Graph Theory II

Problem Set #1due: Wednesday, March 8

- 1. Show that every regular bipartite graph has a 1-factor and, thus, also a 1-factorization, that is, a decomposition of its edge set into disjoint 1-factors.
- 2. For each $k \ge 2$, give an example of a k-regular graph without a 1-factor. (Begin with small k.)
- 3. Show that the Petersen graph does not have a 1-factorization.
- 4. Show that every bipartite graph contains a matching saturating all vertices of maximum degree.
- 5. Deduce Hall's Theorem from Tutte's Theorem.
- 6. Find set S from Theorem 3 for the following graphs: n-vertex path P_n , cycle C_n , clique K_n , bipartite complete graph $K_{n,m}$, any tree.
- 7. Prove Petersen's Theorem from 1891 stating that every bridgeless cubic graph has a 1-factor. Hint: Use Tutte's Theorem and double counting technique.
- 8. Show that

$$\nu(G) \geqslant \frac{|E(G)|}{2\Delta(G) - 1}.$$

(Recall that $\nu(G)$ denotes the size of the largest matching in G, while $\Delta(G)$ – the maximum vertex degree.)

9. Prove the following defect form of Tutte's Theorem:

For all $1 \leq k \leq n/2$, every *n*-vertex graph G has a matching of size k if and only if for all $S \subseteq V(G)$,

$$q(G-S) \leqslant |S| + (n-2k).$$

Hint: For the nontrivial implication, apply Tutte's Theorem to the graph $G * K_{n-2k}$ obtained by joining every vertex of G to every vertex of a clique K_{n-2k} (the clique is vertex disjoint from G). Alternatively, apply Theorem 3 (see Remark 3).