Graph Theory II

Problem Set (correction to Problem 5, hints) \#9
due: Tuesday, June 6

1. Determine the value of $e x\left(n, K_{1, r}\right)$ for all n and r. Hint: It's easy to find an upper bound. A bit harder that it can be achieved for all r and n (all parities have to be considered).
2. Show that $t_{r-1}(n) \leqslant \frac{1}{2} n^{2} \frac{r-2}{r-1}$, with equality whenever $(r-1) \mid n$. Hint: Express $n=(r-1) k+i$, $0 \leqslant i<r-1$. Then express $t_{r-1}(n)$ in terms of r, n and i.
3. Show that $t_{r-1}(n) /\left(n^{2} / 2\right) \rightarrow \frac{r-2}{r-1}$ as $n \rightarrow \infty$. Hint: Use the bound $t_{r-1}(n) \geqslant t_{r-1}\left((r-1)\left\lfloor\frac{n}{r-1}\right\rfloor\right)$.
4. For $0<s \leqslant t \leqslant n$, let $z(n, s, t)$ be the maximum number of edges in a bipartite graph with $n+n$ vertices not containing a copy $K_{s, t}$. Show that

$$
2 e x\left(n, K_{s, t}\right) \leqslant z(n, s, t) \leqslant e x\left(2 n, K_{s, t}\right)
$$

Hint: For the lower bound double the vertex set to obtain a bipartite graph with twice as many edges and still no copy of $K_{s, t}$
5. Let $1 \leqslant r \leqslant n$ be integers and G be a bipartite graph with bipartition $\{A, B\},|A|=|B|=n$ and not containing $K_{r, r}$. Show that

$$
\sum_{v \in A}\binom{\operatorname{deg}_{G}(v)}{r} \leqslant(r-1)\binom{n}{r}
$$

and deduce from this inequality that $e x\left(n, K_{r, r}\right) \leqslant c_{r} n^{2-1 / r}$. Hint: Count the number of pairs (x, Y) with $x \in A, Y \subseteq B,|Y|=r$, and x connected to all vertices of Y. For the second part use $(s / t)^{t} \leqslant\binom{ s}{t} \leqslant s^{t}$ and that the function $z \rightarrow z^{r}$ is convex.
6. Given a tree T, find an upper bound on $e x(n, T)$ that is linear in n and independent of the structure of T, i.e. depends only on $|T|$. Hint: Prove and combine two facts: 1) every graph G contains a subgraph H with $\delta(H) \geqslant\|G\| /|G| ; 2)$ every graph H with $\delta(H) \geqslant t-1$ contain every tree on t vertices.
7. Erdős and Sós (1963) conjectured that for every tree T and all n, ex $(n, T) \leqslant \frac{1}{2}(|T|-2) n$. Show that this conjecture is best possible in the sense that for every k and infinitely many n, there is a graph on n vertices and $\frac{1}{2}(k-2) n$ edges which contains no tree on k vertices. Hint: easy.
8. Prove the Erdős-Sós conjecture in the case when T is a star. Hint: easy.

