Graph Theory II

Problem Set \#5

due: Wednesday, April 12

1. Go over the proof of Brooks Theorem and verify that it goes through in the more general setting of colorings from lists.
2. For every $k \geqslant 3$, find a bipartite graph G with $\operatorname{ch}(G) \geqslant k$. Hint: Consider a $K_{n, n}$ with list being k-subsets of a k^{2}-element set.
3. What is the complement of the line graph $L\left(K_{5}\right)$.
4. Not using Thomassen's Theorem show that for every planar graph $\operatorname{ch}(G) \leqslant 6$.
5. Determine the chromatic index of the Petersen graph.
6. Determine the chromatic index of every complete graph.
7. Show that every hamiltonian cubic graph is 3-edge-colorable.
8. Let the vertices of maximum degree in a graph G induce a forest. Show that $\chi^{\prime}(G)=\Delta(G)$. Hint: This seems to be difficult, so first try to solve a simpler version where we assume that the vertices of maximum degree form an independent set; or, still simpler, that there is just one vertex of maximum degree. I suspect that Statement S_{k} from Schrijver's proof of Vizing's Theorem may come handy.
