Graph Theory II

Problem Set \#3

due: Wednesday, March 22

1. Show that every graph G has a vertex ordering for which the greedy algorithm uses only $\chi(G)$ colors.
2. For every n find a bipartite graph on $2 n$ vertices ordered in such a way that the greedy algorithm uses rather n than 2 colors.
3. Prove Proposition 2, that is, prove that $\chi(G) \leqslant \operatorname{col}(G)=\max \{\delta(H): H \subseteq G\}+1$.

Remark: Prove both, the inequality and the equality.
Hint: For equality, in one direction build the ordering of vertices from the end; in the other, consider the subgraph with largest minimum degree.
4. Find a lower bound on the coloring number $\operatorname{col}(G)$ in terms of the maximum density $m(G)=$ $\max \{d(H): H \subseteq G\}$, where the density

$$
d(H)=\frac{\|H\|}{|H|}=\frac{\sum_{v \in V(H)} \operatorname{deg}_{H}(v)}{2|H|}
$$

is a half of the average vertex degree of H.
Hint: Consider a subgraph with largest density which has the smallest number of vertices.
5. Show that Theorems 6 and 6^{\prime} are, indeed, equivalent.

