r, r)-graph with $\nu(H)=1$ and $\tau(H) \geq r-1$. Prove that (a) $f(r) \geq 2 r-3$, (b) $f(4)=6$.

