# Discrete Mathematics 2 

## Problem set \#2

Due: Wednesday, November 7

## The old stuff

1.7 Let $G$ be a bipartite graph with bipartition $\left(V_{1}, V_{2}\right)$ and let $A$ be the set of vertices of maximum degree.
(a) Show that there is a matching saturating $A \cap V_{1}$.
(b) Deduce from part (a) and Problem 4 that $G$ contains a matching saturating $A$.
1.8 An $r \times s$ Latin rectangle based on $[n]$ is an $r \times s$ matrix $A$ such that each entry belongs to $[n]$ and each integer from $[n]$ occurs in each row and column at most once.
(a) Prove that every $r \times n$ Latin rectangle can be extended to an $n \times n$ Latin square.
(b) Show that an $r \times s$ Latin rectangle can be extended to an $n \times n$ Latin square iff for each $i=1, \ldots, n$ occurs in $A$ at least $r+s-n$ times.

## The new stuff

1. Prove the following reformulation of Cor. 4: for all $r \leq\lceil n / 2\rceil$ there is a surjection $f_{r}:\binom{X}{r} \rightarrow$ $\binom{X}{r-1}$ such that $A \supset f_{r}(A)$, while for every $r \geq\lfloor n / 2\rfloor$ there is a surjection $g_{r}:\binom{X}{r} \rightarrow\binom{X}{r+1}$ such that $A \subset g_{r}(A)$.
2. Show that Theorem 2 (LYM Inequality) implies Theorem 1 (Sperner).
3. Prove that if an SS $\mathcal{F}$ consists of sets of size at most $k$ only, $k \leq n / 2$, then $|\mathcal{F}| \leq\binom{ n}{k}$.
4. What is the largest size of an SS with at least one set of size at most 2 , at least one set of size at least $n-2$, and no sets of size $i$, for any $3 \leq i \leq n-3$.
5. For an integer $s \geq 1$, let $\mathcal{F}$ be an $s$-Sperner System ( $s$-SS), that is, $\mathcal{F}$ does not contain any chain of length $s+1$. Set $a_{k}=\left|\mathcal{F} \cap\binom{X}{k}\right|$. Prove that

$$
\sum_{k=0}^{n} a_{k}\binom{n}{k}^{-1} \leq s
$$

6. Show that the LYM inequality becomes equality iff $\mathcal{F}=\binom{X}{k}$ for some $k \in[n]$.
7. For a positive integer $r$ and a sequence of real numbers $\left(x_{1}, \ldots, x_{n}\right)$, satisfying $\left|x_{i}\right| \geq 1$, $i=1, \ldots, n$, let

$$
\alpha_{r}\left(x_{1}, \ldots, x_{n}\right)=\max _{\mathcal{F} \subset \mathcal{P}(n)}\left\{|\mathcal{F}|: \forall A, B \in \mathcal{F}, A \neq B, \quad\left|x_{A}-x_{B}\right|<r\right\}
$$

Show that $\alpha_{r}\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)=\alpha_{r}\left(x_{1}, \ldots,-x_{i}, \ldots, x_{n}\right)$
8. Let $y_{A}=\sum_{A} x_{i}-\sum_{A^{c}} x_{i}$. Show that

$$
\alpha_{r}\left(x_{1}, \ldots, x_{n}\right)=\max _{\mathcal{F} \subset \mathcal{P}(n)}\left\{|\mathcal{F}|: \exists x \quad \forall A \in \mathcal{F} \quad y_{A} \in(x-r, x+r)\right\}
$$

