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ON PRIMES p FOR WHICH d DIVIDES ORDp(g)
PIETER MOREE

Abstract: Let Ng(d) be the set of primes p such that the order of g modulo p, ordp(g), is
divisible by a prescribed integer d. Wiertelak showed that this set has a natural density, é,(d),
with 84(d) € Qs0. Let Ng(d)(z) be the number of primes p € z that are in Ng(d). A simple
identity for Ng(d)(z) is established. It is used to derive a more compact expression for 6g4(d)
than known hitherto.
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1. Introduction

Let g be a rational number such that g ¢ {—1,0,1} (this assumption on g will
be maintained throughout this note). Let Ng(d) denote the set of primes p such
that the order of g(mod p) is divisible by d (throughout the letter p will also
be used to indicate primes). Let N,(d)(z) denote the number of primes in Ny(d)
not exceeding z. The quantity Ng(d)(z) (and some variations of it) has been the
subject of various publications 1, 3, 4, 7, 9, 11-19]. Hasse showed that Ny(d)
has a Dirichlet density in case d is an odd prime [3], respectively d = 2 [4]. The
latter case is of additional interest since Ny(2) is the set of prime divisors of the
sequence {g* + 1}2,. (One says that an integer divides a sequence if it divides
at least one term of the sequence.) Wiertelak [12] established that Ng(d) has a
natural density d4(d) (around the same time Odoni [9] did so in the case d is a
prime). In a later paper Wiertelak [15] proved, using sophisticated analytic tools,
the following result (with Li{z) the logarithmic integral and with w(d) = >_,41),
which gives the best known error term to this date.

Theorem 1 [15]. We have

x

Ng(d)(x) = §4(d)Li(z) + Od g (1 (log log m)w(d)—}-l) .

og’z
Wiertelak also gave a formula for d4(d) which shows that this is always
a positive rational number. A simpler formula for dg(d) (in case g > 0) has
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only recently been given by Pappalardi [10]. With some effort Pappalardi’s and
Wiertelak’s expressions can be shown to be equivalent.

In this note a simple identity for Ng(d)(z) will be established (given in
Proposition 1). From this it is then inferred that N,(d) has a natural density
dg(d) that is given by (4), which seems to be the simplest expression involving
field degrees known for &4(d). This expression is then readily evaluated.

In order to state Theorem 2 some notation is needed. Write ¢ = g, where
go is positive and not an exact power of a rational and A as large as possible.
Let D(go) denote the discriminant of the field Q(\/go). The greatest common
divisor of a and b respectively the lowest common multiple of a and b will
be denoted by (a,b), respectively [a,b]. Given an integer d, we denote by d*
the supernatural number (sometimes called Steinitz number), le 4P%° . Note that

('U, dOC) = ledpup(v) .
Definition. Let d be even and let €4(d) be defined as in Table 1 with v =
max{0, v(D(go)/dh)}.

Table 1: ¢,(d)

A\~

g\r T=
g>0| —-1/2 1/4 1/16
g<0 1/4 -1/2 | 1/16

)

Note that v < 2. Also note that €4(d) = (~1/2)?" if g > 0.
Theorem 2. We have

59(d) = d(heiioo) H 2p2 17
) L3P
with
1 if24d;
I1+3(1—sgn( ))(22(h) —1)/4 if 2||d and D(go) 1 4d;
1= 4 143(1— sen(9))(2®) ~ 1)/ + eo(d) iF2||d and Digo)}4c;
1 1 if 4d, D(go) 1 4d;
I + € (d) if 4|d, D(go)|4d.
In particular, if ¢ > 0, then
_ 14 (m1y)moraPeoran if 2|d and D(go)|4d;
11 otherwise,
and if h is odd, then
o = [ 14 (m1y2)2mm @@ if 2|d and D(g)|4d;
! 1 otherwise,

a

Using Proposition 1 of Section 2 it is also very easy to infer the following
result, valid under the assumption of the Generalized Riemann Hypothesis (GRH).
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Theorem 3. Under GRH we have
No(d)(z) = 65(d)Li(z) + Ou,g (VT log* @+ z),
where the implied constant depends at most on d and g.

In Tables 2 and 3 (Section 6) a numerical demonstration of Theorem 2 is
given.

2. The key identity

Let 71 (x) denote the number of unramified primes p < z that split completely in
the number field L. For integers r|s let K, , = Q((s,¢'/7).
The starting point of the proof of Theorem 2 is the following proposition. By

rp(g) the residual index of ¢ modulo p is denoted (we have ry(p) = [F, : {g)])-

Note that ord ,(g)rp(g9) =p— 1.
Proposition 1. We have Ng(d)(z) = 3_,1q0 2_ald )Tk, .. ().

Proof. Let us consider the quantity 3, pu{a)7k,, ., (z). A prime p counted
by this quantity satisfies p < z, p = 1(mod dv) and rp(g) = vw for some in-
teger w. Write w = wywq, with w; = (w,d). Then the contribution of p to

Pald )T K gy 0, (T) 18 > afuw; #(@). We conclude that
S @)k () = #p < 7 p= L(mod i), iry(g) and (B d) =1} (1)
ald
It suffices to show that
Ny(d)(z Z #{p < z: p= 1(mod dv), v|rp(g) and (rp(g) ,d) =1}

v|dee

Let p be a prime counted on the right hand side. Note that it is counted only once,
namely for v = (rp(g),d*). From ordp(g)rp(g) = p — 1 it is then inferred that
dlord,(g). Hence every prime counted on the right hand side is counted on the
left hand side as well. Next consider a prime p counted by Ny(d){z). It satisfies

p = 1(mod d). Note there is a {unique) integer v such that v|d>, p = 1(mod dv)

and (rp(g)/v,d) = 1. Thus p is also counted on the right hand side. [
Remark 1. From (1) and Chebotarev’s density theorem it follows that
() 1
0< < . 2
QZM [Kdvir_vv : Ql [Kdv.,u : Q] ( )

natural density 8g(d).
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Lemma 1. Write g = g1/g> with g1 and go integers. Then

Ny(d)(z) = (6g(d) + Oq g (%7%@)) Li(z), (3)

where the implied constant depends at most on d and g and

(84
) = 3 Y e i) 3 ()
v|doe ald dv ev
Corollary 1. The set Ny(d) has a natural density &,(d).

The proof of Lemma 1 makes use of the following consequence of the Brun-
Titchmarsh inequality.

Lemma 2. Let m(z;0,k) = 3" <0 p=i(mod k) 1. Then

S w(aido, 1) = Og | 2= —_——(logzu(d)\

e OgI z
v|d e

uniformly for 3 < z < /.
P oof. On noting that My(z) := #{v < z : v|d®} < (logz)*(®/log2, it stra-

T
P, , £-11 < o
ightforwardly follows that

1 M 1 w(d)
vyl :/ a(2) <y (log 2) '
oot v z z z

v|d o

By the Brun-Titchmarsh inequality we have w(z;w,1) <« z/(p(w)log(z/w)),
where the implied constant is absolute and w < z. Thus

1 z (1 w(d)
) m(z;dv, 1) € T)Ii___ - < (log z)~™ (5)
z<y, du<z2/3 SO( ng v>z v Ogl' Z
v{d o

Using the trivial estimate mw(x;d, 1) < z/d we see that

Z m(z;dv, 1) < Z di< Z —3<<dx1/3(10gz)w(d)' (6)

du>3r2/3 du>r2/3 117)@2/3
d|uoe v|do° w|doe

On combining (5) and (6) the proof is readily completed. [ |
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Proof of Lemma 1. From [10, Lemma 2.1] we recall that there exist absolute
constants A and B such that if v < B(logz)!/8/d, then

Li(z)

TK gy o (T) = Faae @ + Oy (ze~ v Vi), (7)

Let y = B{log x)I/B/d. From the proof of Proposition 1 we see that

No(d)(z) = > Y @)k, ., () + O (Z W(z;dml)\ =11+ O(I),

v|d®® oid u>y
v<y I uldee

say. By Lemma 2 we obtain that I, = O(z(log log z)*® log ™%/ z). Now, by (7),

we obtain
+ O
ZZ[ Kav.ao - dg(y 5/4 ).

v|dee C!Id
ugy

Denote the latter double sum by I3. Keeping in mind Remark 1 we obtain

I3 = 6,(d) + O sz i

vld°° ald
voy /

Using (2) and Lemma 3 it follows that

D A G V‘_;__\:O(_in)

‘ﬁ; aL|; [Kdv,av : Q] ” u‘|/7:° {Kdv,v Q}) (p(d) s v?
vy u>y vy
Oyl @y ( (logy)
= Ud = Ud, )
y Ty
and hence
log y)«(d)
13*5(d)+0d‘g(( gY) )

The result follows on collecting the various estimates. [ ]

4. The evaluation of the density J,(d)

A crucial ingredient in the evaluation of d§4(d) is the following lemma.
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Lemma 3. (6] Write g = +g{*, where gq is positive and not an exact power of a

rational. Let D(go) denote the discriminant of the field Q(./go) . Put m = D{go)/2

if u2( ) = 0 and D(go) = 4(mod 8) or vy(h) = 1 and D(go) = 0(mod 8), and
= [2v2(M+2 D(go)] otherwise. Put

(m if g <0 and r is odd;

]
= i [2v2hr)+1 D(gg)]  otherwise.

We have p(kr)k
. r
[Kkr,k : Q] [Q(Ckm /k) ' Q] m

where, for g > 0 or g <0 and r even we have

(hr k) — [2 ifn.lkr;
B R = 11 ifn, tkr,

and for ¢ < 0 and r odd we have

I 2 ifn.|kr;
e(kr,k) = L if 2|k and 221t k;
1 otherwise.

Remark 2. Note that if h is odd, then n, = [2»2(")+! D(g)]. Note that n, =
n2u2 (r) .

The ‘generic’ degree of [Kgy v : Q] equals ¢(dv)av/(av, k) and on substituting
this value in (4) we obtain the quantity S; which is evaluated in the following
lemma.

Lemma 4. We have

S o= ST S AN g
e SCOLT

where

1 p?
S(d, k) := i dm)lgzﬂ_l.

Proof. Since for v|d™ we have p(dv) = vp(d), we can write

oy

ul o ovm "1 2
\"’"/\\"'

— \
Uy \ 3 ’ J b
o(d) av? <p(d %4 a(v, h)

H{m {rvmy
(23S 7AH

(. (pv,R)\ _ [e@ it (h goo)l(v,d®):
1 1l — ) = i d "y AR JAl
d k p(v, h) 0 otherwise.
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On noting that (v, h)/v? is multiplicative in v and that for k > v,(h)

,h
Z(P ) _p

vo(h)+2—2k

k)

p’—1
one concludes that

p —vp(h)

1 Jh 1
=3 ¥ Sl T Bl s
(R Pld r2vs ()

This completes the proof.

Remark 3. Note that the condition (kh,d*)|(v,d*) is equivalent with vp(v) >
vp(h) for all primes p dividing d.

By a minor modification of the proof of the latter result we infer:

Lemma 5. Let k£ > 0 be an integer. Then

Sa(k):= Y Z Ha)avh) _ kgig p),

p(dv)av
v|doo
va(v)2va(h)+k

The next lemma gives an evaluation of yet another variant of 5;.

Lemma 6. Let D be a fundamental discrimant. Then

p(@)(av,h) 4=78(d,h) if2|d, Dl4d and y > 1
S3(D) = Z Z —_S.(_‘é’_.’ﬂ 1f2|d, D|4daﬂd'y:O;
0

dv)av .
vld oo ald #l otherwise,
[zv2(hd/a)+1 plig,,

where v = max{0, vo(D/dh)}.

hd/a)L LS - . . o .
Proof. The integer [2*2(*¢/2)+1 D] is even and is required to divide d*°, hence

S3(D) =0 if d is odd. Assume that d is even. If D has an odd prime divisor not
dividing d, then Dt d*® and hence S3(D) = 0. On noting that vy (D) < ve(4d)
and that the odd part of D is squarefree, it follows that if S3(D) # 0, then
D|4d. So assume that 2|d and Dj4d. Note that the condition [2v2(hd/®)+1  D]|dy
is equivalent with vo(v) > va(h) + max{1,1va(D/dh)} for the a that are odd, and
va(v) 2 valh) + 7y for the even a. Thus if o 1 the condition [2v2(Rd/a)+1 D]Idv
is equivalent with vo(v) > va(h) 4+ v and then, by Lemma 5, S3(D) = Sa(7y) =
477S(d,h). If v =0 then

o - S S A h)
v fl;; f; p(dv)av
vg{v)=va(h) 2Ha
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By Lemma 5 it follows that S2(0) = S(d, k). A variation of Lemma 4 yields that
the latter double sum equals 3.5(d,h)/2. [ |
Remark 4. Put
2max(0,u2(D/dh)} .
e(D) = {g—uz) . if2|d and D|4d;
(Y otherwise.

Note that Lemma 6 can be rephrased as stating that if D is a fundamental discri-
minant, then S3(D) = e2(D)S(d, h).

Let g > 0. It turns out that ord,(g) is very closely related to ord,(—g) and this
can be used to express N_,(d)(z) in terms of N,y(*)(z). From this d_4(d) is then
easily evaluated, once one has evaluated 44(d).

Lemma 7. Let g > 0. Then

_ [ Ng(4)(z) + Ng(2d)(z) — Ny(d)(z) + O(1) ifd = 2(mod 4);
N_g(d)(z) = {Ng(d)((l?) +O(1) ) ( otherwise.

In particular,

dq(5 )+5(2d) (d) ifd = 2(mod 4);
~o(4) = { g( d) ’ ¥ otherwise.o

The proof of this lemma is a consequence of Corollary 1 and the following
observation.

Lemma 8. Let p be odd and g # 0 be a rational number. Suppose that v,(g) = 0.
Then
2ordp(g)  if 21 ordp(g);
ordp(—g) = ¢ ordy(g)/2 ifordy(g) = 2(mod 4);
ordy(g) if 4ordp(g).
Proof. Left to the reader =

Remark 5. It is of course also possible to evaluate d4(d) for negative g using the
expression (4) and Lemma 3, however, this turns out to be rather more cumbersome
than proceeding as above.

5. The proofs of Theorems 2 and 3

Proof of Theorem 2. By Lemma 1 it suffices to show that

v|d>® ald
If g > 0, then it follows by Lemma 3 that §;(d) = 81+ QS(D(gg)) and by Lemmas
4 and 6 (Wlth D = D(go)), the claimed evaluation then results in this case. If A
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is odd, then similarly, d4(d) = S1 4 S3(D(g)) (cf. the remark following Lemma )
and, again by Lemma 4 and 6, the claimed evaluation then is deduced in this
If g <0, the result follows after some computation on invoking Lemma 7 and the
result for g > 0. u

Proof of Theorem 3. Recall that 7 (z) denotes the number of unramified primes
p < z that split completely in the number field L. Under GRH it is known, cf.

[5], that
() = ) VT Ll
L(z) [L:Q]+O([L ] log(dr, ))

ute 4 discriminant nF I.. From this it f'n”an on IIQIT]Q'

I'\I
< du(log(dv) +log lglggl) from [6] that, uniformly in v,

ki (8) = T + Oug{VE10B),

where a is an arbitrary divisor of d. On noting that in Proposition 1 we can restrict
to those integers v satisfying dv < z and hence the number of non-zero terms in
Proposition 1 is bounded above by z“’\“/(log z )"\“’ the result easily follows. =

6. Some examples
In this section we provide some numerical demonstration of our results.

The numbers in the column ‘experimental’ arose on counting how many
primes p < pios = 2038074743 with v,(g) = 0, satisfy d|ordy(g).

Table 2: The case g > 0

gl g | h| Dig)| d € dg(d) numerical experimental
21211 8 2 | 17/16 | 17/24 | 0.70833333--- | 0.70831919
2121 8 4 | 5/4 5/12 | 0.41666666--- | 0.41667021
2121 8 g8 1/2 1/12 | 0.08333333-.- | 0.08333144
33 |1 12 |11 1 11/120 | 0.09166666--- | 0.09165950
313 |1 12 12| 1/2 1/16 | 0.06250000--- | 0.06249098
412 |2 8 5 1 5/24 | 0.20833333--- | 0.20833328
41212 8 6| 5/4 5/32 | 0.15625000--- | 0.15625824




94  Pieter Moree

Table 3: The case g < 0

9190 | h | Dig) ]| d € dg(d) numerical experimental
2021 8 2| 17/16 | 17/24 | 0.70833333..- { 0.70835101
21201 8 4 5/4 a/12 | 0.41666666-.- [ 0.41667021
212 |1 8 6 | 17/16 | 17/64 | 0.26562500--- | 0.26562628
3131 12 5 1 5/24 | 0.20833333-.- | 0.20834107
S303 |1 12 127 1/2 1/16 | 0.06250000--- | 0.06249098
4]l 212 8 2 2 2/3 | 0.66666666--- | 0.66666122
41272 8 4 1/2 1/8 | 0.08333333--- | 0.08333144
91312 12 2 5/2 5/6 | 0.83333333-.. 0.83333215
91 312 12 6 | 11/4 | 11/32 | 0.34375000--- | 0.34375638

Francesco Pappma di for aeuumg me his

paper [10] Theorem 1.3 in that paper made me realize that a relatively simple
formula for dg(d) exists. The data in the tables are produced by a C*++ program
kindly written by Yves Gallot.
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