Graph Theory II

Problem Set #2due: Wednesday, March 15

- 1. Prove that for any graph G, $\tau(G) \leq 2\nu(G)$ and $\tau(G) = n \alpha(G)$.
- 2. Show that in every (undirected) graph G there is a path cover of size at most $\alpha(G)$.
- 3. Let $C = \{K_1, K_2, C_3, C_4, ...\}$. Prove that in every graph G there is a C-cover of size at most $\alpha(G)$. Hint: Find a subgraph H of G isomorphic to a member of C and containing a vertex not adjacent to any vertex of G V(H). Then apply induction on |G|.
- 4. Deduce Hall's Theorem from Gallai-Milgram Theorem. Hint: Direct all the edges from A to B.
- 5. Deduce from Gallai-Milgram Theorem that every tournament contains a (directed) Hamiltonian path.
- 6. Show that every graph G with $\delta(G) \ge 2$ contains a cycle longer than $\delta(G)$. Hint: Consider a longest path in G and one of its endpoints.
- 7. Show that if G is connected, then every two longest paths in G have a common vertex.
- 8. Prove that, for every $k \ge 1$, if a connected graph G has at least 2k + 1 vertices and $\delta(G) \ge k$, then G contains a path of length at least 2k. Hint: Consider a longest path P in G and both its endpoints; create a cycle on the vertex set V(P); by connectivity, if the cycle is not Hamiltonian, one can find a path longer than P – a contradiction.
- 9. Prove that if a graph G has $n \ge 5$ vertices and $\alpha(G) < 3$, then G contains a cycle of length at least n/2. Hint: Apply induction on n. Check n = 5 and n = 6 using known facts from Ramsey Theory. For $n \ge 7$, remove some two vertices, apply induction hypothesis for n 2 (obtaining a cycle C' of length $\ge (n-2)/2$) and construct a cycle C by adding to C' one or both removed vertices.