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A DIAGONAL EMBEDDING THEOREM FOR FUNCTION
SPACES WITH DOMINATING MIXED SMOOTHNESS

JAN VYBIRAL

Abstract: The aim of this paper is to study the dlagonal embeddings of function spaces with
dominating mixed smoothness. From certain point of view, this paper may be considered as a
direct continuation of 8] and [6].
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1. Introduction

Spaces with dominating mixed smoothness were introduced by S. M. Nikol'skii
({4], [5])- The simplest case on the plane R? are the spaces of Sobolev type

SRR = {111 € Ly(R), AW )| = I71Lall+ || gt 1 2o | ¢

Nl im0

ozy? BT Ozy?

where 1 < p < 00,73, =0,1,2,...; (i =1,2). The mixed derivative % plays
the dominant part here and gave the name to this class of spaces. P

These spaces were studied extensively by many mathematicians. We quote
Amanov ([1]), Schmeisser and Triebel ([7]) to mention at least some of them. We
describe some aspects of this theory necessary in the sequel in Section 2. Sections
3 and 4 are devoted to the study of the trace operator

T: f(.’L‘l,ZL‘g) hamd f(:L‘l,.’L‘l). (12)

In (8] Triebel proved that, for 1 < p < 0o, the trace operator (1.2) is a retraction
from S;(:l‘ r2) B(R?) onto B; (R), Where o = min(ry, 72,71 + 72 — —) > 0. The
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102  Jan Vybiral

q-dependence was studied in [6]. Rodriguez proved that (1.2) is a retraction from
S(T(;’TQ)B(R"’) onto BE (R), where

1 1
0<pgoo,0<kgx< oo,g>ap=max(1—)~1,0) and min(ry, 7o) # 1_7

In the "limiting case” min(ry,rg) = zl’ the same result is proven for ¢ < min(1, p).
We fill some of the minor gaps left open by Rodriguez in the B-case and
study the trace operator in the context of F-spaces. As these include the spaces
of dominating mixed smoothness of Sobolev type (1.1), we answer the question of
their traces on the diagonal.
I would like to thank to prof. Sickel and prof. Triebel for valuable discussions
on this topic.

2. Notation and definitions

As usual, R¢ denotes the d— dimensional real Euclidean space, N the collection
of all natural numbers and Ny = NU {0}. The letter Z stands for the set of ali
integer numbers and C denotes the plain of complex numbers.

If z,y € R?, we write z > y if, and only if, z; > y,; for every i = 1,...,d.
Similarly, we define the relations z > y,z < y,z < y. Finally, in slight abuse of
notation, we write z > X for s c REA e R if 2, > N\ i=1,...,d

When a = (a1,...,aq) € Ng is a multi-index, we denote its length by
o = Z?:l G -

Let S(R?) be the Schwartz space of all complex-valued rapidly decreasing
infinitely differentiable functions on R?. We denote the d— dimensional Fourier
transform of a function ¢ € S(R?) by ¢. Its inverse is denoted by ¢V. Both *
and V are extended to the dual Schwartz space $'(R%) in the usual way.

We recall the basic aspects of the theory of function spaces used in the se-
quel. We don’t mean to give some extensive survey on various decomposition tech-
niques. Especially, as far as the standard Besov (B3 (R%)) and Triebel-Lizorkin
(F; ,(R%)) spaces are considered, we use the references [9] and [10]. Furthermore,
we give the definition of function spaces with dominating mixed smoothness in
general dimension. Setting d = 1, one gets the one-dimensional version B} (R)
or Fy (R), respectively.

Let ¢ € S(R) with

(2.1)

N

et)=1 if [t|<1 and ¢t)=0 if |t >

We put o = ¢, p1(t) = ¢(t/2) — p(t) and

(pJ(t) = (2—j+lt), te R, _] e N.
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For k = (ki,...,ks) € N¢ and z = (T1,..,2a) € R? we define pr(z) =
@k, (1) - ko (zd) - Then, since

Z pp(x) =1 forevery zeR% (2.2)
kengd

the system {W}EeNg forms a dyadic resolution of unity with the inner tensor
product structure.

Definition 2.1, Let 7 = (rl,...,_rd) €eRY, 0<g<
(i) Let 0 <p < 0o. Then S B(R?) is the collection of all f € §'(R%) such
that

7)™ =125 (o )V o (L)

(2.3)
is finite.
(ii) Let 0 < p < o0o. Then Sy F(R?) is the collection of all f ¢ S'(R?%) such

1S5 F®IL = [[( S 125 eh¥ ) L@y @4
keNg

= HQk?(‘PEfA)Vle(Eq)H
is finite.

Remark 2.2. Sometimes, we write S7  A(R%) meaning one of spaces ST B(R¢)
or 87 F(R%). As mentioned above, by setting d =1, we get By (R) = S,(,?(;B(R)
and F3 (R) = S5 “F(R). If we replace in this case the factor 2+ by (k +
1)22% o € R, we get the spaces of generalised smoothness A, a)(R). We refer to
3] and references given there for details.

Our approach uses the full power of several decomposition techniques deve-
loped for these function spaces in [9], [3] and {12]. They all work with sequence
spaces associated to these function spaces,

For 7 € N¢, 7 € Z% we denote by Q%

7 the cube with the centre at the point
277m = (27¥my,...,27%my) with sides parallel to the coordinate axes and of
lengths 2_”1, e ~va . We denote by Xzwm = X@y the characteristic function

of Qzm and by cQ,,m we mean a cube concentric with Qpwm with sides ¢ times
longer.

Definition 2.3. If 0 < p,q < oo, T € R? and

A={meC:veN,mez) (2.5)
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then we define

v
ST b= {A INSE Bl = (Z D T o p)"/”) " oo} (2.6)

TEN] ez’

w
=)
[oW

st ={r gl = | 03> |2U'F/\UHXWn‘(')|q)l/qle(Rd)

TN mezd

<w}(2ﬂ

with the usual modification for p and/or ¢ equal to co.

Remark 2.4. We point out that with X given by (2.5) and gy(z) = Z Aomxrm(T),

mezd
we obtain
X550l = 11277 gnltq Lyl IAIsh fI| = 127 Tgwl Lp(8)]l.
Definition 2.5. If 0 <p,g< 00, r,a € R and
A={dAneCipeNynez} (2.8)
then we define
< i ; N ql/p\ l/q h]
b"“'—ix 1Al = ( 2 (k) 2T N )T ) <00 (29)
pENg nez
and
£(r,a) f\ ] F{me)]) ||/T‘ N a1\ eour y / \|a\1/|qr PR | PR B
= l": 1117 pg’ ”:H L /2 \BETLTL /‘unXun\')l‘} lbp\“‘)” Qooj (2.1V)
\AGNO ncZ
with the usual modification for p and/or g equal to oo

Next we briefly describe the atomic and subatomic decomposition. We refer
to {11] and [12] for details. Compared to the situation there, we now concentrate
on the "regular” case,

Op ) in the B-case
r>
i o'pq = max(m 1 0) iIl the F case,.

Definition 2.6. Let K € N¢ and v > 1. A K -times differentiable complex-valued
function a(z) is called K -atom related to Qp if

(2.11)

supp a C vQpm, (2.12)
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<a<K.
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for 0< (2.13)

and
|D%a(z)| < 2%7
(p < 0o in the F—case) and ¥ € R? with

(2.14)

1=1,...,d

Theorem 2.7. Let 0 < p,q € o©
el e 1
+ [ra])+
) if, and only if, it can be represented as

(2.11). Fix K € N§ with

(
Ki>(1

(2.15)

Then f € S'(R%) belongs to ST A(
convergence being in  S'(R%)

[=2_ 2 domurm

DENg ez
}oend meze are K -atoms related to Qpw and X € T a. Further-

,

where {apwm(
more, ~
inf ||/\|s;qa||,
where the infimum runs over all admissible representations (2.15), is an equivalent
quasi-norm in S} A(R%)
Definition 2.8. Let 3 € S(R) be a non-negative function with
supp ¢ C {t € R: |t| <2} (2.16)
for some ¢ > 0 and
Y yt-n)=1, teR. (2.17)
nez
P(zq) and ‘Ilﬁ(ac) = 27¥(z) for z = (z1,...,%a)
(2.18)

We define ¥(z) = ¢(z;) - .
and 8 € NZ. Further let 7 ¢ R and 0 < p < 0o. Then
= 0P 2"z —mm), TeN{ mezd

(with p < 0o in the F-case) and 7 € R? with

(B )pm(x)
is called an 3-quark related to Qym

Theorem 2.9. Let 0 < p,

(2.11).
€ N¢,m ¢ 7%}

m cC:v

(i) Let
A={)\:8e N} with A ={)\2
and let p > ¢, where ¢ is the number from (2.16). Then f € S'(R?) belongs to

a
—
D

ST A(RY) if, and only if, it can be represented as
g (Bqt)zm(z), convergence being in

—
=2 > L
eNg mezd

BENg De

[
)

e
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where (Bqu)pm(x) are 3-quarks related to Qpsm and

sup 29“3|||Aﬂ|s 1@l < oo.
BeNg

Furthermore, _
inf sup 29°1[|A8|s7 a|| < o0,
BENG
where the infimum runs over all admissible representations (2.19), is an equivalent
quasi-norm in Sy A(R?).

Remark 2.10. According to {9}, [10] and [3], similar decomposition theorems are
available also for spaces A%, a)(R) They may be obtained from Theorem 2.7 and
Theorem 2.9 by setting d = 1 and replacing S, A(R?) with AR R) and s,

Lo o~ qa
with apy”’
Lemma 2.11. Let 0 < p < 00,0 < ¢ € 00,7 € R? and 1,72 > 0. Let
. | Eewm | — NG = . d
Esm C mQom, 272, VeN;, meZt (2.20)
|QFm|
Then _ B
| 277 Aol x o () [Lp(f)||~ [[Al] o f]
with constants of equivalence independent of ).
Proof. We follow closely [2]. Namely, from (2.20) we see that
X By () < CHXQ;W(I)’ z ¢ R*
and
XQr=(T) <cMxp,_(z), z¢€ R4,
Here M = My o M, , where
1 [Ets : 2 ,
(M1 f)(z) = sup —/ |f(t,z2)ldt, = = (z1,72) € R, (2.21)
s>0 2s Ty—8

and similar for M.
Then we take w > 0 such that w < min(1,p,q) and observe

VAR s A \II |I;.,.-

1 277 DomiXmrm () [Lo(@a)|[= [| 277 Doml*XBy 5 () | L2 (£2)]]

€l~

with a direct counterpart for ]l/\]s;q f||. This, together with the boundedness of
the maximal operator M (see [7] or {12] for details) finishes the proof. [

m2 A, D

b

Bvr‘:
J

{ t)Cm2'+Cm1“rnrlnntntLA nnnnnn }
isomorphic to R, all the function spaces considered so far may be taken over

T RT 0P ¢ iRy WO GENOUWC ine Giagoiar O R, AS 1 IS
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from the real line to T. In the natural sense, we get AYy™ (R) = A (') for all
admissible o, p, g and 7.

Finally, we discuss the notion of the trace. The trace operator T f, as it is
described in (1.2), makes sense only when the function f satisfies some regularity
conditions, especially, if it is continuous. This is satisfied for f € S;QA(IW) with
T > %. To avoid this restriction, we use the following general definition of the
trace. It is well known that S5 ;B(R?) — C(R?). So, for f € S3,;B(R?), we
may define (trr f)(t) = f(¢,t). If S(R?) is a dense subspace of S;qA(R2) and
trr satisfies the inequality

20\
(R, (2.22)

for some quasi-Banach space X(I') — S’(R), then there is a unique extension
onerator tr-: QT‘ A(TQQ\ — Y/F 1 o +
Ve uv:lx W Wy gdi\as a4 v v v
f € 8], A(R*) with max(p,q) < 00 and T = (ry,r2) with 7 large enough and
this definition does not depend on X (T'). In the last case, ¢ = 0o, we use the
embedding S7 . A(R?) — S71°A(R?), with € > 0 small, which defines trr f as

soon as the trace operator is defined on Sr FA(R?).

t this dcﬁl es the tll J fGr all

We write trr: S; A(R ) — X(F), if (2 22) is satisfied for all f S S;‘IA(Rz)
The symbol trr S7  A(R?) = X(T') is used to denote that trr: 57 A(R%) — X (I

and, moreover, there is an (linear, bounded) extension operator ext: X(I') —
Sy +A(R?) such that trr o ext= id.

Hence trr S7,A(R?) = X(T') if, and only if, trr is a retraction from
S A(R?) onto YIF\

2 onvg AL
,q \+ )

3. Traces of B-spaces

Theorem 3.1. Let 0 < p,g < 00, and 7 = {r1,72) € R? with
. 1
O0<r €roy,0=min{ry,r1+r2——=) >0p
p/
If ry # % or rg = i and g < min(1,p) then
T 2y _ po
trr S, ,B(R%) = B . (T).
Ifry = ~;‘;, 1 < min(p, q) then
§* B®R?) = BN
tl"l‘ P.q ( ) P,q ( )'

Finally, if 19 = =, p < min(1,q) then

1
P

_ 1_1
trp: ST B(R?) — BYY'" 7 (I)
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H

and
r1,min 0 =
ext: By ™ N0y L, T B(R?).
]
# /
Bpa
%
L
%
%
1 : B,
4 riro—1 '
Byd "
o SLLLL SIS S
0 5 1 >
P ,—, T

Proof. Step 1. - quarkonial decomposition, definition of trr f
Let f € S} ,B(R?). According to Theorem 2.9, f may be decomposed as

F=3"7 =3 3 Mo (3.1)
BENZ TeNZ mez?
with
sup 297\ ] bl| &~ || £1S7 . B(R?)]|. (3.2)
/3GN

We point out that we may assume that the coefficients A of the optimal

quarkonial decomposition (3.1) depend linearly on f. We refer again to [10] and

of +hi Font
12 } fOf detailed d discussion of this effect.

Naturally, we define

tre f= 3 (trr fla, (e fat) = D > Mo(Badom(tt).  (3.3)

BeENZ TENZ meZ?
In (3.3) we may restrict to m from
By = {m € Z* :supp (Bq)ym NT £ 0}.

Next we split

n_

UJ

—
E).J
hS

N

= U5
nez
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such that
sup |Bpp| < o0 (3.5)
vn
and, for pu = max(vy, 1),
{t: (Be)sm(t.t) #0} C(27#(n—¢),27#(n+c)), ™€ Byn, (3.6)

for some fixed constant ¢ > 0.
Using this new notation, we rewrite (3.3).

—~
(]
-~
S—r

(trr f)a(t) = L L L L Ao (Baom(t,t)
u=0necZ TeN? meEB;,
max(ul,uz)=u

where
fo=220 %" Y. ML
TeN meBy,
max{vy,ve)=p
‘We have to prove that

1. @, are atoms according to Definition 2.6, for d =1, related to (u,n).

2. flnP1b8,gll < c2#BM|ST B, resp. |72 5| < 24BN bl ()

3. trr f defined by (3.3) coincides with the trace operator introduced in

Section 2.

It is easy to prove the first statement. The support property (2.12) follows
directly from (3.6). Also the second property (2.13) is satisfied (up to some constant
which depends only on i from Definition 2.8). To prove the third statement,
consider f € 8%, B(R?). Then \? € 55, for every 3 & N§ and the series in (e)
both converge uniformly on R?. So, for f € S B(R?), trr f defined by (3.3)
coincides with the trace operator of Section 2. Us,ing density arguments, this may
be extended to all f € Sj  B(R?).

So, in the following we concentrate on the proof of (d).

This will finish the first part of the proof, namely the existence and bo-
undedness of the trace operator trr: S B(R?) — Bg (T'). To see that, denote
w = min(1,p,q) and write

|| tre £1BE (DI
< 7 (ke £)alBED)Y < Y 117168 11

BEN3 pGeN?
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. We take 3 € N3 fixed and suppose, that the sequence

Step 2. - Proof of (#). W
N =X={pm:7eN,me By
is given. Then we set
’Y“j, = :; :: !/\}j?ﬁ}, o NU, n € Z
UeNg FH—GB;R

max{vy,v2}=p

We recall (3.4) for the relation of By, and Bs.
Finally, we denote

1) (3.8)

o(T) = max(ul,ug)(g— 1—1)) ~T- (F~I—7

and
L' and ¢ > min(1,p), (3.9)

1 1 . _
ﬁ={g_miﬂ(lm5’ if re=g

in other cases.

Next, we point out that, if g = r;,

(lln(r1—rn\_L/1(r._l\<_y (ro — 1) for v v
a(U): PR 4; 1\"1 p/\ 1\r2Z p/ 1 < 2 (3 10)
—va(re — ;) for v = vo.
and, for p =71y + 719 — %,
(V2“Vl)(7'l -Hgo for i € vo,
a(p) = » (3.11)
(Vl — V9 (7‘2 — 7_3) S 0 fOI‘ vy 2 va.

The estimates (3.10) and (3.11) play a crucial role in the following calculations.
We need to prove that
1. \Baulp— ),\\.l PPN
[H{vunea((n + 1) 2406 &), (3.12)

summation and the same symbols stand for sequence spaces with two-dimensional

summation on the right hand side.
If p <1, then

Z’Yﬂn<Z Z Z Aol = Z Z M. (313)
nez nez TEN2 meEBg, : ;EN\?, meEB;

max(vy,vg}=pn max{v1,v2)=p

And if 9 < (== B =0), we get immediately,

2#(9~%)4(Z,an)% Siyt(e-%)q > (Z |Agﬁ|p)%'
pu=0

nez TENE meEBy

Mg ~

1
o

wu
max(vy,v2)=pn
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This, together with (3.8)-(3.11), finishes the proof of (3.12) for 0 < g < p < 1.
If p<1and {>1, weget by (3.13) and Holder’s inequality

Z(#+1)ﬂq2u(g _)Q(Z'an) <

s
(p+1)8 ( Z o7 (F= 2)p+a(@)p Z P ) <
TeN? me By

max(v1,v2)=p

z
)8 Y gb U"--)p* #) T a@p(2)\ Y
(u+1 q( > 2 (> Peml?) ") ( D 2 » ) P
UENS meB; TEN2
max(ulry2) =p max(ul,ug)zp

Mg

T
Il
=)

i M8

Here (%)’ = q—;"—p is the conjugated index to %
So, if ry # %, then 8 = 0 and, according to (3.10) and (3.11), the last

sum is uniformly bounded and the result follows. If ro = %, the last sum is
al/p
e+ 1) =c(u+ )" = (u+1) 7.

Next we consider p > 1. From (3.5) we get

> eml<c( Y. Poml)?, neZ, TeN (3.14)

meB; . meB;
. o
~

avn

By this notation, we get

oo 9
Z(“ + I)quu(g—%)q (Z ’an) P <

pu=0 nezZ

gi(u+1)ﬁq2u(e~ﬁ)q(z( E ayn)l’)%g

u=0 n€l  peN:
max(v1,v2)=p

< i(un)ﬁw(@"%”’( DO ) (3.15)

u=0 TeNZ nel
max(vy,va)=pn

where in the last step we have used the Minkowski’s inequality (» > 1).
If ¢ < 1(= B =0), we may estimate the last expression from above by

q

oG

Soweb Y (Tar,)t = 3 e T o).

u=0 V€N2 nEZ u€N2 TREB—-
max(vr 1) =
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As a(v) <0 for all ¥ € N2, this finishes the proof.
If ¢ > 1, we continue in (3.15) using Holder’s inequality.

LHS(3.15) < i (p+1) 5‘1( Z oF (r——)+‘1(")(z %)

veEN? neZ
max(v,v)=pu

S (m_. 1y, L' ' —qf
(X ) (5 )
veNg neZ TeNG
max(v1,v2)=p max(vy,va)=pn

Mg

®
(=]

If now ry # ;i,, then the last sum is uniformly bounded for all 4 € Ny and we get
the desired estimate. If ro = % we get the same estimate with additional factor
(k10 = (4 1),

Step 2. - extension operators

In this step we prove the boundedness of the corresponding extension ope-
rators. .

v_—l . .

We fix f € B2, () (or f € B;(qu )(F), respectively). Then it may be

decomposed into quarks

=> 5" ZZZA 2 (82) s
B=0 B=0u=0n€eZ

where the coefficients {)\'3 } depend linearly on f and belong to the corresponding

(9‘ -1)
sequence space bgy or bp g’ . Moreover,

sup 2"”3”)\‘3!5)(9‘0‘)“ ~ Hle;(;,gz}a)(R)H

with constants independent of f.

We define
afm,v Ymy,mz) (1, T2) =
(ﬁqu)ul,m,(931)/‘&(2”2 (2 —27"'my)), va <w, ma = [2727"my + 4]
(/Bql')uz,mz (IZ)h(zyl (‘Tl - 2_V2m2))7 1 g V2, My = [2V1—V2m2 + %]a
where h € S(R) with h(t) = 1 for |t| < 2% and h(t) =0 for |t| = 2%*! and ¢
is the co*;sta‘it in (2.16). This definition ensures that 27%?¢ gm are K -atoms for
every fixed K € N2 up to some constant which depends only on the function 1

involved in the deﬁmtlon of quarks and K.
If now o > % or ry = % and ¢ < min(l,p) then {AS } € b7} with
SUP e, 2”f3||)\|b;jq|| < || f1Bp,(R)||. We define

p V:
V(w,0)(n,j2=rn+l])) T M HENo, n€Z (3.16)
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and zero otherwise. Finally we set

ext f = Zextfﬁ——zz Z .g agm

B=07TeN2 mcZ?
and observe that for w = mm(l,p, q)

|| ext f|ST  B(R?)]|
|| ext f21ST BR[| <y 2#8||yP|sT bl|“
B=0

<c

=c sup 270 " 73§ l’yE:!p\
s = \ 2. /

(
\
= ¢ sup Zpﬁw<z Qu(n—-)q (Z l)\ﬂ K )Q/p)

BENO TLEZ
— ¢ sup 278%||\BJbTL || < || F| BT (R)I1*.
BENy

Furthermore, the deﬁnition of a_m ensures that troext f = f
The case 7o <3 L follows the same scheme. We define

s — )8
’y(#v#)(n'n) - /\p,n’ ue N, nez

and fygm = 0 otherwise. We get now similarly to (3.18)

_ v.(F- 1) a/p\ /2
InPlegatll = (30 F03(X i)™
VEN3 meL?
(S outribra—2 ‘ A% B
(22“ 1472 (Z|AM| ) —H/\ b 1.
neZ
Finally, in the case ro = ;,q >1and g>pwesetfor 0vp < i
- Vo oy 1
’Y(u )y = (1) N A=[227n '2‘]
and zero otherwise. Then we get for 8 = E -1
_ / _ i) . 3 \q/p\l/q
Wlshabll = ( 22 27T ( 3 hgml) )
veN? meZ?
o0 ) a/p 1/q
= (S BTy g.r) )
.u,=0 nez

= 1[0

113

(3.17)

(3.18)

(3.19)

(3.20)
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4. Traces of F spaces

Theorem 4.1. Let

with

If ry >

IfT2<

IfT’Q:

If’l"gz

= Q=

- i

A

O<p<oo, 0<g<oo, 0<r <1y

Q:mmOhﬁ+m—l)>%W
P
then
trr Sp  F(R?) = F2 ().
then
trr S} F(R?) = F2 (L) = Bg ().
and p < min(l,q) then

trr Sp o F (R?) = F7i(T).

and ¢ <p <1 then
trr S, F(R?) = FrL (1),
and 1 < p < ¢ then

(r1,5-1)

tre: S5, F(R?) — Fply (D).

q
2 = % and p > max(1,q) then
= ri,i-1
trr: S;"qF(RQ) N F(, Iy )(P)
4 4
T2 , \ /
4
% En /
/
%
4
L
L o
5 ) - G pa
Dp.g ’
o s S
q
0

=

q

™

(4.1)

(4.2)

(4.3)

(4.4)
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Proof. We recall our task. We use again the notation (3.1)—(3.13).
We suppose, that the sequence

A= {)\p,m:UGNO,?ﬁ'G B;}

is given. Then we set

Yyn = > > Dol (4.7)

TENZ meB;,
max(v1,v2)=p

and recall (3.4) for the relation of B, . and By. We need to prove that (ra > 1\

I{vun Hipll < cll{Aomtsh o 1] (4.8)

or (1"2 < :—7)
o™ % 1| < ell{Awmblsh o1 (4.9)

respectively.

We split (4.7) into two parts,

© 7
=3T3 Pawamh 2= D Puwml  (410)

va=0mMeEB(, vy).n v1=0ME B, uyn

and prove (4.8) and (4.9) for both these parts separately.
Step 1. We start with the case rp > 11—,, We recall the definitions of sequence
spaces involved in (4.8) and obtain

Hrun P = / (30 3 12 vununa)l7)

u—OnFZ

and

»

H{/\um}l’sp JNP = / / Z Z |2U'F)\vavm($1,$2)|q) " dzoda:.
1 eNg me By
So, to prove (4.8) for v() | it is enough to prove

(o3 j2wm VX (@)]) <

pu=0neZ

1
c/ (Z Z |27’F)\;mxgm(a:1,$1 +$2)1q)%d$2

1 Genz e By

(4.11)

for every fixed z;.
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Finally, we try to change the notation in such a way that we could switch
from integrals to sums. With z; being fixed, there is only one n = n(u) such that
Xun(w1) = 1. We denote 7‘(‘1) =~ So, the left hand side of (4.11) reduces to

wn(p)”

o 2
(N jouria (1) @
\Z 14 W)

p=0

Finally, as a direct corollary of (3.5), we may suppose, that each By, contains
only one element. So, to every u € Ny and every v; < p there is a unique
m = Tp, va) € By wa)n(u)- We denote ANuws) = A(#-Vz)ﬁ(#;vz)'

We reformulate once more our task. We start with a given sequence

A={M: T NG, » 2w,
and define
"
Yo = E : ’/\(u,uz)l'
vz =0

Finally, we use the Lemma 2.11 and choose the sets Ey; such that By iluws)
and E(“_y;),m(”,yé) are disjoint for vo # vj.

]

i
S N L T

TN 5
.o ‘i

/

It turns out, that it is enough to prove that

P
q

oo r oo o, > }
(Z |2“”7,L!") "<ed 2 (Z I2W1+JT2,\(W—)\") (4.12)
n=0 j=0 u=j

with ¢ independent on the starting sequence A. We just mention, that the j—sum
comes from decomposition of the integral in (4.11) according to the supports o

eIl LSILVI0N

Xvm involved.

[
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First we discuss the case ¢ < 1. In that case,

© ©
v _1
B Pl < Y 220 0

v2 =0 ve=0

If moreover g—’ <1,

00 r
(Z Q,umq,yz)q < ( ur1q Z Quz(rzm-)qI/\( 2)1 )
pu=0

M8

pu=0 Vo =0
00 i pid
= (e Y A, )
vo=0 p=rag
oo [o o] P
<e 32 (3 )’
va=0 H=V2
This proves (4.12) for p < ¢ <1 and ry > 1—1,

In the case ¢ < 1,¢ < p we denote

oo
= 2 127 M|

w=r2

By this notation, the right-hand side of (4.12) may be rewritten like

e 00
RHS(4.12) = Z 27 (zyzrquq )q = Z QVz(rz—i)Pbgz

v =0 ve =0

and the left-hand side may be estimated by

[o o) P o0 P
(Z |2M1'Y;(11)|q) ag (Z bgz) .
u=0

va=0

This (and Holder’s inequality) finishes the proof of (4.12) for ro > % and ¢ <

l,g <p.
Next,wetakeq>1.Wedenoteﬁ:—;}:%—l ifrzziljand B=0if

ro > 1
By Hoélder's inequality we get

n
e(ut 1) (30 2N, 1)

1% =0

-

1€ No.
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£, an 2
Hence, for p € g,

o0 P [o’s) §73 P
(Z(‘u + 1)[3021.”10,73) T <e (Z guriq Z 2U2(r2—%)ql)\u,u2|q) q
u=0 u=0 Vo=
{ > 7 o \ 5
N a—n C O Anr gt+rarag al ¢
se( 2 Yo wmeranaing ))
va=0 nH=uvy
oo oo P
<c Q-Vz( Z 2"”q+””2‘1|)\(u,,,2)|q) a

vo =0 u=vy

This finishes the proof of (4.12) for max(p,1) < q and rp > 1. But for r = 5

this also proves the generallsatlon of (4.12), where 2™ is replaced by (u+ 1)#2¢m
alan #L 4 Lo -

iy Py 4 N AY
on the left-hand side. H Hence, also the boundedness of the trace operator 1n (45)

follows.
For p>¢>1 and ry — % > &g > 0 we get similarly

K 1
(55 2t )
ve=0 .
and

oo o0 P St P
TGN g gra(ra—g—€lape Y9 gva(ra—glepg ¢
(Z Wu)ﬂ\c(z 1 bl’z) \CZ( l Vz)

y,=0 vy =0 ve=0

This finishes the boundedness of the trace operator for ro > :—). In the case

of ro = :—7, we have only discussed the cases p < ¢ <1 and 1 < p < q. To complete
the proof in those cases, where the result depends on ¢, we consider p < 1 < ¢.

We get by Minkowski's inequality

P
D 2 Auunl?) " = RHS(4.12)

V=0 p=va

A
M8 s

Finally, to prove the boundedness of the trace operator in (4.4) and (4.6) we

use the embedding _ "
574 F(R?) < 5] ,B(R?),

which holds for ¢ < p, and Theorem 3.1.
Step 2. Next we discuss the remaining case 0 < 7y < 19 < e =T14ry -

1<
p = Ipa
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We now need to prove (4.9). We introduce again the same notation as in the
Step 1. and replace (4.12) by

i |21ey (1)117 <ec 22 J(Z |2#T1+Jr2)\(“ Ml ) (4.13)

4—-—-(\

i=

.‘
(3

Finally, we prove (4.13) for all 0 < ¢ < oo if we prove it for ¢ = co. We denote

Ay, = Sup 28T l)\(.u ,,2)| Vs € Ng.
uzvs

Then the right-hand side of (4.13) may be (for ¢ = 0o) rewritten as

oo F23 o0 oo o0 1
= o va(re—35)p,
LHS@13) <D 240 S L, P =5 ST overy, 1P <o S onalre=ivge

For p > 1 we denote e=1—1,—r2>0 and get

H,V2

(o] “
88 _ QHTID~pED olp—v2)e/2—(p—vs)e /2I)
LHS(4.13) Z (Z

¥
')

2;"117 pep z“: (k= Vz)PE/QI/\ )(i 2-(#-112)17'6/2)"/”’

vo=0 vo=0

OM

vp=0 p=v;
oG o0 [o.¢}

e Y amvre/2gp, N gmeerianel? 2 2 V2P |
va=0 H=va ve=0

This finishes the proof of (4.8) and (4.9) for v(!). One could follow the same
arguments also for (2}, Alternatively, to a given sequence

A={\:TEN: v <o)

we consider a sequence
= {/\y Ve NO,Vl V2}

defined by Ay, ;) = )\(yz‘,,l) and use (4.12) for 5V associated with X. In this

way, we prove (4.8) and (4.9) for v(?) and finish the proof of boundedness of the
trace operator.
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Step 3. Next, we consider the corresponding extension operators. We use the
same operators as in the B-case. The first one (given by (3.16) and (3.17)) gives an
extension operator in the case ry > 1 . To prove the corresponding inequality on
the sequence space level, we again ﬁx z; and prove a pointwise inequality, which
now reduces to trivial

(2703 ual))”™ = (S 2o

vo =0 p,:'()

The same operator proves also (4.3).
The second operator characterised by (3.17) and (3.20) gives an extension
operator for r, <3 L and in (4.4). We omit the trivial calculation. |

Heterences

(1] T.I. Amanov, Spaces of Differentiable Functions with Dominating Mixed De-
rivatives. (Russian), Alma-Ata: Nauka Kaz. SSR 1976.

2] M. Frazier and B. Jawerth, A discrete transform and decomposition of di-
stribution spaces J. Funct. Anal. 93 (1990) 34-170.

[3] S. Moura, Function spaces of generalised smoothness, Diss. Math. 398
(2001), 1-88.

[4] S.M. Nikol’skij, On boundary properties of differentiable functions of several
variables, (Russian) Dokl. Akad. Nauk SSSR 146 (1962), 542-545.

[6] S.M. Nikol'skij, On stable boundary values of differentiable functions of se-
veral variables, (Russian) Mat. Sb. 61 (1963), 224-252.

(6] M.C. Rodriguez Fernandez, Uber die Spur von Funktionen mit dominie-
renden gemischten Glattheitseigenschaften auf der Diagonale. Ph.D-thesis,
Jena, 1997.

[7] H.-J. Schmeisser and H. Triebel, Topics in Fourier analysis and function
spaces. Chister, Wiley, 1987.

(8] H. Triebel, A diagonal embedding theorem for function spaces with domina-
ting mized smoothness properties, in: Banach Center Publications, Vol. 22,
Warsaw (1989), 475-486.

[9] H. Triebel, Fractals and Spectra, Basel, Birkhauser, 1997.

(10} H. Triebel, The Structure of Functions, Basel, Birkhauser, 2001.

[11] J. Vybiral, Characterisations of function spaces with dominating mized

smoothness properties, Jenaer Schriften zur Mathematik und Informatik,

Math,/Inf/15/03, 2003.

J. Vybiral, Function spaces with dominating mired smoothness, preprint,

Jena, 2004 (submitted).

g
L)

Address: Jan Vybiral, Mathematisches Institut, Fakultiat fiir Mathematik und Informatik,
Friedrich-Schiller-Universitit Jena, 07743 Jena, Germany
lll-llldll v_yuj.rcu.wmluet u.nl*_]ella. ﬂe

Received: 11 January 2005



