Discrete Mathematics 2

Problem set #1Due: Wednesday, October 10

- 1. Prove the Defect Form of Hall's Theorem (Cor. 1)
- 2. Prove the Polyandric Form of Hall's Theorem (Cor. 2) and reformulate it in terms of bipartite graphs.
- 3. Let A be an $n \times n$ matrix. Prove that A has n 1's such that each row and each column contains precisely one of them iff any k rows contain 1's in at least k columns.
- 4. Let G be a bipartite graph with bipartition (V_1, V_2) and let k be a fixed integer. Suppose that each vertex of V_1 has degree at least k, while each vertex of V_2 has degree at most k. Show that G has a matching saturating V_1 . Deduce that every bipartite, regular graph contains a perfect matching.
- 5. A 2-factor of a graph is a 2-regular spanning subgraph, that is, a union of disjoint cycles covering all the vertices. Show that every regular graph of positive even degree has a 2-factor (Petersen, 1891).
- 6. Let k be a positive integer. Show that any two partitions of a finite set into k-element sets admit a common SDR.
- 7. Let G be a bipartite graph with bipartition (V_1, V_2) and let A be the set of vertices of maximum degree.
 - (a) Show that there is a matching saturating $A \cap V_1$.
 - (b) Deduce from part (a) and form Problem 4 that G contains a matching saturating A.
- 8. An $r \times s$ Latin rectangle based on [n] is an $r \times s$ matrix A such that each entry belongs to [n] and each integer from [n] occurs in each row and column at most once.
 - (a) Prove that every $r \times n$ Latin rectangle can be extended to an $n \times n$ Latin square.
 - (b) Show that an $r \times s$ Latin rectangle can be extended to an $n \times n$ Latin square iff for each i = 1, ..., n occurs in A at least r + s n times.