Graph Theory II

Problem Set - correction (in Problems 4, 5c, 6, 7) \#8 due: Tuesday, June 6

1. Show that every pair (X, Y) which is ϵ-regular in G is also ϵ-regular in the complement \bar{G} of graph G.
2. If (A, B) jest ϵ-regular with density d and $Y \subseteq B,|Y| \geqslant \epsilon|B|$, then all but at most $\epsilon|A|$ vertices $v \in A$ have each at least $(d-\epsilon)|Y|$ neighbors in Y.
3. Let $G=(X, Y, E), n=|X|=|Y|$, be a bipartite ϵ-regular graph with density $d_{G}(X, Y)=d>$ 2ϵ. Show that if $\delta(G) \geqslant \epsilon n$, then G has a perfect matching. Can the assumption of ϵ-regularity be weakened?
4. Given are 3 sets X, Y i Z, all of size n. Show that if $G_{1}=\left(X, Y, E_{1}\right), G_{2}=\left(X, Z, E_{2}\right)$, and $G_{3}=\left(Y, Z, E_{3}\right)$ are ϵ-regular bipartite graphs, each of density d, then the number of triangles T in the union of these graphs $G_{1} \cup G_{2} \cup G_{3}$ satisfies the inequalities

$$
(1-2 \epsilon)(d-\epsilon)^{3} n^{3}<T<\left[2 \epsilon d+(d+\epsilon)^{3}\right] n^{3}
$$

In addition, consider the version where only G_{2} and G_{3} are ϵ-regular (and all 3 have density d).
5. Let $G=(X, Y, E)$ be an ϵ-regular bipartite graph of density $d_{G}(X, Y)=d$. Show that
(a) if $d>2 \epsilon$, then there exists a subset $A \subseteq\binom{X}{2}$ of size $|A| \geqslant(1-6 \epsilon)\binom{|X|}{2}$ such that for all pairs of vertices $u, v \in A$ we have

$$
(d-\epsilon)|Y| \leqslant \operatorname{deg} u, \operatorname{deg} v \leqslant(d+\epsilon)|Y|
$$

and

$$
(d-\epsilon)^{2}|Y| \leqslant \operatorname{deg}(u, v) \leqslant(d+\epsilon)^{2}|Y|
$$

(b) if $A \subseteq X, B \subseteq Y,|A|>\eta|X|$, and $|B|>\eta|Y|$, where $\eta \leqslant 1 / 2$, then subgraph $G[A \cup B]$ of graph G induced by the sets A i B is ϵ / η-regular;
(c) if $E^{\prime} \subseteq E,\left|E^{\prime}\right|=\eta|E|$, then subgraph $G-E^{\prime}=\left(X, Y, E-E^{\prime}\right)$ is $\left(\epsilon+\eta \frac{d}{\epsilon^{2}}\right)$-regular.
6. Let $G=(X, Y, E), n=|X|=|Y|$ be an ϵ-regular bipartite graph of density $d_{G}(X, Y)=d$. Let $N(S)=\bigcap_{v \in S} N_{G}(v)$ be the set of all common neighbors of the vertices from a set $S \subseteq X$. We say that S is good, if

$$
(d-\epsilon)^{|S|} n \leqslant|N(S)| \leqslant(d+\epsilon)^{|S|} n
$$

Fix n, k such that $n \geqslant 3(k-1)$. Show that if $\epsilon \leqslant(d-\epsilon)^{k}$, then
(a) every good set S of size k is contained in at most $2 \epsilon n$ bad ($=$ not good) sets of size $k+1$;
(b) all k-element sets $S \subseteq X$, except at most $3 \epsilon k\binom{n}{k}$, are good.

Hint for part (b): induction on k and double counting.
7. Show that if a graph G on n vertices possesses an ϵ-regular partition $\left(V_{0}, V_{1}, \ldots, V_{k}\right)$, where $\left|V_{0}\right|<\epsilon n$ and $\epsilon \leqslant 1 / 9$, then it also possesses a $3 \sqrt{\epsilon}$-regular partition $\left(V_{0}^{\prime}, V_{1}^{\prime}, \ldots, V_{k}^{\prime}\right)$, where $\left|V_{0}^{\prime}\right| \leqslant k-1$.

