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uite Easily Done

T he line between easy mathematical problems and hard ones is finely drawn.

Some problems seem to cross back and forth: First they look easy, then
they seem hard. and then, when they’re finally solved, they look easy again.
A recent example is a simple-sounding combinatorial puzzler called the Dinitz
problem. First posed in 1978, the Dinitz problem has finally been solved with a
surprisingly simple proof, but only after fifteen years during which it seemed a
very tough nut to crack.

The story starts in the late 1970s. Jeff Dinitz, then a graduate student at Ohio
State University (now a professor at the University of Vermont), was studying
properties of combinatorial arrangements known as latin squares. A latin square
isan n x n array of n symbols—say a 5 x 5 array of stars, squares, circles, diamonds,
and triangles—in which no symbol appears more than once in any row or column
(see Figure 1). Latin squares are useful. for example. in the design of experiments,
to protect against bias. If, say, you want to compare five different herbicides in a
corn field, but want to make sure the results aren’t affected by variations in soil
quality from one side of the field to another, then dividing the field intoa § x 5
latin square pattern is an efficient way to design the experiment.

Latin squares are easy to come by. Indeed. their number explodes with the
size of the square. from two 2 x 2 squares to twelve 3 x 3 squares to more than
10" squares of size 8 x 8. But Dinitz cooked up a variant on the problem of
constructing latin squares for which it wasn’t clear——until now-—that any solution
could be found.

In an ordinary »n x n latin square, there is only one set of 1 symbols, and an
element from that set must be chosen for each location in the square. In Dinitz’s
version—called a “partial latin square”—each location is assigned its own set of
n possible symbols; these sets may vary from location to location. The problem
is still to choose a symbol for each location, but now the symbol must come from
the set assigned to that location. The goal. however. remains the same: to avoid
choosing the same symbol twice in any one row or column.

In Figure 2, a three-element set is assigned to each location in a 3 x 3 square:
the elements in orange constitute a partial latin square. The Dinitz problem asks:
Given any assignment of n-element sets of symbols to the 72 locations in an 7 x 7
array. is it always possible to find a partial latin square? Or to put it negatively,
among all the ways to assign n-element sets to the locations of an n x n array,
are there any for which it’s impossible to pick an element from each set without
picking some symbol twice in the same row or column?

At first glance, the answer seems obvious: Since the problem, in general, uses
more than n symbols. it should be easier to satisfy the nonrepetition requirement
for a partial latin square than for an ordinary latin square. But that glance
overlooks a crucial aspect of the problem: Not every symbol is available at every
location. One way to construct an ordinary latin square is to specify where in
each row you’ll place the first symbol. where the second symbol, and so on; that
approach doesn’t even make sense for partial latin squares.

Another telling difference between ordinary and partial latin squares casts fur-
ther doubt on the “obviousness” of the answer. Ordinary latin squares can always
be filled in “row by row.” If. say, the first two rows of a 5 x 5 square have been
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Figure 1. Each of five symbols appears
exactly once in a 5 x 5 latin square.

{A,0,0] [(AO %) (O, %, &)
(7,0, %] {A,0 0] (A, *, &
(& O,®9) (O, %, @] (0O 0,%*)

Figure 2. One symbol (orange) from
each three-element set can always be
chosen to form a 3 x 3 partial latin
Square.
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filled in successfully (without doubling up in either row or any column). then the
rest of the rows can also be filled in to give a latin square. That means that when
you're trying to create a latin square, you'll never paint yourself into a corner—you
won’t get down to the last row. for example. and find yourself unable to complete
the square. With partial latin squares, by contrast. you can paint yourself in. For
example. if the sets in the first row of a 2 x 2 array are {4, B} and {B.C}, it’s
natural to choose A and B as the symbols in that row-—but then you get in trouble
when you see the sets {4, C} and {B. C'} in the next row.

Complications notwithstanding. Dinitz’s conjecture—that partial latin squares
can always be found—turns out to be true. It just took fifteen years for a proof to
be found. In the meantime. the problem served as a kind of drawing card for the
theory of combinatorial design and a testing ground for new ideas.

Dinitz’s conjecture can be verified directly for 2 x 2 arrays, because there are so
few different possibilities. In principle. the conjecture can be checked for arrays of
any given size. That’s because there are only finitely many cases to check: The total
number of distinct symbols for an n x n array cannot exceed #°. so the number of
cases is less than »° to the power n° (more precisely. it’s at most the n> power of

(’:I‘)). But the numbers involved in such a brute-force. case-by-case analysis grow
astronomically with n. The 3 x 3 problem is small enough for this approach to be
practical. but the 4 x 4 case is already out among the stars.

In 1991. however. Noga Alon and Michael Tarsi at Tel Aviv University in Israel
proved a theorem that made it easy to verify (by computer) Dinitz’s conjecture
for 4 x 4 and 6 x 6 arrays. Their theorem is not specific to Dinitz’s problem. It
concerns a general problem in graph theory called “list coloring.”

Jeff Dinitz

In combinatorics. a graph is a set of points (called verzices) and a set of lines or
curves (called edges) connecting them. Many applications of graphs in scheduling
or network theory can be interpreted as coloring the edges of a graph. with the
stipulation that no two edges of the same color meet at a common vertex. To
schedule a college football season. for example, let each team be represented by
a vertex. draw an edge connecting teams that are slated to meet. and then color
each edge according to the week on which the two teams are to play (say red for
week 1, blue for week 2. and so on). The condition that no like-colored edges
should meet at a common vertex simply means that no team should be asked to
play two games simultancously.

In a list-coloring problem. each edge in a graph is assigned a prescribed set.
or list. of allowed colors. The Dinitz problem can be viewed as a special case of
list coloring, for graphs in which each of n “row” vertices is joined to each of n
“column” vertices (see Figure 3). Graphs of this type, in which the vertices are
separated into two sets and all edges cross from one set to the other, are known
as “bipartite” graphs: the particular graph associated with the Dinitz problem is
called a complete bipartite graph. because it includes all possible edges between
the two sets of vertices. There is a general conjecture regarding how large the
palette of possible colors for each edge of a graph must be in order to ensure that
a list coloring is possible. Viewed from this angle, the Dinitz problem is just the
tip of an immense theoretical iceberg.

Alon and Tarsi’s theorem gives a condition which. if satisfied. guarantees the
existence of a list coloring from sets of a particular size. Their condition is simple
enough to be verified explicitly for the graphs associated with the 4 x 4 and
6 x 6 Dinitz problems. In principle. the condition can be checked for all even n,
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but once again, the amount of computation involved gets quickly out of hand.
Furthermore. the condition is never satisfied for odd n. (This doesn’t mean that
the Dinitz conjecture is false for odd #, just that Alon and Tarsi’s theorem won’t
help prove it for those cases.)

Other researchers. notably Roland Haggkvist at the University of Stockholm,
had made inroads on the list coloring problem and its relation with the Dinitz
conjecture. In late 1992, Jeannette Janssen, then a graduate student at Lehigh
University in Bethlehem, Pennsylvania (now a postdoc at Concordia University

in Montreal), proved a result that surprised even many of the experts. Janssen

showed that Alon and Tarsi’s theorem could be used to solve completely a slightly
weaker version of Dinitz’s problem. Instead of focusing on squares, Janssen
looked at rectangles—arrays with fewer rows than columns. She showed that in
any r x n array with » < n, it’s enough to have » symbols (or colors) assigned to
each location in order to guarantee that a partial latin rectangle exists.

Janssen’s result comes close to the full Dinitz conjecture in two different (but
closely related) ways. First, it says that you can always fill in at least the first
n — 1 rows of a partial latin square (the previous best result guaranteed only
two-sevenths of the rows). Second, by starting with an n x (n + 1) rectangle and
then lopping off the last column, Janssen’s theorem says that you can always find a
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Figure 3. Each edge in a bipartite graph corresponds to a location in a n x n array.

Jeannette Janssen. (Photo courtesy of

Cliff Skarstedt.)
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partial latin square if # + | symbols have been assigned to-each location—again,
far better than previous results.

Experts in the field lauded Janssen’s breakthrough. “It is brilliant,” said Herb
Wilf of the University of Pennsylvania. “It moves the problem much closer to a
resolution than anyone had expected.” Other theorists agreed, predicting the full
Dinitz problem would be solved soon, perhaps within a year. They were right—but
not quite for the reasons they had in mind.

Fred Galvin, a mathematician at the University of Kansas, read Janssen’s proof
in the Bulletin of the American Mathematical Society; this led him back to Alon
and Tarsi’s paper in the journal Combinatorica. A remark in that paper made
Galvin realize that one of the ideas in Janssen’s work could be parlayed into a
proof of the complete Dinitz problem, provided one could prove a certain result
about the existence of something called a kernel.

Loosely speaking, a kernel of a graph is a “largest possible” subset of vertices,
no two of which are connected by an edge. The precise definition is more technical,
but the way kernels are used in Galvin’s proof is simple: take any color, say red,
identify the set of locations that include red among their allowed colors, find a
kernel of that set. and then make red your choice for all the locations in that
kernel. The Dinitz problem is solved by repeating this process with other colors
until every location has been colored—but this approach wouldn’t work, Galvin
knew, if some set of locations didn’t have a kernel.

“I didn’t know much about kernels, so I decided to go to the library and see
what’s available in the way of kernel existence theorems,” Galvin recalls. He found
exactly what he needed in the second paper he looked at. a theorem by Frédéric
Maffray which appeared in the Journal of Combinatorial Theory (Series B)in 1992.

“1 was really surprised.” Galvin says. “I read and reread [Maffray’s paper]
several times, thinking maybe I misunderstood one of the definitions.” That can
happen in a technical tangle of terminology—but not this time. Maffray’s theorem
was indeed the missing ingredient; the Dinitz problem had been solved.

Galvin circulated a three-page, handwritten account of his findings early this
year (1994). He subsequently streamlined the proof to make it self-contained.
He is still surprised. almost embarrassed. by the proof’s simplicity and the way in
which he found it. “None of the ideas in the proof originated with me.” he says.
“All 1 did was put together a couple of things that were already in the literature.”

The experts are also surprised. “The proof is just amazing,” says Jeff Kahn, an
expert on combinatorics at Rutgers University. Adds Janssen: “Nobody thought
that if there would be a proof. it would fit on three pages.”

In fact, Galvin’s three-page proof solves the list-coloring problem not just for the
complete bipartite graphs associated with the Dinitz problem, but for a// bipartite
graphs. Janssen thinks the proof gives insight into the general list-coloring problem
for all graphs. Although Galvin’s proof uses none of the elaborate theoretical
machinery in Alon and Tarsi’s paper or in Janssen’s work. the heavy-duty stuff
may still be crucial in solving the general problem—the Dinitz problem may have
turned out easy to solve because it’s a special case. Janssen says. On the other
hand, the list-coloring problem may ultimately turn out easy to solve as well,
perhaps because it’s a special case of some even more general problem. If there’s
a lesson to be drawn. it’s that hard problems need not stay that way.
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