Graph Theory II

Problem Set - correction (in Problems 4, 5c, 6, 7) #8due: Tuesday, June 6

- 1. Show that every pair (X, Y) which is ϵ -regular in G is also ϵ -regular in the complement \overline{G} of graph G.
- 2. If (A, B) jest ϵ -regular with density d and $Y \subseteq B$, $|Y| \ge \epsilon |B|$, then all but at most $\epsilon |A|$ vertices $v \in A$ have each at least $(d \epsilon)|Y|$ neighbors in Y.
- 3. Let G = (X, Y, E), n = |X| = |Y|, be a bipartite ϵ -regular graph with density $d_G(X, Y) = d > 2\epsilon$. Show that if $\delta(G) \ge \epsilon n$, then G has a perfect matching. Can the assumption of ϵ -regularity be weakened?
- 4. Given are 3 sets X, Y i Z, all of size n. Show that if $G_1 = (X, Y, E_1)$, $G_2 = (X, Z, E_2)$, and $G_3 = (Y, Z, E_3)$ are ϵ -regular bipartite graphs, each of density d, then the number of triangles T in the union of these graphs $G_1 \cup G_2 \cup G_3$ satisfies the inequalities

$$(1-2\epsilon)(d-\epsilon)^3 n^3 < T < [2\epsilon d + (d+\epsilon)^3]n^3.$$

In addition, consider the version where only G_2 and G_3 are ϵ -regular (and all 3 have density d).

5. Let G = (X, Y, E) be an ϵ -regular bipartite graph of density $d_G(X, Y) = d$. Show that

(a) if $d > 2\epsilon$, then there exists a subset $A \subseteq {\binom{X}{2}}$ of size $|A| \ge (1 - 6\epsilon) {\binom{|X|}{2}}$ such that for all pairs of vertices $u, v \in A$ we have

$$(d-\epsilon)|Y| \leq \deg u, \deg v \leq (d+\epsilon)|Y|$$

and

$$(d-\epsilon)^2|Y| \leq \deg(u,v) \leq (d+\epsilon)^2|Y|;$$

(b) if $A \subseteq X$, $B \subseteq Y$, $|A| > \eta |X|$, and $|B| > \eta |Y|$, where $\eta \leq 1/2$, then subgraph $G[A \cup B]$ of graph G induced by the sets A i B is ϵ/η -regular;

- (c) if $E' \subseteq E$, $|E'| = \eta |E|$, then subgraph G E' = (X, Y, E E') is $(\epsilon + \eta \frac{d}{\epsilon^2})$ -regular.
- 6. Let G = (X, Y, E), n = |X| = |Y| be an ϵ -regular bipartite graph of density $d_G(X, Y) = d$. Let $N(S) = \bigcap_{v \in S} N_G(v)$ be the set of all common neighbors of the vertices from a set $S \subseteq X$. We say that S is good, if

$$(d-\epsilon)^{|S|}n \leq |N(S)| \leq (d+\epsilon)^{|S|}n \; .$$

Fix n, k such that $n \ge 3(k-1)$. Show that if $\epsilon \le (d-\epsilon)^k$, then

- (a) every good set S of size k is contained in at most $2\epsilon n$ bad (= not good) sets of size k + 1;
- (b) all k-element sets $S \subseteq X$, except at most $3\epsilon k \binom{n}{k}$, are good.

Hint for part (b): induction on k and double counting.

7. Show that if a graph G on n vertices possesses an ϵ -regular partition $(V_0, V_1, ..., V_k)$, where $|V_0| < \epsilon n$ and $\epsilon \leq 1/9$, then it also possesses a $3\sqrt{\epsilon}$ -regular partition $(V'_0, V'_1, ..., V'_k)$, where $|V'_0| \leq k - 1$.