Functiones et Approrimatio

XXXII (2004), 79-98

THE WALSH TRANSFORM OF WAVELET TYPE SYSTEMS:
CONVERGENCE ALMOST EVERYWHERE

BARBARA WOLNIK

Abstract: The main results of the paper are the following: the Fourier expansion of f € Ly,
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and if f € L1 then the same is true for the Cesaro means.
Keywords: Uniformly bounded systems, convergence almost everywhere, Cesaro summability.

1. Introduction

The subject of this paper is to study pointwise convergence of Fourier expansions
with respect to the Walsh transform of a wavelet type system on [0,1] or T. By
a wavelet type system we mean a biorthogonal system of functions which have
dyadic scaled estimates. The Walsh transform of a wavelet type system is the
system which arises from a wavelet type system in the same way as the Walsh
system arises from the Haar system. It appears that this new system is uniformly
bounded.

This method has been first used by Z. Ciesielski [4] to construct a bounded
system of polygonals starting from the Franklin system. An analogous construction
has been applied by S. Ropela [17] to orthogonal spline bases. He has obtained
bounded orthogonal spline systems (called Ciesielski’s systems) and has proved
that these systems are bases in Ly for 1 < p < 0o. In [5] Z. Ciesielski has used this
construction to the biorthogonal splines. The problem of pointwise convergence
of Fourier expansions with respect to the Walsh system has been considered by
P. Billard in [2] (p = 2) and P. Sjolin in [19] (p > 1), with respect to the Walsh
transform of the Franklin system by Z. Ciesielski, P. Simon and P. Sjolin in [8]
and in the Walsh transform of arbitrary spline system by Z. Ciesielski in [5]. We
extend their results to the Walsh transform of wavelet type systems in Theorem
3.4, which states that the expansion of f € L, for 1 < p < 00 converges a.e. to f.
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41A15, 42C40..
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The situation is different when f € L;(0,1) is considered. By the well-
known result of S.V. Botkariev [3] for cach uniformly bounded ONS {f,}nen on
[0,1] there is a function f € I,(0,1) whose Fourier series in the system { fp}nen
diverges unboundedly at every point of a set E C [0, 1] of positive measure. More-
over, K.S. Kazarian and A.S. Sargsian [13] proved that there exists a function from
L,(0,1), whose Fourier series in the bounded system of polygonals introduced by
Z. Ciesielski diverges a.e. on [0,1]. This result was extended to the Walsh trans-
form of biorthogonal wavelet type systems by A. Kamont and the author in (12].

Therefore, in the case of functions from I, various methods of summation
are studied. In this direction, N.J. Fine [10] has proved that the Cesiro means of
the Fourier series of any f € L,(0,1) with respect to the Walsh system converge
to f a.e. on [0,1] and F. Weisz [20] has proved this fact in the case of the Walsh
transform of spline systems. It occures that this result can be extended to the
Walsh transform of arbitrary wavelet type systems (see Theorem 4.1).

reliminaries and notation
Let (I, d) denote either the metric space ([0, 1],d1) or (T,ds), where
dl(myy) = Im_yly T,yc [0) 1]7 dg(:z:,y)zmln(]m—y|,1—lm—y|), x,yET

By I;x we will denote the interval [£52, %] and for n € N we define n x L as
theset {z €l: d(z, %)< 5}

i aronal wavelat
By a b{orthugunal wavelelu typ

¢ system on I we mean a biorthogonal system
{Yn, 0n}32 _ N, where natural N > —1 is given, consisting of functions on 1
satisfing the following conditions:
(I) There is a constant M > 0 such that for any n € {-N,... 0, 1} and
zel

lYn(z)] K M and |pn(z)| < M.
(Il) For 520, k€ {1,2,...,2} and z € 1

k
23

k

W’Zf+k($)| < 2%5(2jd(2}, ' 57

), b2 u(x)| < 225(2d(z, ),

where
(ITT) S : [0,00) — R is a nonincreasing function such that

/°° In(1 + z)S(z)dz < +oo.

In this paper we will suppose an additional condition, namely, that the system
{1#}2°._n is a Riesz basis in Ly(I).

As we will see, conditions (I}, (II), (IIT) and the fact that the system {w}e o
is a Riesz basis in L»(I) are sufficient to secure a lot of good properties of wavelet
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type system. Let us note that many classical or newly introduced systems satisfy
these conditions. The most known ones are: the Haar system, the Franklin system,
the orthogonal and biorthogonal bases discussed in [8], adaptations of Daubechies’
wavelets to the interval [0, 1] (see [1], [9], [15]), periodic wavelets (see for instance
[21]) and the Petrushev systems [16] consisting of rational functions of uniformly

bounded degrees.

Remark. As a consequence of the monotonicity of S and of condition (III) one

P 4
can get

Lemma 2.1. There is a constant C such that

iiw‘su&j) <C (1)

§=0 k=1
and for 7 20 and x,y €1
Ll . k : k ,
> S(@d(z, )@ d(y, 7)) < CS(Pd(z,y). (2)
k=1
Moreover,
lim log(z + 1)S(z) = 0. (3)

Let {xn}nen and {wn}nen denote the Haar and Walsh functions, respec-
tively. For any j > 0 we define the matrix (see for instance [18])

' _i {20 -1) ,
Agz:(u’zuk,sz):? 2w (—QF) kil=12. .2 (4)

which is orthogonal and symetric (the last fact was proved in [4]).
The Walsh transform of the wavelet type system {tn,¢n}S> _, is the system

{ 1/);, ¢a; }$2 _n given by formulae:
for ne {-N,...,0,1}

forj20,k=1,...

?

, 2

27 9d
Voraa(@) = D Al @), #3k(e) = 3 Ao (@)
=1 =1
Let P, : Li(I) — Li(I) denote the projections

Paf= 3 (fi¢)¥s, n>-N.
1 N

i=—

Theorem 2.2 below summarises necessary facts concerning the systems
{¢n}iZ_n and {$2}32 _N.
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Theorem 2.2. Let {4y, ¢.}2. 5 be a biorthogonal system fulfilling conditions
(I) (II) (III) In addition, assume that {1n}2° _, is a Riesz basis in Lo(I). Then
| P
(o) The system {¢n}s2 N is an unconditional basis in Ly(I) for 1 < p < 0.
Moreover, the systems {¢n}oe, and {xn}32, are L,-equivalent.
(1) The maximal operator

P'f(z) = sup |Pnf(z)|

nz-—N

is of type (p,p) for 1 < p < co and of the weak type (1,1).

(i) For any f € Li(I) we have Pnf(z) — f(z) a.e on L.

Em; The system {1/):’1 ne_n is a basis in Ly(l) for 1 <p < c0.
iv) The series

o0 o0
b
E an?, and E AnWn
n=2 n=2

are equiconvergent in Ly(I) for 1 < p < co and their norms are equivalent.

The above properties of the wavelet type systems have been proved by the
author in [22]. We have decided not to present here the proof of Theorem 2.2,
since the methods of proofs are similar to the proofs of the analogous results in
the case of wavelets on R. More precisely, the unconditionality of {1n}S N
in L,(I) is proved analogously as the unconditionality of wavelet bases on R in
P. Wojtaszczyk (21], and its Ly-equivalence to the Haar system is checked as in
G.G. Gevorkyan, B. Wolnik [11} The proofs of properties (1\ and (11\ follow by

arguments analogous to those used in S.E. Kelly, M. A Kon and L.A. Rapha.el [14]
in case of wavelets on R™. Once we know (0), properties (iii) and (iv) are obtained
similarly as the corresponding results for the spline systems or the Franklin system

in S. Ropela [17] and Z. Ciesielski and S. Kwapien [7].

3. Convergence a.e. for f e L,(I), 1 <p < oo

We start with the theorem concerning the type (p,p) of maximal operator for the
partial sums with respect to the system {¢;};l'°:_ ~ - The crucial role in the proof
is played by P. Sjolin’s result [19] concerning (p, p)-type for the maximal operator
for partial sums with respect to the Walsh system:

Theorem 3.1. (P. Sjolin [19]) Let 1 < p < co. There is a constant C, such that

I SUP|T“!“’!I I, < Coll Tazwzllp

The type (p,p) for the maximal operator for the bounded orthonormal set
of polygonals was proved in (8] and for the remaining Ciesielski’s systems in [5].
We extend this result to the Walsh transform of arbitrary wavelet type systems.
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Theorem 3.2. Let {¢n, pn}o _, be a biorthogonal system fulfilling conditions
(D), D), (). If {4} _ is a Riesz basis in Ly(I) then the maximal operator

()= sup | 3 (f, 60091 () (5)
nETN =1

is of type (p,p) for 1 <p < co.

Before we begin the proof of Theorem 3.2 we show the following auxiliary
result, which for the Franklin system was proved in [§]:

Lemma 3.3. Let {wn,qbn -N be a biorthogonal system fu[ﬁllmg conditions

£TTN STTT

kl), (11), (lll) .LJeE TJ De Bﬂe _7 Eﬂ Maemacﬂer IUIICEIOH I'Or J U we aenne B.ﬂe
functions on 1% by formulae
_1 k .
<s< = and k=1,...,27. (6)

Gy(t,s) = 28741 (s)thasu(t) for 57 5
Then there is a constant C such that for h € L1(I) we have

/G (t, 5)h(s)ds| < CMh(t), te€l,
where Mh denotes the Hardy-Littlewood maximal function of h.

Proof. It follows directly from the definition of G; that if s € I;, then

. ] s 2
0,01 € #S(27d(, ) < {§§§§83~1d(5,t)) SN R

5
Now, let t € I. Then

|/HGj(t, s)h(s)ds| g/d( ves

+ \2]
=: B; + Bs.

For the first term we obtain from (7)

B; < S(0)¥ / Ib(s) ds < CME(t).
d(s,t) <2

Gt Mueds + [ 165, 9lnlds =

(8,t)>=

For the second term we get using (7) and Lemma 2.1
j-1

By,
=1

= -1 f
<Y s@ 2 /d( t |h(s)|ds <

. ol
278(27 71 ) |h(s)|ds <
<d(s,t) < EH ( 2’)| ($)lds

=1 LN )\%}'i
A{:ﬂl,..,.:,l\..jlr 2l N 2l+1 TN
<Y osE 2 is: d(s,t) € Tjl/vm(t) <
=1
j—1

<C Y SN2 Mh(t) < C' Mh(@). |
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The proof of Theorem 3.2: Introduce

T*f(t) = sSup sup | Z(fy ¢2J+t)¢’2]+l(t)|

320 1<kg27

Since for each 7 2 0 and t,s €1

93

2]
PIAGIAGES P NG G

then it follows from (i) of Theorem 2.2 that it is enough to show the type (p,p),
1 < p < oo, for the operator T*.

Since 1/);J-+k(t) = fol was 4 Gj(t, s)ds, thus from Lemma 3.3 we have

|T(f Gos 1 )25 1 ()] < CM(Y‘(f d»,u,)wm,\(t)

l 1

which gives

T*f£(t) < CMuw*(t), (8)

where

w*(t) = sup sup |Z(f, Bos 1) s 11 (D).

720 1<kg2I

Using Theorem 3.1, (iv) of Theorem 2.2 and the fact that {1pn}$;;_N is a basis in
Ly () we get

lw*ll, < 2G50 S (f, 6:)will, < C| 2 £80%: 1o < Cll fllp- 9)

i=]1

Now, from (8), the (p, p)-type for the Hardy-Littlewood maximal function and (9)
it follows that
IT*fllp < CllMuw* ||, < C'llw* ||, < C”|l flip, (10)

which proves the type (p,p) of operator T+, [ |

Combining Theorem 3.2 with the usual density argument (see [18], Theorem
3.1.2) we get

Theorem 3.4. Let {1/),1, O} _n be a biorthogonal system fulfilling conditions
(D), (ID), (III). If {¢n}2._N isa ‘a Ricsz basis in L»(I) then for f € L,(I) (1<p<

< o0) the series
i b b
> (i)
n=—N

~ W Ll Shdl

converges a.e. to f.
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4. Cesaro summability for f € Li(I)

= — L& | R 41

I P Uy
Pl € Wil prove ul

Ll e de i
urie SCyuciice Ul LIIC allulliieulc

- e _

In this part of the pe 1at t
of the Fourier series of f with respect to the system {wn}g‘;_ N converges to

ae. on .

Without loss of generality we can assume that d = d2. (If the system {tn}
fulfils condition (IT) with d; then of course it fulfils (I) with d3).

First we introduce a notation. The Walsh-Dirichlet and the Walsh-Fejér
kernels are denoted by D,, and F), respectively, i.e.
w;(Dwi(z), Fo(i 1\—"\1;) (t, )
1 =

s

Dyt x) =

\

(-

-
1

It is known (see [18]), that if we denote by + the dyadic addition then

Bu(t, ) = Dalthe) = Y uiltha), Falt,o) = Faltia) = -3 Dj(tiu)

i=1 j=1
and
Dzn(.’l?) = 2“]1{0’2—11)(.’13), (11)
Fon(z) € ) 27" Dan(a+27771). (12)
§=0
Moreover, for 2¥-1 < n < 2V
|[Fo(z)| <3 Z 2I—N Z Dy (z27971). (13)
Jj=

For the partial sums S, f and the Fejér means oy, f of the function f with respect
b
to the system {1, }5° 5 we have

n
S )y N (F AN [nw/m £\ £ AL
SOnji\T) 2 N OWE) = g LalE BT,
i=—N I
1 n
- — L
onf(@) =+ 3 8f(z) = /H F¥ (s, t) f(t)at

where
i b b 1 — J b b
Di(z,t) = Y ¢:(thi(z), Fi(z,t)==3 > ¢:()¢i(a)
i=—N T icii- N

are the Dirichlet and Fejér kernels for the system {1/}“} _N, Tespectively. (For
the simplification in the definition of ¢,, we consider the sum from j =1, the
partial sums S_p, ..., Sy can be ignored.)
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The main result of this section is

Theorem 4.1. Let {1/)n, ®n}ne_n be a biorthogonal system fulfilling conditions

(D), (IL), (II). If {yn}>_n is a Riesz basis in La(I), then for any f € L1(0,1)
we have

onf — f ae

Our method is based on the proof of Weisz’s result [20] concerning the
bounded Ciesielski systems, but there are some differences. F. Weisz proved that
the maximal operator for Cesaro means is bounded from the Hardy space H, to
L, for 1/2 < p < oo and by the interpolation he obtained the weak-type (1 1)
of this operator. The usual density argument (see [18], Theorem 3.1. 2) then im-
plied the convergence result. His proof depends heavily on the estimates for the
derivatives of basic functions. In our case we do not have such estimates. How-
ever, it occures that in case of wavelet type bases, it is possible to prove that the
hmes superior operator for the Cesaro means of the Fourier series with respect to
the system {1/) jid is of the weak-type (1,1) (as a consequence of its quasi-
locality). Moreover tu1s result is also sufficient to obtain the required convergence

as it follows from the following weaker version of Theorem 3.1.2 from [18]:

Lemma 4.2. Let X, be a dense subset of Li(l). Let T, (n € N), S be linear
operators from L; () to Lo(I). Let us assume that the operator S is of the weak-
type (1,1) and that for any function f € Xo we have lim,_,q, 1), f=5f ae. on
I. If the operator T defined as

Tf(x) := limsup |T, f(z)|,

is also of the weak-type (1,1), then for every function f € Li(I) we have

lim I.f=Sf ae on I
Proof. Let us fix f € L1(I). Let us choose f,, € Xo such that hm W= fmll =
= 0. Since hmsup [Tnfm — Sfm| =0 ae. on I hence

hmsup IT f—=S8fl< hmsuplT (f — fm) +IlmsuplT f = Sfml + |8 fm — Sf]

=T(f = fm) +18fm — Sfl.
As T and S are of the weak-type (1,1) we have

Hzel: liﬁsogp ITaf(z) = Sf(@)i > 20} < [z €1: T(f = fm)(z) > y}|+

+H{z €1: |Sfnlz) ~ SF(0) > g}l < %Ilf ~ fulln,

where the constant C is independent of y and m.

Since [|f = fmlli — 0, hence |{z : limsup |T, f(zx) — f(x)] > 2y} =0 for
Nn—00
every y > 0. We thus get limsup [T,f — Sf| =0 ae. on I. [ |

n—oo

! Here and in Lemma 4.3 below Lo(I) denotes the space of measurable functions,
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Below we will use the notion of quasi-local operator (see [18]):

Operator T : L1(I) — Lo(I) is called quasi-local if there is a constant C' such
that for every dyadic interval I and every function f € L;(I) satisfying suppf C I
we have

/ ITf(=)ldz < Ol 1.
(2%I)<

Lemma 4.3. If the subadditive operator T : L1(I) — Lo(1) is quasi-local and of

3 Ryt [ Syl £ T YWY ' SRSy o B PRI o | NPT MY Sy & TR Y
LLIC wlah-bLy DO \L’ L} , LIICIL 1 15 4ldbU UL LT wlan-vy pco \l, l) .
The proof is similar to the proof of Theorem 6.2.4 from [18]. [ |

The proof of Theorem 4.1: For the natural number n > 1 we define i and 7
as the unique natural numbers such that n = 2* 4+ 5 and 1 € n € 2#. Using this
notation we can write

onf =~ (zsszLZSzqu)
1 ( p—1 2!
== \Slf+ TT (521+zf Sz*f) + Y2 Sai f +
i=0 =1
7
+Z(52u+lf—52uf) +7752~f) =
1=1
= T f+ T f+ T f,
where
p—1
Tr(zl)f— (S]f+z2 Sf)tf‘{"I]San)
i=0
1 p—1 2t
Trgz)f:;(zz:(sg.ﬂf—sgif))
i=0 1—1

i \

T f= kLkSZ“Hf SZuf))

Since Sy f = Pai f, where P, f is the partial sum of f with respect to the
unbounded system {¢,}, we get

n—1
i=0

It follows by (ii) of Theorem 2.2 that P, f(z) — f(x) a.e. on 1. Let us fix z € 1,
for which the above convergence is true. Let us choose any € > 0. Then there is
M such that for i > M we have

| Pyi f(z) — f(z)] <e.
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For n > 2™ we can write

TV f(x) - f@)] <

< LIS@) ~ SE) TIPS @) - F@ 1 3 2P s o) ~ 1) <

1 1 M-—-1 .
gE]Plf(a:)—f(z)|+%e+;E2’|P2.-f(a:) flx)] + = Zzze<

M

2
e+ — sup |Pf(z) — f(7)],
n ogi<M

hence T,(.l)f(a:) — f(z) a.e. on I.

It remains to prove that

. 2 3
lim (TP f(z) + TP f(x)) =0 aee. (14)
n—o0
. . b b b .
Qinmn far amyy Binatian o wa hava -+ afs (4} s als {I4Y and tha Bnita linaas-
VILILC 1ul a,u_y 1dlicuiull ([/z WU Lave Unl[/i \b) I Wl. \b), ALIU LLIT LU Lucal

combinations of 1/); are dense in L;(I), the convergence (14) is fulfilled on the
dense subset. It is not hard to prove that operators 7?) and T3 defined by

TMf .= limsup |[T{™f|, m=2,3

n—oo
are of type (2,2). In fact, from the definitions of T2 and T we have
T T TG < T,

Therefore the type (2,2) follows from (10). By Lemmas 4.2 and 4.3 it suffices to
show that the operators T(? and T®) are quasi-local.

In {20] F. Weisz gives formulae and estimates for the kernels of the operators

T? and T2 in the case of the bounded Ciesielski systems ([20], Theorem 1 and
Lemma 1). Below we extend his result in the general version (Lemmas 4.4 and

4.5).
Lemma 4.4. For n=2¥4+n (p 20, 1 < n < 2*) we have

A= L5 [
016 = 1T [ 1tos0a,

1
1O f(@) = [ Mulo, 01 0)c
nJo
where _
L,-(a:,t)z/ / ri(s-+u)2 Fyi (s+u)GY (z, 8)G? (1, w)dsdu,
0 o
Mn(a:,t):/ / rp(sd'—u)nFn(sﬂ'—u)G:f(a:,s)ij(t,u)dsdu,
o Jo

and G¥, G% are defined by (8) for the systems {1} and {¢,}, respectively.
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Proof. We will present the sketch of the proof only for T,,(,z). Since

rl

1/);=+k (t) = /;- wos 1 (8)GY (¢, 8)ds = /0 73 (s)wr(s)GY (t, s)ds

1 1
Poi 1 () 2/0 w2i+k(s)G’?(t, s)ds:/o ri(s)wk(s)Gf(t,s)ds,

hence

2t 1

A U Y . \ Lt FIERY

22\ P2k )¥2itk(T) =

=1 k=1
1

- / / ZZn(s Y (s)rs (uu (u) G (8, )G, 3)dsdu) £ (1)t
0 0 =1 k=1

By the definitions of D, and F, we obtain

2t 1 2t
SN rils)wr(syrs (whwp(u) = ri(s+u) DY wi(stu) =

=1 k=1 =1 k=1
9i
= ri(s—i—u) Z Dl(s—i—u) = Ti(S—i—U)?lei (S—}—u)
=1

Putting above formulae to the formula of T{? we obtain the thesis. [ |

Lemma 4.5. Using notation of Lemma 4.4 we have
Li(z,t)] < c2*Z2J( S d(w, Ty 1) + S@  d(m t))) (15)

and

|Mn($7 t)! <

p—1 i IO, g |
ey A Y (S ) + S d(n )
i= j=0 I=24—F—1_ou—i]
(16)
where
ot — t+h forOg<t<1—h
R=Vt+h=1 for1-h<t<l.

Proof. Since the proof of Lemma 4.5 is similar to the proof of the original lemma
of Weisz from [20], we present only the sketch for L;.
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By the definition of L;, G; and by (12) we conclude that

iL'i(x’t)l <
i 1
< 021 2 / / Dzz (s—HH— +1)|1/J2:+k(:1:)[|¢2:+i(t)|dsdu
i=0 ll 1 I,
P 2t
; 1 k ) l
i J \" [ [ (almi_— yotcamiyg.. “\varoiys
s 2 Z‘ Z/_lezk i, Dais lut 5557)2°5(2'd(z, 55))S(2'd(t, 7))

From (11) it follows that if we fix 7 and k then

! such that the integral fI N fI Dz,(s+u+ )dsdu is not equa

j=1,1—1 we have than | = k, and for =0,..,i—2 we have | = k£ 2¢ 71,
Hence

Lz, )] <

ey
L
to zero. For

02122125(2%(1, —))[5(2 d(t, k—“LT—Jl)) + 8(24d(t, k—‘z_—]_l))]

= cz!‘ZzJ’ES(?d(z, fi)) [S(Qid(rzjx ; 2,)) + S(2%d(r_ S ))] :

=0 k=1
Hence by Lemma 2.1 we have
i
|Li(z, t)| < C2° ZO 97 [S(zz—ld(z, T_at) + 82 (=, fr_#rt))] :
§=
The estimates for M,, we obtained similarly using (13). [ |

Now we are ready to prove that T and T® are quasi-local, which will
complete the proof of Theorem 4.1.

Lemma 4.6. The operator T} f := limsup,,_,, |T,(Lz)f| is quasi-local.

Proof. Let I be any dyadic interval of lenght 2~ % | and f let be a function from
Ly (T) with support contained in I. Then, according to the definition of T2 and
the assumption concerning the support of f we have

1 = 1 Bl
T f(z) < limsu —/ Li(z, t)f(t)dt]| < sup —su Li(z, t)] - '
@) Slimsupl [ 3 Lute, 0F(@)dll < sup Zaup 3 [Lufe, 0

Hence

p—1

1
/<2 . T ()i g/ up b > Ltz Olds -l

(2xI)e n>2K T te]
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The estimate for L;(x,t) in (15) consists of two terms. We show calculations for
the first one, for the second they are similar. We divide the considered integral

into fhrnn niecag:

ito three pieces:
sup 28 27 sup S(28 1d(x, T t)) dz <
/(2*1)6 n>2K Z Z tel h

K—

T

\_A

Z

/ / \
28N "2 sup S(281d M 14
/(Z*I)c "S:‘g( \ ‘>?' tEII) ( @ " ))) ’

iy

Lm__
i

1 5 i i—1
- 2 29 sup S(2 d(x, T S t))

1
n
/
sup
2*1)c n>2K = tel
(\

1 pn—1 i . )
- 2t 29 sup S(2° d(x,7_s1 _t)) | dz =:
n ok Kk t€I /

dz+

k
u
SN

+ sup
(2%1)c n>2K

E

The term A; is estimated as follows
P K1
A1=/ sup | — ZZ’ 27 sup S(2* Yd(z, 7_a1_t)) | dx <
sIen>2k \ M 70 ST tel
2K ’ ; K2 i
N N\ 9i\ ("ol i—1
SL/} 5K L2 L? sttelll)S(2 d(z,7_1_t))dz <
=11k =0  5=0
2K 1
< — sup 28y 2 sup S(28d(z, T_a t)) <
\z: KermzKZ X_: tel ( _Tr))\
T = i 2K

< —(2;()2 Z 2’22"’2 sup supS(2 ld(z, sz 5 ak—s-1 1)) <

i=0  j=0 zleIK‘tEI

(2;()2 Z 2122325 27 (I, Tax g ).
7=0 I=1

Note that d(Ik 1, Tyx-s-1 I) takes only the values %, m € N, because 2K 71 ¢
K

€ N. Moreover, if j is fixed, then for each m € N there are at most three ! such
that

d(IK,hTZK—j—l I) - ni
2K L7

Hence
K-1 i 2K 1

A < 21( 2 ZTZZ] Z S(2'- 12}()
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2i-1m ~ h41 if and only if 2573 1h < m < 2K~ 1(h 4 1), it follows

Since h <
by Lemma 2.1
i C K-1 i
b g ALY s < S e
i=0  h=0 i=0 j=0
. Since i 2 K, and the function S

Let us estimate the second term, i.e. As

is nonincreasing,

152 o S(zz d(z, T t))\
kg ¥l
: : tc ) J

1 p—1 K-1
< / sup | = 2 27 sup S(2X ~1d(x, A 1) | dz <
(2xD)c n>2K \ M o j:O tel
< f L ":12’ 27 S(2“ 1d( t))\ dz <
< - sup x, T 1 X
/(Z*I)C K T ,:L;{ ) \L el )

sup S(2% 1d(z, T t)ds.
(2xI)c tel

x
\ / \

Similarly as for A; we get
2K

K-1
l e R u 1 oK —1 377 =
Az £ j2=0 27 l_zl 2—KS(2 d(IK,l,TQKZ—j—l 1))

and using the same argument we obtain

K-
C
2\2KZ2”ZS —KZ (18)
§=0
To estimate Az let us note that if § > K, then n,,H < |I |. Thus, if
{m d(z,1) >

d(z,I) > 5, then d(z, T_LI) 57T, and 1fwe denote (2%1)¢ =

)
> 2%} we obtain
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Thus, by Lemma 2.1 we have

o0 o0
A3<CY 2Py S <C (19)
=0 =1

It follows from (17), (18) and (19) that

[ 1@f@<cifih,
(2%I)°
which completes the proof of Lemma 4.6. |

Lemma 4.7. The operator T®) f := limsup,,_, o, |T7(.3) f| is quasi-local.

Proof. Let I denote a dyadic interval of lenght 2% and let f € Li(I) have
support contained in 7. Fix M such that log(z+1)S(z) < 5% for x > 22 (the
existence of such M follows from (3)). Analogously, as in the proof of Lemma 4.6,
we can write

f
\/(Zml)C

This time we present the calculations only for the first element in (16). We
again decompose the integal

1
flz)dz < [ sup —suj
\/(2*1)c n>2K+M T ¢

gh—F—Ll gp—i_ 4
-2 1

/ #—1 S \
[ sup (% Z 2! Z 27 sup Z S2* d(z, T t))) dz
2 i=0 =0

*I)c n>2K+M i= = tel m=2p—i—l_op—itq]

into three pieces and each of them we estimate separately. So
K+1 i aHITl 4R

B, =/ sup % Z 2i227' sup Z S(2# Y d(, T t)) | dz.
( i=0 =0

2xI)¢ n>2K+M Ll o ou-i—1_gm—ig]

Since 2#~1 > 2K we have from the fact that S is noincreasing

gu—Ii—l ap—i_q op—itl
- K
> Sz, mat) < Y S@Mdl, T 4y mt) <
m=2p—J=1_2op—it] m=1
gk —it2 gu—K-1
K
< > 82 LOPTR S . ))}
=0 w=1
Let now

. T
r(l,i,5,8) :=sup{r e N: d(IK,l,'TE’_EFr___l_ N> 57{-}.

S
 ToRIT
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. l -
Since 2% < FRTT 5 thus if d(IK,[,szl

_2%+2_f(3+_11) 2 3 for certain r € N, then

. R r
MK T =t ) 2 gr
hence
o 2 {1 Ky1 4 aK-i? \
Bi<gg ), sup (= 2% 3 2K, s) | <
1=1 N> \ i=0  j=0  s=0
2K K1 i gK—i+2
SERE L2 TP Y S0,
1=1 i=0 j=0 s=0

Changing the order of the summation we get

-

c
(25)?

?,K —14-2 ZK

TJ2"z‘:2" Z ZS(r(x,i,j,s)).
§=0

= =0 =1

} 74
b Y
1

Let us note that T a1, . I = 517 therefore, for fixed ¢, §, s and r € N
2i+1 2L aK+1
there are at most four ! such that r(i,4, j,s) = . Thus

3 oo K4l 4
7. - \ a1 '\ ai '\ N Moy - C A JPAPRN
D] K (2K)2 ) L P 4 ) ) 2T < _21( Z 2 VA O (20)
=0 7=0 s=0 r=0 =0 j=0

op—I=lpon-t g
su — E 2! E 27 sup E
) a>2KEM AT ; el

-1
S(2*d(z, T t))\ dz <

m=28—i—1_2p—141
oK 1 1 n—1 Ky1 or—itl
RS2y .
SCgr swp | X ¥ N S@ kT s D)
=1 n>2K+ =K+2 §=0 m=1

Let us note that |71,- — | < o@%r hence if for any r € N,

T
o \
d(IK’l”v‘,Jl{»—I I > oK’
then
T
d(IK,luT 1 —2%4-5",} ) oK+1’
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which gives

gu—itl

— —i —K—
> s+ (I T aym 1)) <2782 K ),
m=1

On the other hand if d(IK,l,TTFln.I) < ZLK, then

ou—itl ou—itl_y
_ _1 8
D STkt a1 ) <2 sy <C
m=1 5=0

Introducing
B(l,7) =sup{r e N: d(IKz, I) }

we note that

Vi, #{l: B(,1)=r} <3 (21)

Thus,

c K1 2K
72 2-3)" sup ( Z 2igr—itlg (K2 ))+

j=0 r=1 n>2KEM

i=K+42
© V 3 ! IJV_‘l 9t —. BV 4 g
'2_“/_.4 2, S - P, 2 TET A5

T
i=0  1:8G,H=0">2 M T ko

It follows from (21) that Bgz) < C. Since S(z) is nonincreasing function, we may
estimate Bgl) in the following way:

(1) ¢ & &
B3V < i — K —2)s(or—K-2y =
S 9K Z ;TDS;KM H ) ( )
K+1
2. — K —2)s(2#+K-2,
= oK% Z ">szl§3 u )S( )

By the choice of M we have

C

sup (u— K —2)S(2+ K~ 2)<2K

n>2K+M

Consequently, we get

BN < SR Y g
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Finally

B,

A/\

C 22\
C. 24)

It remains to estimate the third term. We have
B3 =

L
= / sup ; E 2t Z 27 sup Z S(2#d(x, Tmt)) | dz<

2K+ M . \ . s tel a1 et i 1
(Z*I)C TL> \ an -f—a J= ’, T+ & m:ZPf-I*‘—ZPi‘-'-l /

2K gu—i—l gp—i_g

< / sup |~ Z 9 Z ¥ Y S@ i rpl)|des

— n>2K+M \ T _ = .
l—z(l_*_l)*I\l“r i=K+2 j=K+42 m=2p—3i-1_0op—iy]

[. p-1 i gu—d=1 gu-i_

2K \
<Y5x sup ki IIEDIEIDY sup  S(2*d(z, Tmz))).
=2

n>2K+4 i=K42 j=K42 m=2#—i—1-2#_i+lxe(l+1)*1\l*1

Since || < 557, thus if d(z,I) > 5%, then d(z, 73 I) > 5551 . Therefore
2K p—1 i
1=g n>2K+M \nz=K+z j=K+2 }
C 2K p—1 i
<2—KZ. su = SRy 37 27 g
jmpm>2K+M \ T j=K42
2K
< KZ sup (S(2*7F 727 <
= 2n>2
o .
< (122215’(2]1).
1=2 j=0

Changing the order of the summation we get from Lemma 2.1

o0 oK
Bs<CY 20Y sy (23)

Lemma 4.7 follows now from (20), (22) and (23). |
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