Graph Theory II

Problem Set \#2
due: Wednesday, March 15

1. Prove that for any graph $G, \tau(G) \leqslant 2 \nu(G)$ and $\tau(G)=n-\alpha(G)$.
2. Show that in every (undirected) graph G there is a path cover of size at most $\alpha(G)$.
3. Let $\mathcal{C}=\left\{K_{1}, K_{2}, C_{3}, C_{4}, \ldots\right\}$. Prove that in every graph G there is a \mathcal{C}-cover of size at most $\alpha(G)$. Hint: Find a subgraph H of G isomorphic to a member of \mathcal{C} and containing a vertex not adjacent to any vertex of $G-V(H)$. Then apply induction on $|G|$.
4. Deduce Hall's Theorem from Gallai-Milgram Theorem. Hint: Direct all the edges from A to B.
5. Deduce from Gallai-Milgram Theorem that every tournament contains a (directed) Hamiltonian path.
6. Show that every graph G with $\delta(G) \geqslant 2$ contains a cycle longer than $\delta(G)$. Hint: Consider a longest path in G and one of its endpoints.
7. Show that if G is connected, then every two longest paths in G have a common vertex.
8. Prove that, for every $k \geqslant 1$, if a connected graph G has at least $2 k+1$ vertices and $\delta(G) \geqslant k$, then G contains a path of length at least $2 k$. Hint: Consider a longest path P in G and both its endpoints; create a cycle on the vertex set $V(P)$; by connectivity, if the cycle is not Hamiltonian, one can find a path longer than P - a contradiction.
9. Prove that if a graph G has $n \geqslant 5$ vertices and $\alpha(G)<3$, then G contains a cycle of length at least $n / 2$. Hint: Apply induction on n. Check $n=5$ and $n=6$ using known facts from Ramsey Theory. For $n \geqslant 7$, remove some two vertices, apply induction hypothesis for $n-2$ (obtaining a cycle C^{\prime} of length $\left.\geqslant(n-2) / 2\right)$ and construct a cycle C by adding to C^{\prime} one or both removed vertices.
