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INHOMOGENEOUS DISCRETE CALDERON REPRODUCING
FORMULAE ASSOCIATED TO PARA-ACCRETIVE FUNCTIONS
ON METRIC MEASURE SPACES

YONGSHENG HaAN & DACHUN YANG

Abstract: Let (X,p,p)a0 be a space of homogeneous type which includes metric measure
spaces and some fractals, namely, X is a set, p is a quasi-metric on X satisfying that there exist
constants Cg > 0 and 8 € (0,1] such that for all z, 2/, y € X,

1o(z, ) — p(@’, y)| < Coplz, ') [plz,y) + p(z’, )17,

and p is a nonnegative Borel regular measure on X satisfying that for some d > 0, all z € X
and all 0 < r < diam X,

u({y e X ¢ plz,y) <r})~r.
In this paper, the authors establish the inhomogeneous discrete Calderén reproducing formulae
on spaces of homogeneous type associated to a given special para-accretive function introduced
by G. David, which will pave the way for developing the theory of Besov and Triebel-Lizorkin
spaces on spaces of homogeneous type associated to a given special para-accretive function.

Keywords: space of homogeneous type, para-accretive function, discrete Calderén reproducing
formula.

1. Introduction

It is well-known that the remarkable T'1 theorem given by David and Journé
provides a general criterion for the L?(R™)-boundedness of generalized Calderén-
Zygmund singular integral operators; see [5, 4, 35]. The T'1 theorem, however,
cannot be directly applied to the Cauchy integral on Lipschitz curves. Meyer in

[30] (see also [33]) observed that if the function 1 in the T'1 theorem is allowed to

be replaced by a bounded complex-valued function b satisfying 0 < 6 < Reb(z)
almost everywhere, then it would imply the L?(R™) boundedness of the Cauchy
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integral on all Lipschitz curves. Replacing the function 1 by an accretive func-
tion b, McIntosh and Meyer in [30] proved the T theorem. David, Journé, and
Semmes in [6] (see also [4]) introduced a more general class of L>®(R™) functions
b, namely, the so-called para-accretive functions. They proved that the function 1
in the T'1 theorem can be replaced by a such para-accretive function, which is by
now called the T'b theorem. Moreover, they proved that the para-accretivity is also
necessary in the sense that the Tb theorem holds for a bounded function b, then
b is para-accretive. Meyer in [33] also observed that if b(x) is a bounded function
and 1 < Reb(z), one can then define the modified Hardy space H}(R™) simply
via the classical Hardy space H!(R"), namely, the space H}(R") is defined by the
collection of all functions f such that bf is in the classical Hardy space H!(R").
This space has the advantage of the cancellation adapted to the complex measure
b(x) dz and is closely related to the Th theorem, where b is an accretive function.
In fact, Han, Lee and Lin recently in [17] proved that if 7*(b) = 0, then the Cal-
derén-Zygmund operator T is bounded from the classical H P(R™) to a new Hardy
space H{(R") for n/(n+€) < p < 1, where ¢ € (0,1] is some positive constant
which depends on the regularity of the kernel of the considered Calderén-Zygmund

operators. When p, q > 1, the Besov spaces, bB3,(X) and b™! B2, (X), and the

Triebel-Lizorkin spaces, bF3, (X) and 671 £3 (X)), of such type are considered by
Han in [14] and the related Tb theorem was also established in that paper. Re-
cently, Deng and the author in [8] complete this theory by establishing the theory
of the Besov spaces, bB2,(X) and b~'B (X), and the Triebel-Lizorkin spaces,
prsq(X) and b‘lF;q(X), when p <1 or ¢ < 1. The key tool for developing the
theory of such type spaces of functions is the homogeneous continuous or discrete
Calderon reproducing formulae; see {14, 17].

The main purpose of this paper is to establish the inhomogeneous discrete
Calderdn reproducing formulae associated to a given special para-accretive func-
tion b introduced by G. David in [4], to pave the way for developing the theory of
Besov and Triebel-Lizorkin spaces with p < 1 or ¢ < 1 of such type, which will be
considered in another paper; see 18, 19, 20, 22, 23]. The inhomogeneous continu-
ous Calderdn reproducing formulae of such type have recently been established in
[44], and when b = 1, the inhomogeneous discrete Calderdén reproducing formulae
were obtained in [20]. We point out that due to the inhomogeneity, some new ideas
and techniques different from the homogeneous case on R™ in [14,17] are needed.
Moreover, we establish the inhomogeneous discrete Calderén reproducing formulae
on spaces of homogeneous type in the sense of Coifman and Weiss in [2, 3], which
include metric measure spaces and some fractals. We remark that the analysis
on metric spaces has recently obtained an increasing interest; see [34, 25, 13, 27].
Especially, the theory of function spaces on metric spaces, or more generally, the
spaces of homogeneous type has been well developed; see [28, 29, 21, 15, 18, 19, 20,
22, 23, 41, 43]. We also point that the spaces of homogeneous type considered in
this paper include metric measure spaces, the Euclidean space, the C'® -compact
Riemannian manifolds, the boundaries of Lipschitz domains and, in particular,

the Lipschitz manifolds introduced recently by Triebel in [40] and the isotropic
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and anisotropic d-sets in R™. It has been proved by Triebel in [38, 39] that the
isotropic and anisotropic d-sets in R™ include various kinds of self-affine fractals,
for example, the Cantor set, the generalized Sierpinski carpet and so forth. We
particularly point that the spaces of homogeneous type considered in this paper
also include the post critically finite self-similar fractals studied by Kigami in [26]
and by Strichartz in [34], and the metric spaces with heat kerncl studied by Gri-
gor'yan, Hu and Lau in [12]. More examples of spaces of homogeneous type can
be found in (2, 3, 34].

To establish the inhomogeneous discrete Calderén reproducing formulae as-
sociated to a special para-accretive function b of David on spaces of homogeneous
type, we will use Coifman’s idea in [6]. That is, based on a given approximation
to the identity and the continuous Calderén reproducing formulae in [44], we in-
troduce some kind of discrete Riemann sum operator S (see (3.4) below) and we
then verlfy that S is invertible in the considered space of test functions. To this
end, we need to estimate the operator norm of the linear operator R = [ — S
in the same space of test functions, where I is the identity operator. This will
be done by using the related theory of Calderén-Zygmund operators, which needs
R(1) = R*(b) = 0. To gharantee this, we need to make some special choices for
the inhomogeneous terms in our discrete Riemann sum operator S.

We remark that using the inhomogeneous discrete Calderén reproducing
formulae associated to a special para-accretive function in this paper, we can
further establish the inhomogeneous Plancherel-Palya inequalities as in [7]. Based
on this, we can then develop the theory of Besov and Triebel-Lizorkin spaces
associated to a special para-accretive function as in [23], 22]. The details will be
presented in another paper.

In the next section, we will recall some definitions and notation, especially,
the related theory of Calderén-Zygmund operators and the continuous Calderén
reproducing formulae. The discrete Calderén reproducing formulae will be establi-
shed in Section 3.

2. Preliminaries
A quasi-metric p on aset X is a function p: X x X — [0,00) satisfying that

(i) p(z,y) =0 if and only if = = y;

(i) p(z,y) = p(y, ) for all z, y € X;
(iii) There exists a constant A € [1,00) such that for all z, y and 2z € X,

p(z,y) < Alp(z, 2) + p(2,Y)]-
Any quasi-metric defines a topology, for which the balls
B(z,r)={y€ X p(y,x) <t}

for all z € X and all r > 0 form a basis.
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In what foilows, we set diam X = sup{p(x,y) : =, y € X}. We also make
the following conventions. We denote by f ~ ¢ that there is a constant C > 0
independent of the main parameters such that C—1¢g < f < Cg. Throughout the
paper, we will denote by C' a positive constant which is independent of the main
parameters, but it may vary from line to line. Constants with subscripts, such as
C1, do not change in different occurrences. For any ¢ € [1, oo}, we denote by ¢’
its conjugate index, namely, 1/qg+1/q' = 1. Let A be a set and we will denote by
X4 the characteristic function of A.

Definition 2.1. ([22]) Let d > 0 and 6 € (0,1). A space of homogeneous type,
(X,p,1t)a,0, is a set X together with a quasi-metric p and a nonnegative Borel

3 ~. N 1 21 . I
regular measure u on X, and there exists a constant Cy > 0 such that for all

0 <r<diamX and all z, 2/, y € X,
W(B(z,7)) ~ 1 (2.1)

and
lo(x, y) — o(2', y)| < Cop(x, ')’ [p(z, y) + p(a’, y)]*~°. (2.2)

The space of homogeneous type defined above is a variant of the space of
homogeneous type introduced by Coifman and Weiss in [2]. In [28], Macias and
Segovia have proved that one can replace the quasi-metric p of the space of homo-

geneous type in the sense of Coifman and Weiss by another quasi-metric 5 which
yields the same topology on X as p such that (X, 5, js) is the space defined by
Definition 2.1 with d = 1.

The following construction given by Christ in [1] provides an analogue of the

grid of Euclidean dyadic cubes on spaces of homogeneous type.

Lemma 2.1. Let X be a space of homogeneous type. Then there exists a collection
(QicX: keZy, acl}

of open subsets, where I}, is some index set, and constants & € (0,1) and C1,C2> 0
such that
(i) w(X\U, Q%) =0 for each fixed k and QF NQE =0 ifa#pB;
(ii) for any a, B3, k, | with | > k, either Qg C Q¥ or Qfg Nk =0;
(iii) for each (k,a) and each | < k there is a unique 8 such that Qk c Q_fg;
(iv) diam (Q%) < Cy6%;
(v) each QF contains some ball B(zX,Cy6%), where 2% € X.

In fact, we can think of QX as being a dyadic cube with diameter rough &%
and centered at zX. In what follows, we always suppose § = 1/2; see [21, pp. 96-98)
iction. Also, in the following, for k € Z, and 7 € Iy,

we denote by QFv, v =1, 2, ... N(k,7), the set of all cubes Qf,“ C QF, where

for how to remove this re

VO ITALIUNYT Lkl

-
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j is a positive large integer whose value will be determined later. Denote by y*®*
a point in Q%¥. For any dyadic cube Q and any f € L} (X), we set

1
malf) = = /Q /() dyu(z).

In the sequel, we let
J= {Qf»” ke Zsg, Telg, v= 1,"',N(k‘,7‘)},

the set of all dvadic cubes on X.
Let us now recall the definitions of the para-accretive functions (see (6, 4])
and the space of test functions (see [14]).

Definition 2.2. function on X, a space of homogeneous type.
(i) b is said to be para-accretive if there exist constants C3 > 0 and & € (0, 1]
such that for all balls B C X, there is a ball B’ ¢ B with ku(B) < u(B’)

satisfying . | / ‘
— b(z)du(x)| =2 Cs > 0.
B | /s () dp )l 3

(ii) b is said to be special para-accretive if there exists constant C4 > 0 such
that for any dyadic cube Q € J,

_| b(m\du(w' >Cy > 0.
mQ) e i

In this case, we simply write b € SPF(X).

Obviously, a special para-accretive function is also a para-accretive function.
Definition 2.3. Fix v > 0 and 8 2 B >
be a test function of type (zo,7,5,7) W

following conditions:

() 1£(@) < Crpmaan

(r+p
. 1
(ii) [f(z)—f(y)| < (rff(,xxya)so)) r+p(x Io))d+~, for p(z,y) < 2—;[T+p(w,w0)].
If f is a test function of type (zo,r, 3, 'y) related to a para-accretive function
b, we write f IS WI(QG,T ,8,'\,/), and the norm f in G(Tn]T”B ’V\ is defined bV

I fllg(zoryy = inf{C : (i) and (i) hold}.

Now fix zo € X and let G(8,7) = §(x0,1,05,7). It is easy to see that

g(wly T, B, 'Y) = Q(ﬁ,'y)
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with an equivalent norm for all x; € X and r > 0. Furthermore, it is easy to
check that G(8,7) is a Banach space with respect to the norm in G(8,7). Also,
let the dual space (G(3,7)) be all linear functionals £ from G(8,7) to C Wlth
the property that there exists C' > 0 such that for all f € G(8,7),

O

We denote by (h, f) the natural pairing of elements h € (G(8,7)) and f € G(3,7).
Clearly, for all h € (G(B,7))’, (h, f) is well defined for all f € G(zo,7,8,7) with
ro€ X and 7 > 0.

It is well-known that even when X = R"™ G(f;,~) is not dense in G(Ba, 7)
if 1 > B2, which will bring us some mconvemence To overcome this defect, in
what follows, for a glven €€ (O 0], we let g(ﬂ, ) be the completion of the space
y\c c; in y\p y} when 0 < p, v <E€.

Let b be a para-accretive function. As usual, we write

bG(B,v) = {f : f = bg for some g € G(8,7)}.

Ir r
11 J
by

,_

bG(B,7) and f = bg for some g € G(3,7), then the norm of f is defined

I fllog(a. = l9llga.m-

By this definition, it is easy to see that
re(6Bm) itandonlyit b€ (G(m) (23)
where we define bf ¢ (g“(g,y))' by

(bf,9) = (£, bg)

for all g € G(8,7).
In what follows, we also let

ao(xo,r,ﬁm:{feguo,r,ﬁ,v): / f(:v)b(fc)du(:r)zﬂ};

for n € (0,6], we define Cf(X) be the set of all functions having compact support

such that
|f(z) — f(y)]

p(z,y)" <

i fllepixy = sup
z#Y

Endow CJ(X) with the natural topology and let (CZ(X))" be its dual space.
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Definition 2.4. Let € € (0,6]. A continuous complex-valued function K(z,y) on

Q={(z,y) e X x X 1z #y}
is called a Calderén-Zygmund kernel of type e if there exists a constant Cs > 0
such that

(i) |K(z,y)| < Csp( )7
(i) |K(z,y) — K(z',9)| < Cop(z, ') p(z,y) 47 for p(z,a') < 25,
(iii) |K(z,y) ~ K(z,y )i < Csp(y, ¥) pla, )47 for  ply,y) < 228
A continuous linear operator T : Cg(X) — (CJ(X))" for all € (0,0] is a Cal-
derén-Zygmund singular integral operator of type ¢ if there is a Calderén-Zygmund
kernel K(x,y) of the type ¢ as above such that

(T, g) / / K (2,9) f(v)9(z) du(z) dpa(v)

for all f, g € C§(X) with disjoint supports.

We also need the following notion of the strong weak boundedness property
in [21, 16).
Definition 2.5. A Calderdn-Zygmund singular integral operator T of the kernel

K is said to have the strong weak boundedness property, if there exist 1 € (0, ]
and constant Cg > 0 such that

(K, £)] < Cor*

for all r > 0 and all continuous f on X x X with suppf C B(zi,r) x B(y1,7),
where z1 and y1 € X, ||fllLeexxx) <1, | f(ylllepxy Sr77 forall y € X and
Nf(z, Wenixy <r77 for all € X. We denote this by T € SWBP.

H AT Jibg A ) e

In what follows, we use M, to denote the multiplication operator defined
by b, namely, for suitable functions f, My(f) = bf. The following lemma when
b =1 was established in [16] and when b is a general para-accretive function, it
was established in [44].

™ e P . -
Lemma 2.2. Let b be a para-accretive function as in Definition 2.2 and € € {0, 6].

Let T be a continuous linear operator from CJ(X) to (CJ(X)) for all € (0, 9]
such that the kernels of T and b~ 'T*M, respectively satisfy the conditions (i)
and (ii) and only the condition (ii) of Definition 2.4 with the regularity exponent ¢,
T(1) =0, and T € SWBP. Furthermore, K(z,y), the kernel of T, satisfies the
following smoothness condition that

|[K(z,y)b7 () — K@, b ()] — [K(x, v )07 () - K&,y ()] (24)
< Cp(z, &) ply, v ) p(z,y) 4%

forall z, ', y, ¥’ € X such that p(z,z’), p(y,y’) < 5’%"%1. Then for any xg € X,
r>0and 0< 8, v<e, T maps Go(zo,7,3,7) into itself. Moreover, if we denote
by ||T|| the smallest constant in the estimates of the kernel of T', then there exists

a constant C > 0 such that
Ile‘Il,. < OV flar o a .
= J1iG{zo,m,8,7) =< ~ i~ litv uG{zo,m8,7)

We now recall the definition of approximations to the identity in [14].
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n 2.6. Let b be a para-accretive function. A sequence {Si}ecz , of
linear operators is said to be an approximation to the identity of order € € (0, 6]
associated to b if there exists C; > 0 such that for all k € Z and all z, ', y and
y' € X, Sk(z,y), the kernel of Sk is a function from X x X into C satisfying

(i) 1Sk(2,9)] < Crgrrgmmyyores
(ii) [Sk(z,y) — Se(2’,9)] < &y (Q_Q(j:;)’(’;)’y))s (2~‘=+i;:y))m for p(z,z’)
<7227 + p(z,y));
v.8) = Si(@y)| < Cr (5405) @iy for p(u.v)
< 24(27% 4 p(z, y)); »
(1) 11Sk(2. 9)=Ss(, ¥))~[Su(a', )= Su(@', ]I < Cr (=255 ) ()
X gy for p(3,') < 35 (27F + p(z,)) and p(y, )

< 2127 + p(z,y));
(V) [y Sk(z,y)b(y) du(y) = 1;
(v) [x Sk(z,y)b(z) du(z) = 1.

Remark 2.1. By Coifman’s construction in [6], if b is a given para-accretive
function, one can construct an approximation to the identity of order 6 such that
Sk(z,y) has a compact support when one variable is fixed, namely, there is a
constant Cg > 0 such that for all k € Z, Sk(z,y) = 0 if p(z,y) > Cs2~%.

Remark 2.2. We also remark that in the sequel, if the approximation to the
identity as in Definition 2.6 exists, then all the results still hold when b and b~!
are bounded. It seems that we do not need to assume that b is a para-accretive
function. However, in [6], it was proved that the existence of the approximation to
the identity as in Definition 2.6 is equivalent to the para-accretivity of b.

The continuous Calderén reproducing formulae associated to a given para-
accretive function were established in [44].

Lemma 2.3. Let b be a para-accretive function, € € (0,6], {Sx}$2, be an appro-
ximation to the identity of order €. Set Dy = Sy, — Sk_, for k € N and Dy = S,.
Then there exists a family of linear operators Dy, for k € Z4 and a fixed large
integer N € N such that for all f € G(3,v) with 0 < 3, v <€,

f= ZﬁkaDka(f) = Z DeMyE My(f), (2.5)

k=0 k=0

where the series converge in the norm of G(',+') for 0 < ' < 8 and 0 <+ < .
Moreover, (2.5) also converge in the norm of LP(X) for p € (1,00), and the
kernels of the operators Dy, satisfy the conditions (i) and (ii) of Definition 2.6
with € replaced by ¢ for 0 < ¢ < ¢, and

N

. “ /. ~ iv
Vo 06)

(1
)0(y) du(y) = /X Dy (z,y)b(y) du(z) = ié’

1

0,1,

[ ~
D (z,y 1.
/x ( N +1;

> 3
WV
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the kernels of the operators Ey, satisfy the conditions (i} and (iii) of Definition 2.6
with € replaced by € for 0 < € < ¢ and (2.6).

Lemma 2.4. With all the notation as in Lemma 2.3, then for all f € bG(8,7),

kMpDi(f

(o @] [e @]
Z MeDe My Di(f) = Z!VlkaJVlka(f)

holds in both the norm of bG(B',~') for 0 < §' < 8 and 0 < ' < v, and the
norm of LP(X) with p € (1, 00).

f= MyDiME(f) = ZMbEkaDk(f)
k=0 k=0

holds in (Qv(ﬁ’,fy’)) with < 3 <e and v < v <e.

. N

Lemma 2.6. With all the notation as in Lemma 2.3, then for all f € (bé(ﬁ, 'y))
with 0< 8, v < e,

f =3 DeMyDiMy(f) = > DxMoExMy(f)
k=0

k=0
holds in (bg"(ﬁ',y)) with < ' <€ and v <~ <e.

Let b be a para-accretive function and {Sk}rez, be an approximation to

the identity associated to b as in Definition 2.6. The Littlewood-Paley g-function
is defined bv

““““““““ ~J

o0 1/2
o) = | S Dn@e| @7)
Lk=0 ]
where Dy = Sy and Dy = Sk — Sk.1 for k € N. In [44], the following Littlewood-
Paley g-function was established via the above continuous Calderdn reproducing
formulae.

Lemma 2.7. Let b be a para-accretive function and {Sk}2, be an approximation
to the identity of order € € (0,6] as in Definition 2.6. Let {Dg}rez, be as above
and g(f) be defined as in (2.7). Then for any p € (1, 0), there exist two constants
A, and B, depending on p such that for all f € LP(X),

Apll fllrixy < llg(Alerxy < Bpll fllLo(xy-

We also need the following Fefferman-Stein vector-valued maximal function
inequality in [9].
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Lemma 2.8. Let 1 < p < 00, 1 < ¢ < 00 and M be the Hardy-Littlewood
maximal operator on X. Let {fi}%, C LP(X) be a sequence of measurable
functions on X . Then

where C is independent of {f¢}32,.

3. Discrete Calderén reproducing formulae

In this section, we establish the discrete Calderén reproducing formulae. Let & be
a special para-accretive function of David, {Si}rez, be an approximation to the
identity of order ¢ € (0,6] as in Definition 2.6, {Di}rcz, be as in Section 2 and

D=0 for k= -1, ~2, ---. In what follows, for any Q € J, we set
6@ = | b()du(z). (3.1)
Q
For ke Z, and N €N, let
DY =3 Diy (3.2)

Bi<N
We now introduce the following discrete Riemann sum operator

N(k,7)

N r
SNy =3 > /Qw DY (z, y)b(y) dps(y)

k=0 Telk v=1

( 1 \
—_— b(u) Dy M u)du(u
A5 L MM )

N(k,7)

F 3T Y [ DR e ) du) DM )

k=N+17€l v=1

where y¥* with k € N, r € I}, and v = 1,---,N(k,T) can be any fixed point

in Q. We need these special choices to guarantee S(1) = 1 and S*(b) = b.
Obviously, S is a linear operator. In what follows, we set

DR (z) = W . BDeto ) dt) (3.3)



Calderén reproducing formulae 25

Then the discrete Riemann sum operator can be re-written into

N(k,7)
ZZ > [ .. D (@ w)b(y) duw) D7y Ma(f) (3-9)
k=07€l, v=1 Q'
o0 ]‘v’(r'cj)
+ 3 3 3 | DY y)b(y) du(y) DeMs(£)(HE).
k=N+lrel, v=1 “Qr

We first verify that S is well defined and bounded on L?(X) via the Littlewo-
od-Paley theorem for the g-function, Lemma 2.3. To do so, let us first establish
the following estimate by using Lemma 2.3.

Lemma 3.1. Let b be a special para-accretive function. Then there exists a con-
stant C > 0 such that for all N € N, all y»* € Q%" and all f € L?(X),

N(k,7)
ZZ > QB DR My(£)?
k=0T71€l, v=1
N{k,7)

+ Z 33T W@ DMy (P < CllfI3ax)-

k=N+171el, v=1

Proof. By Lemma 2.3 there exists a family of linear p rators {I~)k}z°=0 whose
Y
]

1. -
helllﬁlb bdblbly \l) dllU \11} Ul UUIIIULIUII A U Wlhll € p y au_y C < \G,C

(2.6) such that for all f € L?(X),
Z 1My Dy My(f).
=0

By Lemma 3.1 in [44] (see also [14]), we have that for any €” € (0, €'), there exists
a constant C' > 0 such that
9~ (kAL)e

DM D < C2-Ie-tle”
| DeMpDi(z, 7)) (2—(k/\l)+p(z’1-))d+d

forall z, z € X and all k, | € Z, . Note that for all z € X and any z, y €
by Lemma 2.1 (iv), we have that p(z,y)+2~* ) ~ 2=AD 4 p(x 2, where j € N
is sufficiently large. Thus, for all € X, any y, z € Q%" and all k, | € NuU {0},

2-(’6/\1)6'

DiM,D < G2~ Ikt 7
| D MpDy(z, )| (2= A 4 p(x, y))d+e

From this, b € L*°(X) and b € SPF(X), it follows that for k =0,1,---, N

b
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TMu(S)| -
1
= i ’b(Qk’u) /Q"«" b(2)D(z, y)d,u(z)] b(y) £ (v) d'u(y)l
' oo_ 1 -' i
chu(Q"’”) / w/X”(z)(DkaDﬂ(z’ﬂf)MszMb(f)(z)dp(w) dp(z)
=0 T d

< C Y2 I MDM () (y)xgew ()

Dk Ma(f Z / (DRMo D)o, ) |Mu DMy () () di(x)  (3.6)

< CZ2*““”"'M(Dsz(f))(y)ngu(y)»

=0

where M is the Hardy-Littlewood maximal function on X. By (3.5), (3.6), the
construction of Q% (see Lemma 2.1) and Lemma 2.8, we obtain

N(k,T)

ZZ Z (QE)|DEY M Z 3 Z (QE)| DiMa( ) (yF) 2

k=01€l, v=1 k=N11r€l

2

<C), /X {Z 21 M (DM () )| duy)
k=0""~ =0

SO IMDIM()32x,

=0

<0y I DM ()22

1=0
< CllflTaex

which proves Lemma 3.1. |

The next lemma can be proved by a way similar to the proof of Theorem
(1.14) in ([11], page 12). The main idea is to combine Lemma 2.4, Lemma 2.1 and
Holder’s inequality with a dual argument. We omit the details here; see also (22].

Lemma 3.2. Suppose that a sequence, {a¥*}, of numbers satisfies
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Then the function defined by
N(0,7)

fay =3 3 (@22 / DY (2, 9)b(y) du(y)
r€lp v=1
[ele] N(k,'r)
2000 3 W@ /Q ¥)b(y) du(y)

k=1rcl, v=1
is in L?(X). Moreover,
N(k,T)

k,
||f||L2(Y) CZ Z Z las V|2
k=071€l, v=1
Lemma 3.1 and Lemma 3.2 yield the boundedness of the discrete Riemann
r S in L2(X)

n
AR S LY A

Theorem 3.1. Let b be a special para-accretive function. The discrete Riemann
sum operator S from (3.4) is bounded on L*(X). That is, there is a constant
C > 0 such that for all f € L*(X),

NSl 2xy < CllfllLzex)-
Next we prove that the discrete Riemann sum operator S is invertible and

S=! maps G(xo,r,8,7) into itself. To do this, we define R = I - S and first prove
the following theorem.

Theorem 3.2. Let b be a special para-accretive function, S be as in (3.4) and
R=1I-S. Then R is a Calderén-Zygmund singular integral operator, R(1) =
0 = R*(b). Moreover, its kernel, R(z,y), satisfies the following estimates: for any
¢ € (0,¢) and some § > 0, there exist constants C > 0 and Cy > 0 (both
depending on €' ) such that

|R(z,y)] < (C27%" + Cn277%)p(z, y) ™4, (3.7)

IR(z, y)b~(y) — R(z,y)b~ (1) < (C27%N 4 Cn2 ™) p(y, 1/ )¢ plz,y) "+ (3.8)
for py, v') < p(z,y)/(44%);

IR(z,y) — R(z', )| < (€27 + Cn277)p(z, ') plz, y) =+ (3.9)
for p(z,2') < plz, y)/ (442%);
[R(z,y) — Rz, )b () — [R(z,v') = R(z/,¥) b () (3.10)

< (C27N 4 Cn2 ) p(e, 2 ply, ¥') plz, y) (@)
for p(z,z') < p(z,y)/ (44%) and p(y,y') < p(z, y)/(44%);

(R, )l < (€27 4 Cn2770)r (3.11)
for all r > 0 and all continuous function f on X x X with

f ',U)“cg()() U fOT all yeX a"d [|f(1f )Hcg(X) <rt fOT allz € X.

o R e et
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Proof. Let {S;}2, be an approximation to the identity as in Definition 2.6. We
let Dy =0 when k€ {-1,-2,--}, Dy = Sg and Dy = Sy — Sx_, for k € N.
For any given large N € N and any k € Z, let DY be asin (3.2). It is easy to see

that
oo
I=Y DM,

k=0

in L?(X). By Coifman’s idea, we rewrite this into

(E) (£

\k=0 7 \j=0 /
e =)
= Z Z Dy i My Dy My, + Z DY MyDiM,,
[t|>N k=0 k==0

From this, it follows that

R(f)(z)
N NikT) ) ]
=YY 3 [, D) [MeDMU)) ~ DR M) duty)
k=07l v=1 b
oo N (k,T)

DYDY /Qf,VDiV(ﬂf,y)b(y) [DeMu(£)(y) — DMu(f) (wh™)] duly)

k=N41rel, v=1

+ Z Z Dy My D My (f)(x)

k=0 |I[>N

= Gi(f)(x) + Ga(f)(x) + Rn(f)(x).

e kernel of G,

v z !
estimate for Ry is established in Lemma 3.2 in [44]; see also [20].
We now estimate G, for i = 1, 2 and first estimate Gg. Clearly,

For i = 1,2, we denote by G,(z

i ]

N(k,7)

Galma)= 3 3 S [ D 0)blo) [Dety. =) — Dutyd, )} 4 duty)

k=N+17v€l, v=1

From b ¢ L>(X), '
P(y’yfiu) ~ 2777k

and the regularity of D¥ | it follows that

—
(%]
i
%)

-

|G2(z, 2)| (3.13)
o0 N(k‘T) —kC —kC
s o—de Y T [ 2 2 VRS
L COn27/ — — cauly)
kﬁv‘ﬂéﬁ 2 Jorw 7R 1 plz, )2+ (2°F + ply, 2))4F



Calderén reproducing formulae 29

2""“ 2—1'66
<Cn27 / du(y
kZN: X (2-F + p(x,y))dte (275 + p(y, 2))d+¢ ®)
. o0 2—ke
— Cn2 /
k:%rl p(zy)z s (27F + p(z, )4
N 2—ke J ( )+/
- w(y
@27F + ply, 2)) %+ p(y,2)> 252
gD D
< ON27¢
k=N411 (27F + p(z, z))4te
B N I <L .
L {kEZ*+:2-*k<p(x.2)} {k€Z+:2-F>p(z,2)} )

< Cn27%p(z, 2) ¢

where if p(z,z) > 1, then the second term is empty. This verifies that Gol(x, 2)
satisfies (3.7) with the constant Cn279¢,
We now write
Ga(z, 2)b7" (2) — Go(z, 2)b71 (')
N(k,T)

- > ¥ Z DY (z, 9)b(y) { [Dr(v> 2) — Du(h", 2)]

k,v
k=N417€le v=1 YQF

~ (D, 2') = D@, )]} du(w).

We verify that Gy satisfies (3.8) by considering two cases.
Case 1. p(z,2') < $%(27F 4 p(y,2)). In this case, b € L¥(X), (iv) of
Definition 2.6 and (3.12) yield that

|G 2(z, 2)b™ 1 (2) = Ga(z, 2" )b ()] (3.14)

I\HL- n-\

<03 XS [ 10wl |Pu ) - a2

k=N41 7€l v=1
~ [De, #') — Di(yr", 2)]| du(v)

oo ’ Ae —ke
cor S [Nl (L& T T
h Lot JxUTRTTNN2 R 4 p(y, 2) ) 7R 4y, 2))T
k=N+41
00
g 02 Z / +/ }
kN1 P2)2 2rp(z,2) ply,z)< 77 P(2,2)

ot 9=k(1-A)e

g CQ—jEp‘z, zi)/\u’: A —
(227 2 @R ol 2)
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(
< Cz—jep(z, zr)Ae i Z 2k(d+/\e)

{k€EZ+:2-k>p(z,2)}

1 Ck(1—
WErTP VI *’e’}

{k€Zt:2-%<p(x,2)} )

< CON277p(2, ') p(z, 2) 7132,

where A can be any number in (0,1) and if p(z,z) > 1, then the first term is
empty. This is a desired estimate.

Case 2. 52(27% 4 p(y, 2)) < p(z,2') %5—2 In this case, by b € L®°(X),
(ii) of Definition 2.6 and (3.12), we have

| Ga(z,2)b71(2) — Ga(x, 2" )07 (2)] (3.15)

2'—’66 2—ke
Je d
<02 Z / | DY (2,9) [ T oy e T T (g, 7)) 1(y)

k=N+41

i 92— k(1—X)e

< 0279z,

< O27p(z,2) Z (2% ¥ plz, 2))o+
k:=N+l\ Ay s

Q—ke 2 ke
* /x [(2"“ + p(y, 2))‘”5 * (2"c + p(y,z’))d“] uly)
(1=X)e
<oz Z (2- ’°+px z))e+e

lfnr.
=N+1

< On27p(z,2') pla, 2) =@+,

where A can be any number in (0,1) and we omit some computation similar to
(3.14), which verifies that G, satisfies (3.8).

Note that
Gg(l‘,z) —Gg(l‘/ Z)
NikTr) .
-3 XY [, e ]
k=N+1r€el, v=1 Q"

x [Di(y, 2) = Di(yE”, 2)] b(z) du(y).

To verify G4 satisfies (3.9), we also consider two cases.
Case 1. p(z,x') < 57(27% 4 p(z,y)). In this case, b € L*°(X), (3.12) and
(ii) of Definition 2.6 lead us that

| Ga(z, 2) —Go(z’ z)] (3.16)

4 Ae —ke
e 5 [ () Y
SO 2 [\ pmn) T e
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Q—ke
X d
B+ oy P
g CN2—j5p(l‘, CL")Aep(l‘, z)—(d+/\€)’

where A can be any number in (0,1) and we omit some computation similar to
(3.14), which is a desired estimate.

Case 2. 3:(27% + p(z,y)) < p(z,2') < 2z.2) In this case, b € L®(X),
(3.12) and (ii) of Definition 2.6 again tell us that

| Go(z,2) — Gz(II z)| (3.17)
< Cn27ie Z / [1DF (= 9)] + | D (', )]
k=N+1
n—ke
d
X @ F F ply,2))Ete HY)
) \ i 9—k(1-\e
< CN277¢p(z, ')
N .0( ) B (2—k +p(I, z))d+e
/ [[DF (z,9)| + | D (@', 9)|] du(y)
00 2—k(1~/\)5

< Cn27%p(z, z) Z (

ot 9-k + p(.’L‘, z))d-l—e
< CNQ_je,D(I, :El)l\ep(lt, z)——(d—l—z\e)’

where A can be any number in (0,1) and some computation similar to (3.14) is
omitted, which verifies Gy satisfies (3.9).

We now verify that Go(z,z) satisfies (3.10) when p(z,2') < %Z——‘? and
p(z,2') € ”fm To this end, we write

[Ga(z, 2) — Ga(z', 2)]b71(2) — [G2(x,2') — Ga(z', 2)]b ™ (2)
N(k,7y

=5 X% [, [PF )= D] b [Py =) - D)

k=N+171el, v=1
— [Di(y, 2') — De(yh", 2] } du(y)-

Now, if j is large enough, then p(z,2’) > 55 (27* + p(z,y)) and

p(z,2') > LA(2 *+ oy, 2))
imply

plz,z') + p(z,2') = 5 [27F + plz,y) + plv, 2)]

)
’~:>|H

> —p(z,2),

N
>
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which contradicts to p(z,z’) < —47,— and p(z,2') € %%f—l. Thus, we still have
three cases:
(i) oz, z') < 52(27% + p(z,y)) and p(z,2') < L (27% + p(y, 2));
(i) plz,2') < F7(27% + p(z,y)) and p(z,2') > L (27% + p(y, 2));
(i) p(z,2') > F5(27% + p(z,y)) and p(z,2) < 77278 + p(y, 2)).
For the case (i), by (3.12) and Definition 2.6 (ii) and (iv), we obtain that for any
A€ (0,1),

| D'(z.y) - DY (@', )| | [Di(y, 2) - Du(y¥”, )] - [Dily, ') — Di(ys™, 2')]|
”r)—je / p(z’zl) \6 2_k6

O \27 R+ p(zy) ) (27K + p(x, y))de

o2& N2

\27% +p(y,2) /] (27 + p(y, z))4+e

<C

For the case (ii), noting that —4%;’-2 plz,2') > ﬁ(2"c + p(y, z)) implies that
p(z,2") > 2751 A-1 and plz,y) > ”(,;Az), we have
N N kv ] bt ok |
! D"c (I’ y) - D’C (zl’y)! HD,"(:!,’,Z) - Dk(“‘r i/, "’)} {D’C(Ua ‘,) - Dk(y‘r V"I)}I
I) €

Q—ke
275+ p(z,y) ) (27% + p(z,y))d+e

| e
z,z € o ol Ae —k(1=))e
sch—fc( p(z,2') )( oz, 2') )) 2~+1-3)

2= + p(z, 2) 2=k 4 p(z, 2 27k + p(z, z))F+ (-2

2 ke 2—ks
< [ N } ,
(275 + p(ys 2))*e * (27% 4 p(y, 2/)) e
where A can be any positive number in (0,1). For the last case (iii), noting that
2os) > p(m z') > ;A(z-k + p(:l: v)) implies that p(z,2') > 27%1A-1 and
2
ply.z) > E5F 1),

| D (z,y) ~ DE (2',9)| | [Di(y, 2) — Dely®, 2)] ~ [Du(y, ) — Dilys, 2')]|

i p(z,2") ¢ ke
L Cn27%¢
s (z_k +p(:c,z)> (2% + p(z, z))d+e

N Qe N 2—Ic£ :I
[(2"“ +o(z, y))tre 27k + p(z',y)) 4t

< On2e ( plz, ) ) ( p(z,7) ) 2 k(1N
- 27k 4 p(, 2) 278 +p(x,2)) (275 + p(z, 2))4+(-Ve
I 2—ke Q—ke 1
x [ -k - aye T —k / d 5J ’
275 + plz, )2+ (27F 4 p(ar, y))++
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Combining these estimates with b € L*°(X) yields that

| [Galz, 2) — Galz', )b~ (2) - [Ga(z, 2') — Ga(2', 2")]b7 ' (2)] (3.18)
= NkT)
N/ 1 N1 (T~ s \ D s kv A1
<C L L L j (I y) L \THY)| v |PR\Y. %) — DkY: <)

k=N+1r1€l; v=1
— [Dily, 2') — De(uE”, 2]} duly

Ae —ke
z,z') 9
<CN2762{/(’:7( ) _ _
o Ux \278 ol y) ) 278 + plz,y))et

Ae - ke
p(2, ) ) 2
(F5es) T

“tply,2)) 7R+l 2)
+ / plz,z) N\ pz2) \ g—k(-)e
x \27% + p(z, 2) 27k 4+ p(z,2) ) (27F + p(z, 2))HH Ve
2—k€ 2—k6 :|
+ du(y
[(Q‘k +p(y,2))*e (27F + oy, z’))"’*‘ H)

p(m,m’) Ae (Z 2/) 2—k(l—>\)e
+/x (2‘k+P($,Z)) (2 *+ plz, Z)) 27k + p(z, 2))2H (17N

(
2 ke Q—kc
* [<2~k+p<r,y>>d+f 2F 1 p(z', y) )d%] ”‘y)}

o0 L1 _\e
—R{i—AjE

< ON2 7% p(z, ') p(z, 2')*
h k§+1 (2% + p(:r, z))d+ 1)

2 ke
X du(y)
/p(x,y)zpmz)/(m) (27F + p(y, 2))2+e

2—k€
+/ - du(y) +1
oy zo(z.2)/24) (27F + p(x,y)) 4
, Z 2—k(1—A)e
< CN27 9 p(z, ') p(z, 2') —
e (278 4 p(z, 2)) A

< CN2_j€p($, ‘,L,I))\ep(z’ Z/))\ep(z’ Z)-—-(d+2}\e)’

where A can be any positive number in (0,1) and we omit some computation simi-
lar to (3.14). This verifies that the kernel of G satisfies (3.10) with the constant
CNQ_je .

Now, we prove that G2 satisfies (3. 11) Suppose that f is a continuous
function on X x X with supp f C B(z1,7) x B(z1,7) for some z1 and 21 € X,
Ifllcogxxxy € 1, I G 9)llenxy < 777 and || f(z, )llcpxy < v~ " for all z and
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: ) VAN
y € X. Write

Go(z, z)
N(k,7)

= Z DY _/,c‘ DY (z,y)b(y) [Dily, 2) — Dr(yk, 2)] b(z) du(y)

k=N+1reif, v=1 "

io: Gh(z, 2)
=Nt

By the proof of (3.13), we have

Il

(G, )| = '/ / G2(1' z) f(z, 2) d,u(:v)du(ﬂi
\JX J

e 2—k,e
o2 [ [ e 2) ) dute)

S ONZT5| fll poox xxy™® < Cn27762,

On the other hand, if k € N, by
| Dty ) duz) = 0
X

forany ye X and b e L*°(X), we then have

-y [/ / ... DX (@ 1)b(y) [Di(v, 2

—~Di(yk*,2)] b(z) £z, 2) dps(y) da(z) dpu(2)|

X [f(z,2) = fz,y)) duly) du(z) du(z)|

cormaie [ L 1Dy
B(zo,r) le

X [ /X PR fp;ﬁsz))dwgp(y,zy’ d.u(Z)] du(y)} du(z)

< C27Iegknp=npd

where 7 < 2¢. We also have that for k > N 1,

= Z Z_: /// DY (z,)b(y) [De(y, 2) — Dyi(y*v,

z)] b(z)

(3.20)
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(G5, )] (3.21)

:’ZN(’” / / DY (z,y)b(y) [Di(y, 2)

lTGIk v=1 vXvX ./Q

=Dy (y¥, 2)] b(z) f (z, z) du(y) du(z) du(z)|

2ke
<o [ [ [ o DY (2,9) (2 2)] dis(y) du(a) du(z)

* p (g, 2))H+e

'4?

< 1 _o—jegkd| £
S On2T2% S IIL°°(X><X)’
< CNQ—J€2kd 2d.

The geometric means of (3.19) and (3.20), and of (3.19) and (3.21) respectively
yield
(G5, f)] < C27Tcaknpmmpd

and

where 0 < 7/, " < n < 2¢. From this, it follows that

o0

KGa2 )l < D GS. ) (3.22)
k=N41 !
L£C Z g—degkn” " pd L o Z 9iegkn’ pn'd
{keN: 2-*>r} {keN: 2-k<r}

< CNQ_jETd,

where the first term is empty if » > 1. Thus, G satisfies (3.11) with the constant
Cn277¢. So far, we have finished the estimates for Gs.
We now begin to estimate G, . By the similarity, we only give an ou itline,

Obviously, we have

N(k,7)

Gi(x,2) = ZZ Z/ DY (z,y)b(y) {3.23)

k=0rel, v=1

X [Dk(y, z) — b(Ql 7 Jos b(”)Dk(U)Z)d.U(U):I b(z) du(y)
N Nk
:xz_:u;k E:: b(Qr") Jar Q':'"D’g(z’y)b(y)

x [Di(y, ) — Di(u, 2)] b(u)b(z) du(w) dp(y).
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Since y, u € Q"T‘"", we then have
ply,u) ~ 277k, (3.20)

From this, (3.24) and b € SPF(X), similarly to (3.13), it immediately follows
that

9—ke
(27F + p(y, 2))+e duy)  (3.25)

N
Gz, ) < €25y / DY (z, )|
k=0 X

< CnN277¢
L G oz, )i

< Cn277p(z, z)7¢,

which shows G satisfies the estimate (3.7).
We now verify G, satisfies (3.8). By (3.23), we have

Gi(z, z)b_l(z) — Gi(z, 271 (2"

Similarly to the case for G5, we consider two cases.

Case 1. p(z,2') < 535(27% 4+ p(y,2)). In this case, similarly to the estimate
of (3.14), (3.24) and b € SPF(X) yield that

| Gi(z,2)b™ 1 (2) — G(z, z')b_l(z’)l

Nk =
Nk~

<2y Y > ;)/Q /Qﬁ‘v DY (z,v)]

k,
k=0 TEIk v=1 “(QT

p(z7) \ g-ke
(2"‘ + p(y, Z)) (27F + p(y, z))dte dulu) du(y)

N

—k(1-X
< CNz—jEp(Z, zl))\e Z _k2 ( Ye _
2@ ¥ oz, 7))
~ 1
—~je 1\ A€
<0N2 p(z,z) p(I,Z)d+>‘E’

where A can be any positive number in (0, 1).
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Case 2. 55(27% + p(y,2)) < p(2,2") < %—zﬂ In this case, similarly to the
estimate of (3.15), (3.24) and b € SPF(X) yield that

| Gi(z,2)b™!(z) — Gz, 2 )b~ (&)

N N(k,T)

<oy Yy L / D (@)
S w@E) Jare Jore! |

k=0rel; v=1
2—k£ 2—/:5
dp{u)d
[(2"“ o ) T @ F 1 aly, 2’))‘”6] K1) duty)
N —k(1=N)e
Cn r(" o (2 k2+ (1. z))‘”"
k=0 P
2—/:6. 2—-ke
X [ k d+e€ + )~k 1 Md+e d-u’(-y)
Jx L@ + oy, 2))%+e (275 + p(y, 27))4 <]
\ i\’: 9—k(1-Xe
< On277p(z, 2')7¢
2 0k 5 pla, 2))
; 1
< CN27%p(z, 2/ ) — —,
oz, 2) 7
where A can be any positive number in (0,1). This verifies that G, satisfies (3.8).
Note that
G1(z, z) - Gi(2,2)
N(k,1)

- Z Z Z 1Ic,u [ & [ [Dllcv(zv y) - DII;V—(lJa y)J b(:‘/)
b(@%") Jar+ Jar-

k=0rel;, v=1
X [Di(y, 2) — Di(u, 2)] b(u)b(2) dpu(u) dps(y)-
To verify G satisfies (3.9), we also consider two cases.

Case 1. p(z,z') € 55(27% + p(z,y)). In this case, similarly to (3.1 16), by
(3.24) and b € SPF(X), we obtain

£
[ 1Nty &) —

‘ N p('E .'13,) Ae 2"“
< —J€ ~y
Sow2 ), /x (2"‘ + p(z, y)) (2% + p(z, y))4+e

N 9—k(1-N)e

g CN2—]€ .T,.'E, Ae
P D T i, e
1

o(x, z)d+Xe’
LY 4 7/

< Cn277%p(z,2')™

where A can be any positive number in (0,1).
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Case 2. (27 %+ p(z, 1)) < p(z, 2’ ) < %%r‘ In this case, similarly to (3.17),
(3.24) and b€ SPF(X) tell us that

| Gi{z,z) - Gl(:r’ z)|

N(k,r)

<O Y Y S o // Y@,9)| + DY ]
k=01€l; v=1
2-—k€
X (2_.k+p(y’z))d+€ d,u(u) dﬂ(y)

N 9—k(1-Ne

< CN277¢p(x, )N
s ON p( ) I;) (2% + p(z, 2))d+e

x /X ([1D (z,9)| + |DE (', )] duty)

) \ N 9—k(1-X)e

< Cn27 7 p(z, ')

= N p( ) ’; (2uk +p($,z))d+e
1

plz, z)dHAe’

< Cz\’z—jep(‘ra ‘T’)>‘6

where A can be any positive number in (0,1), which verifies that G, satisfies
3.9

P
——

We now show that G satisfies (3.10). To this end, we write

[ Ga(z,2) = Ga(e', )b\ (2) - [Gi (2, 2') — Ga (e, )] b71(2")

N N(k,T) 1
N Nyt
=2 e [ [ P @) - DY )] o)
k=0rel ,; BQ") Jabv Jorv

X {[Di(¥,2) — Di(u, 2)] — [Dily, #') — De(u, 2]} blas) dp(u) dp(y).

Since p(z,z'), p(z,2') < %%{722, similarly to the case for G5, we also have three
cases:

(i) p(z,2") < 35(27% + p(z,y)) and p(z,2') < 2427 + p(y, 2));

(i) p(z,2') < 52(27% + p(z,9)) and p(z,2") > 4 (27% + p(y, 2));

(i) p(z,2") > 55(27*% + p(z,9)) and p(z,2') < (275 + p(y, 2)).
The estimate (3.24), b € SPF(X) and an argument similar to that for (3.18) yield
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that
[ Gi(z,2) — Gi(2',2)] b7} (2) — [Gi(z, ) — Gi (2, 2)] b~1(z')
N A€ —ke
- plz, ') 2
corr | (c8535)
,;{ x \27% +p(z,y) ) (27F + p(z,y))?+e
Ae ke
p(z, 2') 2
X d
(2"“ + p(y,z)> (27% 4 p(y, 2))4+¢ o)
+/ plz, z') /\e( oz, 2") Ae 9=k(1-N)e
x \27% + p(z, 2) 2=k + p(z, 2) (27F 4 p(z, z))d+(1-A)e
T 2—!:5 5—ke 1
X
[(2"‘ +oly, )4 T (27% 4+ ply, 2 ))"’“J #Y)
rr plzz) N/ pz ) O\ 9—k(1-X)e
L () ()
x \27% 4+ p(z, 2) 2% 4+ p(z, 2) (27% + p(z, 2)) )e
2—kc 2—ke
x 2=kt o(z, y))a+e + 2=k 1 p(al. y))ate dp(y)
p p
Y e TE o/ INXe s !\,X5‘[—V“ 2—k(l—>\)€
< On2™7p(z,2")p(2, ) kL:B(Q—k_}_p(l.,z))dq»(H—)\)e

< CNQ_jEp(l-’ II))\CP(Z’ Z’)'\cp(:c, Z)—(d+2>\e)

where A can be any positive number in (0,1), which verifies that G; satisfies
(3.10).

Finally we show that G; satisfies (3.11). We write

ZZ Z 7 /Q,w " DY (z,y)b(y)

k=0T1€l;, v=1

X [Di(y, 2) = Di(u, Z)]b w)b(z) du(u) du(y)

N
=Y G(z,2).
k=0

Let f be the same as in the theorem. By b € SPF(X), the estimate (3.24), the
proof of (3.25) and an argument similar to that for (3.19), we obtain

G}, £)| < On27ere,
From this, it is easy to deduce that G, satisfies (3.11). This finishes the proof of

[}
Theorem 3.2. =

bl

Note that R(1) = 0 = R*(b) by our special choices and

= f: R™. (3.26)
m=0

As a simple corollary of Theorem 3.2, Lemma 2.2 and the Th-theorem in [6] (see
also [4], we have the following conclusion.
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Theorem 3.3. Let b be a special para-accretive function and S be as in (3.4). If
J and N are large positive integers, then S has a bounded inverse on any space
Go(zo,7,B8,7) (zo € X, 7> 0,0< B, v < €) as well as on each of the spaces
LP(X) with 1 < p < co. In other words, there exist constants C > 0 (depending
on the space of test functions, but not on f ), and constants C, > 0 such that

“S—l(f)”g(xoyd,gﬂ) < CHf“G(zo,d,ﬁ,’Y)

and
IS D oy < Coll Fllmixy

Now we can state and prove the main result of this section, that is, the

following inhomogeneous discrete Calderén reproducing formulas.

Theorem 3.4. Let b be a special para-accretive functio n. Suppose that {SK}K&L+

is an approximation to the identity of order ¢ € (0, ] as in Definition 2.6 and

{Dk}rez, is as in Section 2. Then there exist a fixed large integer N € N (and

] E N) and a family of functions Dk(z y) for k € Zy such that for any fixed
€ QY with k = N+1,-., 7 € I and v € {1,---,N(k,7)} and all

f € G(Bl,fyl) with 0 < 1 <€ and 0 < 4 <,

N(k,r)
f(z) = E Z E /ku Di(z,y)b(y) du(y)Df‘*‘l’Mb(f) (3.27)
k=0rel, v=1 YQr
& Nik) .
D IPIDY jQ Die(z, y)b(y) dus(y) De Mo £) (),

k=N+1r€l, =l

where the series converge in the norms of LP(X), 1 < p < co, and G(8},~,) for

0< B <P and 0 <~ < Dk" for k =0,1,..-, N is a linear operator
having the kerne Dlc . defined by (3 ?), Moreover, there is a constant C > 0 such
that the function Dk(:c,y) for k=1,.-., N satisfies

(i) !ﬁk(m, y)! < Crgpmayee forall z, y € X, and

plz.y
(ii) for any given €’ € (0,¢€), and all z, y € X such that p(z,z') < S (1+0(z,y),

1

Di(z,y) - Di(a',y)| € Cp(z, ') —————
(1+ p(z,y))*+

and

(i) [y Del9)b(z) du(z) = 1 = fy Di(z, v)b(y) duu(y);
and Dg(z,y) for k = N + 1, --- satisfy conditions (i) and (ii) of Definition 2.6
with € replaced by € € (0,¢), and

f De(z, v)b(y) du(y) = f Di(z, v)b(z) du(z) = 0.
X X
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Proof. For k € Zy, let Di(z,y) = S™HDY(.,v)(z). By (3.4), Theorem 3.
(S~1)"(b) = b, S7}(1) = 1 and noting that D{'(-,y) € Go(y,27%,¢,¢) for k
N+1,--.,andfor k=0,1..- N,

3,

[ DY@ wbw) duty) =1 = | DY @, v)b(a) dua),
Jx Jx

we can obtain all the conclusions of the theorem except (i) and (ii) and the co-
nvergence in LP(X) with p € (1,00) of the series in (3.26); see [44] and [16]. Let
us now verify that Dg(z,y) for k= 0,1 ..., N satisfies (i) and (ii) of Theorem
3.4. It is easy to see that for all z, y € X,

~ 1

>
-

DY W< Oy ——F——— 3.28)
P @IS ON o ) o
and for all z, ' € X and p(z,2') < 55(1 + p(z,9)),
P , NN E 1
DN(x,y) — DN (7, y ch( P T) ) , 3.29
DE ) = De ol <o\ T0eTy) @ O

where Cy is independent of z and z’. By (3.2), we actually have that for k =
09 11 Y Na

k+N
DY =Y Di.
=0

From this, the fact that D; € Go(y, 1,¢,¢) for I=1.-, k+ N and Theorem 3.3,
it is easy to see that we only need to verify that S™*[So(-,y)](z) satisfies (i) and
(ii) of Theorem 3.4. To this end, by (3.26), we first verify that for any €' € (0,¢),
there are § € (0,¢') and constants C, Cy > 0 such that for all z, y € X,

1

RISo(, )@)€ CE™N 4+ Cn2 ™) s

(3.30)

and for all z, ¥’ € X and p(z,2) < 57 (1 + p(z,y)),

IR[So( v)](@) - RISo(,»)](@)] < C2~°N + C%27¥)p(x,a')*  (3.31)
1
* T+ oz )

where C is the same as in (3.28) and (3.29).
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Similarly to the proof of Theorem 3.2, we can write

R[So( y)](x)

N N{k,1)
=y 3> [ DY (z, v)[MkaMh(sn( ) (®) = DY My(So(-, v))]

]
k O'relku 1 Q,—
N{k,1)

+ E > Z/ DY (z,v)b(v)

k=N41r1el, v=1}

x [DeMy(So(-, ¥))(®) — DeMb(So(-, 1)) (u5)] du(v)

+ Z Z Dk+leDka(f)($)

du(v)

= Gi[So(, 9)(z) + G2[So (-, y)l(z) + RN[So(-,1)](@).

It was proved in [44] (see also [20]) that Rx[So(-, ¥)](z) satisfies the estimates
(3.30) and (3.31). In fact, it satisfies a stronger estimate that (3.31).

We now verify that G2[So(-,y)](z) satisfies the estimates (3.30) and (3.31).
Write that

N{k,7)

Glst@= 3 T 3 / /X DY (z,)b(v)

k=N+17el, v=1
% [Du(w,2) — Dy(yh, 2)] b(z) So(z,y) dp(z) dp(v)
N{k,7)

-y ¥ > [, [, previo)

k=N+171€l, v=1

x [Di(v,2) = D(y5", 2)] b(2) [So(2,y) — So(z,y)] du(z) du(v).
Since v, y¥¥ € Q%¥, then
p(y,y_”f"/) ~ 2_j_k7 (3.32)

which together with b € L®°(X) in turn implies that

|G2[So (-, y)](z)]

< 27 / / | DY (z,v)]
{k ZN:M LA(H'p(ﬂv )

27k p(z, 2)¢

T oo ) (L pla,yyerere )
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> [ . [DF (&)
p(I Z 2A (1+p(1:vy))

2—k€
e - 2))ee

<C’29612/

k N+1 (z,2) < 55 (1+0(x,y)) (2=F + p(x, z))d+e

k=N+1

1S0(z )] + 1So(z. )] du2) du(v)}

—ke

bo

plz, 2)°
(1 +p(:v )

+Z/

k=N+1Yo(E,2)>3%

)d+e+e’ dp(z)
n—ke

A+p@y)) (27F + plz, 2))4te

X

e 2 (™)

k=N+1

x [[S0(z,y)| + |So(=, y)l] du(2)}

< On277

S S ;
(1+ p(z,y))ete’ 3

where ¢ € (0,¢) and we omit some computation similar to the proof of (3.18).

C T vy Gaaa Wwoo Uil Sl

This verifies G2[So(-, y)](x) satisfies (3.30).
We now show Gz{S (-, y)](z) satisfies (3.31). To this end, set

< CN277¢

Wi {oe s plea) < gg7F 4ol M},
1
Wo = {'UEX: p(z,z') > ﬂ(2_k+p(z,v))},
1
W = {z €X: plz,2) < 7L+ (2, y))}
( 1
— . (1
Wy izeX. p(z,z) > 2A( +P($,y))j,
Yrr o ~ VvV . (LN (1 1 Afe 2}
147 —[ZCA AT, 2) X I\LT}J\-M.W)I
5 1 - PAL )\.?.A J
and
1
We = {zEX: p(z',z) > 2—A(l+p(m,y))}
Write that

Ga[So(-, y)}(z) = G2[So (-, y)](=")
N(k,7)

Z Z Z /“/X[D,jgv(x,v)—D,’cV(x”U)]b(v)

k=N+171€l, v=1
x [Da(v,2) — Dal*, 2)] b(2)Solz ) du(z) di(v)
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I\I{L ,.-\

-y v E:ﬁéhmwkﬁhw[Dﬁwﬁo—Dﬁwzw]uw

k=N+1rel, v=1
X [Di(v, z) - Dk(yk"’, 2)] b(2) [So(z,¥) — So(@,)] du(z) du(v)

— f [
+
kLNf]-lT%IJk VLT /Qf'""‘W /X0W4
N(k,7)
Z Z /ku / Dk (z,v)b(v) [Dk(v z) — Di(y )]
k=N4+17€el;y v=1
Xb(){o(,) J,/ 1/)

é

AW, J XNW,

~
=

€

9

+
+Mg
N
EM*

1
N

—
?r

/ka /x | DE(@0)b(v) [De(v,2) = Dily, 2)]
v=1 T NWa

Z:Z
[So(z y) So(z', y)] du(z) dp(v)

k=N+
x b(z)
N (k,T)

Z Z Z /‘:-"nwg /xmw“‘

k=N+1rel, v=1
6
:ZH
i=1

By (3.32), b e L*°(X) and the proof of (3.13), we have

o0
mi<onee S [ pla /)2 (3.33)
1] X |
k=N+1/XﬁW1 /me3 (2% 4 p(z, ))d—{-c-{-e
9—ke oz, z)e J ;
(2 k p(’U Z))d—l-e (]_ + p(:r y))d+e+e” ,U«(Z) /J.(’U)
_ plz,z’) o / o ke )
<On2e 7 2" oz, 2)" du(z)
(1 + p(‘r y))d+€+€ k zN:—{—l 2 k +p z, Z))d'*'f
<(;Y Q_jf rl‘)( &l "E Z 2—k(e”—c")
s dicte’
(I + p(z, y))Hrere” | 4

e oz
< O e

where €' € (0,¢) and €’ € (¢, ¢), which is a desired estimate.
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Again, (3.32), b € L°°(X) and the proof of (3.13) imply that

p(m,mf)c 2—ke
Hs| < Cp277¢ / / 7
gl s ZN:H xow; Jxnw, (27F + pla,v))dtete

)
EEE v )T

(150 (2, )| + 150 (z, Y} du(z) du(v)

2—k£
< Cn277¢ oke’
N Z /xmm 27k 4 p(z, 2))t+e

where we chose ¢, € as in the estimate of (3.33), which is also a desired estimate.

AAAAA oo/ TN /0 1oy ¢ _ .

From the estimate (3.32), b € L>°(X) and the proof of (3.13), it follows that

2—ke
mi<crr S [ f DY
kzN:“ XNWa XnW3| k | (2% + p(v, z))d+e
bz, 2)° (2) dpv)
= du(z)dp
(1 + p( T, y))drete
XD
) 2—ke p(.r z)e
< CAVQ—JE / 77 d,LL(Z
kzzl\,%, xeows (27F + p(z, 2))4+e (1 4 p(z, y))dtere )
. olz,z') ad
< CN2—_]C F AN B L 2 IC(C "‘EJ
~ d+ +€r/
1+ plz,y)) e+ Sy
plx, @)
L Cn277¢ ! ,
NS pla,y)) e
and
AT I _‘kf
\Hy| < C275¢ DY (z,v)] —
| Z‘ / XOWa /an4 b ) (2% + p(v, z))d+e

k=N41
x [|So(z, y)| + lSo(-’E Y|l du(z) du(v)

2—k€
< je ke’
Cn279p(z,2')¢ Z 2 L we (27F + p(z, z))d+e

k=N41

x [}So(z, ¥)| + 1So(z, y)l] dpu(z)
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- o)

: ; 1 ; —k(e'"~¢€’)
< CNQ—]E/)(I, .”I:/)E (Q—k(e——e +2 )
1

< CNQ_jep(:r,:r’ ‘I-——,
e
where we chose €', € as in the estimate of (3.33), which are the desired estimates.
Similarly to the estimates for H3 and H, we can verify that

1

i < o—Je ’ e .
| Hs| + |Ho| < Cn27p(x, ') (1+ p(z!,y))d+e

Since we have p(z,1') < 57(1 + p(z,y)), we then deduce that 1+ p(z’,y) ~
1+ p(z,y). From this, we can also deduce the desired estimates for Hs and Hg.
Thus, Go[So(-,y)](z) satisfies (3.31).

The proof for that G1[So(-, y)](z) satisfies (3.30) and (3.31) is quite similar
to that for G2[Sy(:, y)](z) by using that fact that b € SPF(X); see also the proof
of Theorem 3.2. We leave the details to the reader. Thus, (3.30) and (3.31) holds.

Note that R*(b) = 0 implies

| RiSa(v)l(@)a) dutz) = o (3.34)
Thus, (3.30), (3.31) and (3.34) indicate that R[So(-,)}(z) € Go(y, ,€',e—¢€) with
IRISo (s )lllg(w.er.c-ey < C (27 4 Cn2799).
By Theorem 3.2 and Lemma 2.2, we then have that for any m € N,
R™[So(-,y)] € Go(y, 1,€',e — € (3.35)

and

“Rm[SO('a y)]”g(y,l,e’,s—e’) < C!Sn (2-6N + CNQ—jd)m :

Form this and (3.26), it follows that if we choose N, j € N large enough such that
Cy (2_6N + CNZ_jd) <1,

then S~![Sy(-,y)](x) satisfies (i) and (ii) of Theorem 3.4.
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Let us finally show that the series in (3.26) converge in the norm of L?(X)
for p € (1,00). To this end, for L > N, we write

N(k,7) _
Y Y [ Du(z,v)bla) du) D55 M(f)
k=0r€l}; v=1 Y>r
N(k,T)

Py Y .. D080 i) DuMa( ) )

k= N—{-l'relk v=1

[-N N (k,r)

=57 S S [ DR ) deln) DT M)
k=0r1€l;, v=1 Q'
L N(kr) 1

k,
k=Nt1rel, v=1 7@

DY (-, 9)b(y) du(y) DeMy(f) (¥") J (z)

N(k,7)
-1 {S(f Z Z Z/ Dk( ¥)b(y) die(y) De My (f) (uF )}( )

k=L+17€l, v=1

= f(x) - lim R™(f)(z)

N(k,7)
{ IS ¥)b(y) duly )Dka(f)(y’ﬁ'”)}(m).

k=Li17€h =1 Q7
To show the theorem, we need to show that R™(f)(x) and
N(k,7)
> SN [ D) dus) Dot I
\IC LyiTel, v=1 °

converge to zero in the norm of LP(X) for p € (1,00) as m and L goes to co. By
Theorem 3.2 and the Tb theorem in [6] (see also [4]), we have that for p € (1, 00)
and all f € LP(X),

IR™ (F)llLeex) < Cm(Cn27I0 4+ C27 ™| fll Lo xy,
where Cyp and Cy are independent of f and m. This shows lim, ..o R™(f) =0

in LP(X) for p € (1,00) and fixed large positive integers j and N. It remains to
show that for p € (1, 00),

lim |
L—oo ‘
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T 4 / / rxr

Let 1/p+1/g=1. We write

Nk, )

Z 2. X /Q DY (- y)by) dpu(y) DeMa(f) (4E)

k=L+17€el, v=1

Le{(X)
N(k,T)

ST Y /Q (DY (6)(4)b(y) dute) De My () (6)

Ilglle(X)<1 k=L+17€l, v=1

fore) N(k'r)/_
TP 2 2 2 ) O @@D M) duty).

4 &
”g“l‘q(x)slk =L4+1rel, v=l Q"

where we used the fact that b € L>°(X).

Let {5;}}’_’;0 be the same as in Lemma 2.3. It was proved that in Lemma
3.1 of [44] (see also [16]) that we have that for any €” € (0,¢), all y € QFv, all
zeXand l€Z,,

9—{knle’

DNY*Dy(y, )| < C27 Ik~
|( k ) 1y z)' (2—(k/\l) + p(y,z))d"'f”

which also holds if we replace (D¥)* by Dy with k = N 4 1, ---. From this,
b € L*(X), Lemma 2.3, Lemma 2.4, Lemma 2.7, Lemma 2.8 and the Holder
inequality, it follows that

N{(k,1) P

L > L/ [(DY)" (9)@) DeMs(£)(y*)| dp(y)

k=L41 7€l v=1
N”c -r\

<C Z DY /Q [i? '“’"”M(D:@)@)J

=Ltirel, v=I1 1—0

X

{22 =11 M(D:Mbm)(y)} dp(y)
=0

o 2y 1/2
{Zz He=tle M(D:(g))(y)}
k=L+1 LI=0
[ & e, e 1”
N, | B2 MEAE)]  duty
Ik:L+1 |J=0 I
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N 1/2

gC/X{ 3 Z2"’“""”[M(Dz(g))(y)]Q}
k

o0 o 1/2
{ > Z2"“‘"’[M(D:Mb(f)xy)]?} d(y)

I'4

La(X)
o oo 172
X i 27 k1 (M (DM (£)))? f
ks=L+11=0 LP(X)
ey 00 s 17211
< Cligllzacx) { > Z2_“°_”€”[M(D1Mb(f))]2}
k=L+1 =0 Lr(X)

Thus, by Lemma 2.7 and Lemma 2.8 again, we have

I\IIL».—\ ”

130 S5 [ Dbl ) DMl 1))

k=L+171el, v=1

ot SRR

Lr(X)
1/2
H > 22 E=Ue" M (DM (£))]? } 4
|| Vk=L+1 =0 e (x) 3
L2 1/2 1
< 02U\ ST IM(DIM())F
1=0 Lp(x) ‘
" - }/2“
e { S [M(Dzwf))]?}
i =L/t ’ lLr(x)
o 1/2
< C’2_€”L/2||fHLn(x) +C Z | DiMs(f)I? )
I=L/2+1
Lr(X)

which converges to 0 as L tends to oo. That is, (3.36) holds and we complete the
proof of Theorem 3.4. ]

I e e

Remark 3.1. Similar to the case of the continuous Calder6n reproducing formu-
lae, by rearranging the order of the approximation to the identity, without loss of

generducy and for the sake of Srmpu\,w‘y, in what fGHOwo, we can take N =0 in

Theorem 3.4.




50  Yongsheng Han & Dachun Yang

Remark 3.2. above inhomogeneous discrete Calderén reproducing formulae indi-
cates an essential difference from the homogeneous Calderén reproducing formulae
in [17]; see also [20, 16]. Also, (ii) of Theorem 3.4 indicates a difference between
the inhomogeneous discrete Calderén reproducing formulae and the inhomogene-
ous continuous Calderdn reproducing formulae; see Lemma 2.3 (or [44]). However,

T Ao
if the approximation to the identity {Ulc}k:EL+ is an approximation to the identity

of order € € (0,0] with compact support as in Remark 2.1, then (ii) of Theorem
3.4 can be improved into
(i)’ for any given €’ € (0,¢), all z, 2’ € X and all y € X satisfying p(z, ') <
24 (L +0(z,y)),

1
(1 + p(z, y)) 2’

Butey) - D'l < ¢ ({42

To see this, we only need to re-estimate Ho, H4 and Hg in the proof of Theorem
3.4. For Ha, since supp Dy(:,z) C B(z,C27%), if Hy # 0, then p(v,z) < C27F

or p(y*¥ 2) < C27% and v € Q%*; thus, we always have p(v,2z) € C’2‘ and
therefore

which implies

S > [ IDF(@w) - DY@ v)] [Delv, ) - DalyE*,2)] duco)

Tl v=1 JQTYIWL
ke —ke
< CNZ_]E/ 2 2
p{zv)2 LA (x, z) (2 -+—p(.’1: v))d+e+e (2_k -+—p(’U Z))d+€
2—ke 2——lc€
+C (2-k (z v))d+e (2K (v, z))d+ete
./p(.L,u)<51;p(.L z) \~% +plz,v)) < +p(v, 2))
2—k:e

(27F + p(z, z))d+ete”

Replacing this estimate into that of H; in the proof of Theorem 3.4, we can obtain
a desired estimate for Hy. The same technique works for the estimates of H4 and
Hg in the proof of Theorem 3.4. We omit the details.

By a duality argument, Theorem 3.4 tells us the following inhomogeneous

discrete Calderdn reproducing formulae associated to a given special para-accretive
function in distribution spaces.

Theorem 3.5. Let b be a special para-accretive function. Suppose that {Sk}kez,
is an approximation to the identity of order ¢ € (0,6] as in Definition 2 6 and

e e f Qi L

11Jk IkeZ is as in DELLIUU 2. J. ueu LH@IG €XISLS a Id,II.lUy ()1 IIHedT operdwrs iUk}E' 0

such that for any fixed y** € Q%* with ke N, 7 € I}, and v € {1, - N(k,7)}
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/o N
and all f € (g(ﬁml)) with 0 < By, m <k,

N(0,7)

fley="3_ > o [b 19,,, / Oquo(x,U)b(U)d#(U)} /Q .. b Eo(f)() duly)

T€ly v=1

Yy z b(2) D, y5) / bW) Ex(f)(w) duly),

k=1r€l, v=1

. [
where the series converge in (Q(ﬁ§,7{)> with f1 < 8} < e and 11 < 7} < €.
Moreover, there is a constant C' > 0 such that Eo(z,y), the kernel of the linear
operator Ey satisfies
(i) lEo(x, y)‘ < CTH—p(xl,y_))”W for all z, y € X, and

(ii) for any given ¢’ € (0,¢),

~ ~ ’ < !
| Bote,) - Eola )| < Colv 'Y s oy

for all x, y € X such that p(y,y’) < —2—1;(1 + p(z,y), and

(iii) [y Bole,v)b(x)dp(z) = 1= [y Eolz,y)b(y) du(v);
and Ek(:r, y), the kernel of the linear operator E, for k € N satisfies the conditions
i Gf no“r};ﬁn‘n 2, R unfh rnn’nnpﬂ by r/ [= (n ) }Ind

i)
i1 Zselniyvion 1841 aced DYy 1€},

/ Bz, y)b(y) duy) = / Bu(z, y)blz) du(z) = 0.
X X

By an argument similar to the proofs of Theorem 3.4 and Theorem 3.5, we
can prove the following several relative theorems. We only state them and leave
the details to the reader.

Theorem 3.6. With all the notation same as in Theorem 3.5, then for all f €
G(B1,m) with 0 < By, m <k,

N(0,r) 1 _
f(z) = ZI Zl / Doz, y)b(y) du(y) 505 /ngb(u)EoMb(f)(U)du(u)d

N(k,T)

B33 . D080 ) BMo( ) ),

k=1rel, v=1

il IR i i it
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Theorem 3.7. With all the notation same as in Theorem 3.4 but with N =0,
then for all f € (g(ﬁml)) with 0 < B, 71 < e,

N(0,7)

f =3 3 [b(Qig,v) L. Dot bt o) Lo 20Dt )

relp v=1 T
Nk,T)

+Z > ST b(x) Dz, yk) / W) De(f) (@) duly),

k=1r€el, v=1

. . : e o
where the series converge in kg(ﬁ;,yi)) with 1 < 8] <€ and yy <~} <e.

By the definition of the space bG(81,v1), Theorem 3.4 and Theorem 3.6, we
can obtain the following theorem.

Theorem 3.8. With all the notation same as in Theorem 3.4 with N = 0 and
Theorem 3.5, then for all f ¢ bG(B1,v1) with 0 < By, T < €,

N(k,7)

S bz / (e, y)b(y) du(y) D2 ()

k v=1

LYY Y b / Dl 1)b(y) dusly)De( ) ()

k=N+1rel, v=1

N(0,7)
_ T Y‘ b(z) /0 Do(z, y)b(y) dp( [ X 5 h(u)_,g(f)(u)d#(u)}
TEIO v= 1 QTM T

PSS . DR 9)000) ) B ),

k=17el, v=1

where the series converge in the norms of L?(X), 1 < p < 00, and bG(By,vq) for
0<fi<B and 0 <~} < 1.

ollowing conclu-



Calderén reproducing formulae 53

Theorem 3.9. With all the notation same as in Theorem 3.4 with N = 0 and
Thecrem 3.5, then for all f € (bg(,@l 71)) with 0 < 31, m1 <€,

1 ~
10= % [igom [, Dotepdsts)] [ o) Barolr)e) s
r€lyg v=1 T Q77
o0 N(k,’T) -
=S Defa,s®) [ W) BM) ) i)
k=1rcl, v=1 Qr*
IOl I B )b(;d.ﬂr ol De Mo 1) ()t
= —_— z,u)b(u U
T%ﬁ Vz__,l 1505 Jpor ° Y ()] [ . YYD MN)(W) duly)
00 N(k,r) _ o
F Y Dulwuh?) | b DeMyDG) duy),
k=17€l v=1 Q-

° ’
where the series converge in (bg(ﬁ’l,%)) with 8y < B < ¢ and v < < €.
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