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SUM FORMULA FOR KLOOSTERMAN SUMS AND FOURTH
MOMENT OF THE DEDEKIND ZETA-FUNCTION
OVER THE GAUSSIAN NUMBER FIELD

RoELOF W. BRUGGEMAN & YOICHI MOTOHASHI

Abstract: We prove the Kiooswrnlan—optxual sum formiila for PSLz{ { } \ Sl ( Ny and ap-
ply it to derive an explicit spectral expansion for the fourth power m he Dedekind

zeta-function of the Gaussian number field.
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1. Introduction

Our nrinci n he p cl est SN 2
for the fourth moment of the De dekmd ze ta—functlo (r O he Gaussmn number
field F = Q(z):

roQ

Z2(g,F) = j_ IGe (3 + it)[*g(t)dt, (1.1)

where the weight function g is assumed, for the sake of simplicity,

to be A
of rapid decay in any fixed horizontal strip. The basic implement to be utilized is
a sum formula for Kloosterman sums over F

Sp(m,nic)= Y exp (27riRe ((md + n&)/c))) (1.2)
d mod ¢

(d,e)=1

with ¢, d,m,n € Z[i] and dd = 1 mod ¢. It is an extension of the Kloosterman—
Spectral sum formula for PSL2(Z)\PSL2(R). By a Kloosterman-Spectral sum
formula we mean any method of expressing sums of Kloosterman sums in terms
of spectral bilinear forms in Fourier coefficients of automorphic forms, and by a
Spectral-Kloosterman sum formula any procedure in the opposite direction. As is
to be detailed shortly, the existing version of the Spectral-Kloosterman sum for-

mula for PSL2(C) concerns only K -trivial automorphic forms over PSL2(C), and
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is unsuitable to handle sums of S¢ explicitly. We extend the Spectral-Kloosterman
sum formula to all K -types and invert the Bessel transformation occurring in it,
obtaining the Kloosterman-—-Spectral sum formula for PSIo(Z[i)\PSI.(C). We

stress that the Bessel inversion has so far been obtained only for PSLZ(IR) and
infinitesimally isomorphic groups.

The expuul. formula in Theorem 14.1 exXpresses A.g\g, r) as a sum of a term
Mg(g), an integral transform of g, and a term based on the spectral decomposition
of L2(PSL3(Z[i])\PSL2(C)). It is a generalization to F of Theorem 4.2 of [25] that
gives for the fourth moment Z,(g, Q) of the Riemann zeta-function an explicit
formula based on spectral data for L2(PSL2(Z)\PSL2(R)); see the final section.
In [6], we have generalized that theorem to real quadratic number fields with
class number one. In all the three cases, the fourth moment Z5(g,-) is linked to

spectral data via Kloosterman sums. Thus one may assert that they are built

on an eqqpnhaﬂv common basgis. Indeed. the structural similaritv amone thesse
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spectral expansions of the moments is remarkable.

There are, however, notable differences among them as well. In the rational
case, the Mg(g) is the main term, overshadowing the other explicitly spectral
terms. For the quadratic cases, the same does not hold. We shall briefly discuss
this peculiar fact for the present case in the final section.

In the case of the Riemann zeta function, the relevant Kloosterman-Spectral
sum formula is the one due to Kuznetsov [18], [19]. There a sum of rational
Kloosterman sums is expressed in terms of a spectral bilinear form in Fourier
coefficients of automorphic forms over the upper half-plane. The test functions
on both sides of this equality are related by an integral transformation given

artant +a ho
by a Bessel kernel. In applications of the sum formula, it is important to have

control over this integral transformation, and, in particular, to be able to invert
it. Kuznetsov did this in the works quoted above in an ingenious way. The sum
formula for the upper half-plane has been discussed at various places. A, self-
contained treatment along classical lines can be found in the first two chapters
of {25]. For a spectral formulation of the sum formula, the version in [1] has the
advantage to stress that the spectral data are tied not to automorphic forms in
the upper half-plane but, in fact, to irreducible subspaces of the right regular
representation of PSLo( ]R) in L3( PQTm( Z)\PSL;(R)).

In the case of [6], we could a.ppea.l to [4], which treats totally real number .

fields. There the Bessel transform in the sum formula on (PSLz(R))d had to be
handled, but that is not essentially more difficult than the Bessel transform for

For our present group PSL2(C) such a reduction to smaller groups does not
hold; in fact it is the first step of an induction leading to any algebraic number
field, and we have to start from scratch. It is true that Miatello and Wallach
have given in [23] a wide generalization of the sum formula, to Lie groups of real
rank one. They have, however, good reasons to restrict themselves to irreducible
representations with a K -trivial vector which are compa.ra.ble to a.utomorphic

forms of weight zero. The relevant integral transform is described by a power
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series expansion of its kernel function; hence its behavior is only known near the
origin. Moreover, the restriction to K-trivial representations makes it unlikely
that the same kernel function can be used to describe the inverse transformation.
However, we need, for the purpose of the present paper, a sum formula that relates
sums of the form

S Se(m,n;e)f(c) (13)

ceZli\{0}

to spectral data for rather arbitrary test functions f on C\{0}. That is, we are
given a sum of Kloosterman sums to begin with, but not spectral expressions as in
[23]. This requires a good control of the rele'v‘am integral kernel in much the same
manner as Kuznetsov’s theory allows us to do for PSLy(R). We achieve this by
deriving a Spectral-Kloosterman sum formula for PSLy(Z[Z])\PSL2(C) for each
K -type, and combine it into one complete Spectral-Kloosterman sum formula. We
invert the Bessel transform in this sum formula, and arrive at the Kloosterman—
Spectral sum formula. The major part of the present article is devoted to the
development of these Spectral-Kloosterman sum formulas. As is mentioned above,

PSL3(C) is the first Lie group other than PSL4(R), for which this programme has

been carried out comnletelv. The results are stated Theorems 101 and 121 The
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former theorem can be used to get information on spectral data; and it is the basis
of the latter, in which sums of the type (1.3) are spectrally decomposed. The
integral transform in these formulae has a product of two Bessel functions as its
kernel; see (6.21) and (7.21). Theorem 11.1 gives the inversion of the integral
transformation. The integral representation in Theorem 12.1 allows us to bound
the kernel function in (7.21) in a practical way for applications, especially to treat
Z2(g ’ F)

Once the sum formula in Theorem 13.1 has become available, we can proceed
with the study of Z2(g,¥). The general approach is the same as in the rational
case (Chapter 4 of [25]), but the computations are by far more involved, as can
be expected. Here it should be made explicit that we shall be concerned solely
with establishing an explicit formula for Z2(g, F). The asymptotical study of the
formula is entirely left for future works. Thus the present article does not contain
anything corresponding to Chapter 5 of [25], except the discussion mentioned
above as to be made in the final section.

For I the step from the fourth moment to sums of Sg is carried out in
Section 2, and follows the same lines as in the rational case. In this respect, the
real quadratic case in [6] is harder. There we had to deal with infinitely many units.
As far as we see, it is essential for our method to agsume that the class miimher ic
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one, for both real and lmaginary quadratic fields. We could thus try to deal with
any imag'mary quadratic number field with class number one, but have exploited,
in the present druue, arithmetical simplifications offered by the specialization to
F = Q(i). On the other hand, the derivation of the sum formula as given in
Theorems 10.1 and 13.1 could be carried out for any imaginary quadratic number
field. If the class number is larger than one, the contribution of the continuous

spectrum is only more complicated. The discrete subgroup can be any congruence
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subgroup, provided we have a Weil type bound of the corresponding generalized
Kloosterman sums; actually, any non-trivial estimate suffices. Without such a

haiimd we waiild inta additianal tanrhnical AifRcnltiae that wo A1ld racirae tha
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method of [22] for their resolution.

In the present paper we bring together two subjects that have been regarded
virtually independent of each other. We have presented the ingredients pertaining
automorphic representations of the Lie group PSL3(C) in a rather detailed way,
in the hope to make them more widely accessible.

Remark. Main results of the present article have been announced in our note [5].

Convention. Notations become available at their first appearances and will con-
tinue to be effective throughout the sequel. This applies to those in the above as
well. We stress two points especially: (i) The terms left/right invariance /irreducibi-

litv are rnannfnrn]V abbreviations for the Ih‘Ml‘lﬂh(‘D/‘Wﬂr“l(‘l}\l]lf‘f of the relevant
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function space w1th respect to the left/right translations by the elements of the
group under consideration. (ii) There are mainly two kinds of summation vari-
ables, rational and Gaussian integers. The distinction between them will easily
be made from the context. Also, group elements, operators, and spaces appear as
variables. They are explicitly indicated if there is any danger of confusion.

~ 11

2. A sum of Kloosierman sums

The aim of this section is to reduce Z2(g,F) to a sum of S¢ with variable ar-
guments and modulus, indicating the core of the problem that we are going to
resolve. We shall partly follow a discussion developed in Section 4.3 of [25].

Thus, let g be as in (1.1). Closely related to Z;(g, F) is the function

LY o MAAVVSUL Y ATAGUT U

L
[+
¢
K

(21, 22,23, 24;9) = / Cr(21 +it)Cr(22 + it){r(z3 — it)(r(2za — it)g(t)dt, (2.1)

v — G0

where all Rez; are larger than 1. Shifting the contour upward appropriately,
this can be continued meromorphically to the whole of C*. It is regular in a

neighbourhood of the point p L= (3,2,2,1), and
Z2(9,F) = I(py;9) + aog(51) + bog(—31) + a19'(31) + brg'(—351) (2:2)

with certain absolute constants ag, a1, bg, by which could be made explicit. On
the other hand, expanding the integrand and integrating term by term, we get

. 1 Ozy—2z (k)O’z -2z (l)
3(21, 22, 23, 24;9) - 'ﬁ k%g:() : |]:|2"l|l|;"3 -

(2log |i/k|) (2.3)

with k,l € Z[i]. Here

/_
[%)
.

S
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ov(n) =ou(n,0), ouin,p) =7 ) a/la])™dl
din
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with p € Z and the divisibility inside Z[i], and

§(z) = j_x g(t)e*tdt. (2.5)

Classifying the summands according as k = ! and k # I, we have, in the region
of absolute convergence,

Cr(21 + 23)Cr (21 + 2a)Cr (22 + 23)Cp(22 + 24) .
4¢p(21 + 22 + 23 + 24)

1 3
* 16 > ImIT? 28 B(2) — 22, 23 — 24, 9% (-5 11, 23)),
mz#£0

I(21, 22, 23, 24;9,F) =

9(0) (26)

where

Bm(o,Bih) =} da(n)op(n +m)h(n/m), (27)

and X
o G(2log |1 +1/ul)
T P+ 2

The first term on the right of (2.6) is due to (14.21).

In order to exploit the relation (2.2), experience in the rational case suggests
that we should continue analytically the identity (2.6) to a neighbourhood of the
point PL. and that such a continuation should be accomplished via spectrally

—
™D
QD

S
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decomposing the function By (a, 8;9*(:;7, 6)) with a Kloosterman-Spectral sum
formula. We shall see, in Section 14, that this is indeed the case. The long process
to reach there begins with the following fact on the complex Mellin transform of g*:

Lemma 2.1. We put, for g€ Z, s€ C,
(557,6) = = j (w37, 6)(u/lul) ~|ul**d*u, (2.9)

where C* = C\{0}, and d*u = |u|~?d u with the Lebesgue measure d u on C.
Then g4(s;+, 6) is regular in the domain

Re(s-v-4)<0 (2.10)

as a function of three complex variables. More precisely, all of its singularities are
in the set {y+ 6+ 3|q|+1:Z 31> 0}, as is implied by the representation

. 1 L(y+é—s+4 %lql)
; 16 =35 "-lq 2
§a(5;7,9) 2( ) P(1+s—vy—-6+3ql)

x/‘°° I(1—6+it) D(s—y—it+1ilqg)
~oo T(6—it) T(1+vy-s+it+ lql)

(2.11)

g(t)dt,
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where the contour separates the poles of ['(1—6+it) and those of T'(s—y—it+1|q|)
to the left and the right, respectively, and s, vy, 6 are assumed to be such that the

contour can be drawn. Moreover, if 7, 6, a.ud Res are bounded, then we have,

regardless of (2.10),
do(s7,8) < (L+ gl +1s)™* (2.12)
with any fixed A > 0, as |q| + |s| tends to infinity.

Proof. The first assertion follows from the observations that ¢*(u;v,d) <
|u|~2Re(rt8) as u — oo, and that g*(u;v,é) is of rapid decay as u — 0, —1,
which is a consequence of respective upward and downward shifts of the contour
in (2.5). To prove the second assertion we assume, temporarily, that

Rey < Res < Re(y +6) <Rey+1, (2.13)
which is of course contained in (2.10). Moving to polar coordinates, we have
etlql?
Ga(siy, 8) = f t)/ 2s—y—it)— 1/ e ddrdt. (2.14)

This triple mtegral is absolutely convergent. Note that we need to deal with the
part corresponding to |r — 1} < €, |§ £ 7| < & with a small £ > 0 separately. The

n + Ao nr
innermost integral is uiual to

S—it—1 _—y(1+r?) N . _
F(&—it)[_] y € f_weXP(zlqlﬂ 2rycosf)dody  (2.15)

2m(—1)9 *° —it—1 — 2
= —-———( ) ) yé t le y(1+r )I,q[(2ry)dy.

(6 —it)
Thus we have
_ 0 o— J—Htg t )bt
9a(537,0) = (=17 [ (s (4\) / r2emm)=omit (2.16)
J_m i \U LL'} Jo

oo
"/ y* " e BT g (y)dy dr dt

0

B o0 21—6+itg(t)
- [ i

oo
x / yd_n_1K2(3—7)—5—it(y)1|9|(y)dy dt)
0

where the necessary absolute convergence follows from asymptotic expai‘lmuub Oi
these Bessel functions. The last integral can be evaluated as a limiting case of
formula (1) on p. 410 of [35] coupled with the relation i~ ldl Jig(iy) = Lig(y). It
is equal to
T(s —y —it+ 3la)l(v + 6 — s+ 3lq))
P + 1)
X oFi(s — v —it+ 3lql, v +

gé—it—2 r1-é6+it)I'(s—y—it+

+6
T(1+y—s+it+ 3ahl (1 —v -8+ s+ 3lql)

(2.17)
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where we have used Gauss’ formula for the value of the hypergeometric function
at the point 1. Thus we get (2.11) with the contour Im¢ = 0, provided (2.13).
Having obtained this, we use analytic continuation to have the representation
(2.11) for those s,, 8 with which the above separation of poles is possible. Then,
to find the location of singularities, we move the contour in (2.11) to Imt = L
with a sufficiently large I > 0. We may encounter poles at t = (1 — d) + ¢l with
integers | > 0, but the relevant residual contributions are easily seen to be entire
over C3 whence the above assertion. As to the bound (2.12), we note that, when
|s| + |g| tends to infinity while «, §, and Res are bounded, the contour in (2.11)
can be drawn. Then we need only to push the contour down appropriately. The

new lnLegI‘a.l lS I't‘.a.uuy (::bLULId.Leu l)y Dbuu[lg B .l()[l]_lu].d. VVC l]_ld._y EIlC()uIlbﬁl PULUB
if q is bounded, but then resulting residues do not disturb (2.12) because of the
assumption on g. This ends the proof. |

Now, returning to (2.7), we note the Ramanujan identity over F: We have,
for any n € Z[i], p € 2Z,

3 (c/Ie})Se(m, 0; ¢)|el >
c#0

4 4 z F72SN . 7 oA T (2'18)
_ 4 Joi1-s(n,p/2) 1in#0, Res>1,
~ (r(s,p/2) {Cp(s—l,p/Z) ifn =0, Res > 2,
where 1
Gr(5,p) = 7 3_(n/In]) ||~ (2.19)

n#0
is the Hecke L-function of F associated with the Grossencharakter (n/in|)*.
Applying this with p = 0 to the factor og(n +m) in (2.7), we see that if
1+ max(0,Rea) < Re(y+6), Ref < —1, (2.20)

then we have the absolutely convergent expression

Bn(a 830" (57,6)) = 76r(1 — 8) 3 1P~ (2.21)
c£0

x 3 exp(2riRe(dm/c)) Dm(a, d/c; g* (-7, 8))
d mod ¢

(d,c)=1
with
Dpla,dfc; g*(-;7,68)) = Zog(n) exp(2miRe (dn/c))g* (n/m;~,8).  (2.22)
n#0

Note that we have used g*(—1;v,8) = 0 in (2.21). We expand g*(u;+, d) into
a Fourier series, and apply Mellin inversion to each Fourier coefficient, so that in
view of the last lemma we have, for any u € C* and 7 < Re(y +4),

9" (7, 0) = — Z(U/IUI)"j Ja(s;7,6)|ul>ds, (2.23)

qcZ
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where (7) is the vertical line Res = 7. Thus we have

Dm(a,d/c;g*(-;7.9))

1 - 5 :
= S/l [ Xyl /g (sim,0)ds, (32
i
q€Z {r)
provided 1 + max(0, Rea) < v < Re(y + 4), where
Xo(s,0;d/c) = ) 0a(n) exp(2niRe (dn/c))(n/|n])¢|n| > (2.25)

n#0

with (d,¢) =1

Then we invoke (see [27]): If ¢ # 0, the function X,(s, a;d/c) of s is regular
for any . If ¢ =0 and a # 0, it is regular except for the simple poles at s = 1
and s = 1 + o with the residues =|c|X*~D(p(1 - a) and || 2@tV(p(1 + a),
respectively. Moreover, we have, for any combination of parameters,

Xq(s,a;dfc) = (c/lc]) ™ (m/jcf)*e 22 (2.26)
r'(l1-s+ilghra ~s+1 .
( Fls T ?!qll?.ﬁs e fl—i—lleql)X—Q(l -8~ d/c)
LS T3g)is —a~+ 5191)

with dd = 1 mod ¢. By the convexity argument of Phragmén and Lindelof we
deduce from this that’ X, is of polynomial growth with respect to all involved
parameters as far as s remains in an arbitrary but fixed vertical strip.

The last lemma allows us to shift the contour in (2.24) to the left as we like.

The functional equation (2.26) yields
Lemma 2.2. If

1 + max(0,Rea) < Re(y+34), |Rea]+ReB < 2, (2.27)
then we have, for any non-zero m € Z[i],
B (0, 8,9 (-;7,0)) = [BRY + BY]( 8;9%(-;7,96)). (2.28)
Here |
B{ (e, B;9*(-57.9)) (2.29)
= 2nimfoasg 1 (m) s 15,6)
+2n|m|XeHgs . (m Cr(l+a)Ce(l - B) do(1 + a5 7, 8)
F(2+a—p)
and
B{) (@, 8% (57, 6)) (2.30)

1.’)_1-._ -1 [Py IS B -
= = 7 TR(L = BImIFTET Y D oo ()] TP S a2, 8,7, 63 9),
n#0
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where

Smn(a, 8,7, 8;9) = L ] |2SF(m n;c) [g]( = y/mn; a, B, 7, 5) (2.31)
[g)(u: @, B, 7, 8) = (jul/2)” —2(1+a+p)

IG\u; & Y, 0) = \|U|/ <)

— 8 1 a—S
Z“/l“') / TS IETEES NPV

= T(s+ ilg(s — a+1| )]

’

"W ) FZixds \ 4.;

with n < 1+ min(0, Rea). All members on the left sides of (2.28)-(2.32) are
regular functions of the four complex variables in the domain (2.27).

Proof. This is analogous to the rational case, which is developed in Section 4.3
of [25]. The first condition in (2.27) comes from (2.20). The second condition
there allows us to shift the contour in (2.24) to (£) with 1+ iRe(a + ) <
£ < min(0, Rec). Then the right side of (2.29), which depends on (2.18), is the
contribution of the poles at s = 1, 1 + a which occur only when ¢ = 0. With
this choice of the contour, in place of () in (2.32), the absolute convergence
throughout (2.30)-(2.32) follows solely from (2.12). This gives the regularity
assertion. To finish the proof we move the contour from (§) to (7)) as is specified

above. ]

Note that [g](u;a, B,7,68) is even with respect to u so that the choice of
square root makes no difference in (2.31). A relatively closed expression for the
transform g — [g] is available, though it is not much relevant to our present
purpose; see Remark at the end of Section 12. The use of the Weil bound (8.14) for
Sy gives the refinement of the second condition in (2 27) to |Rea| + Re ,3 < -3
Te olemeold leceancon= Lo lionec-ad 2l o) R [PV DO in MME Lo st +1. L
1L buuu1u, llUWCVUl, D€ ODSEIVEQ bllub IJIJ.C uUlllﬂ.ll.l \ﬁ ‘ll} i N, EVEIL Wlbll blllb

reﬁnement does not contain the critical point (0,0, 1 55 ) that corresponds to p 1

in (2.2). In other words, the estimate (8.14) of individual Kloosterman sums
does not suffice; we need a massive cancellation among Kloosterman sums. We
shall demonstrate, in Section 14, that the Kloosterman—Spectral sum formula in
Theorem 13.1 serves this purpose. It can be regarded as a device to separate
the variables m, n in (2.31). Taking the result of the separation into (2.30), a
sum of products of Hecke series emerges. The fact that these functions are entire

and Af nalvnamial oraw th siveg vian +ta tha Asgivrad analutina mMAara nraaiaslyy
@i\l uvi PUI.J 11111141 51 VWil 51 YOO 1100 LU LLIT Uoolioadg a-llanl.‘r Ulb, Ul JIILV g vl Pl Cbmcl],

meromorphic continuation of (2.6) to C%.

Remark. The right side of (2.7) is called the complex binary additive divisor
sum; for its rational counterpart see [24]. The dissection leading to (2.6) is crucial
in our argument. We stress that it is not precisely the analogue of the Atkinson

ceprtimm dm o i o] nooa [ o SV g ~F [OEIY MNlcncra ¢+ [ M, I

l’hﬁw‘bblull 111 bllc lﬂ.hlullﬂ.l Lanc \S‘CC OECLLIOIL "1 é (93 l&d]} UUDCI ye& bllﬂ.b OIi bllc llgllb
side of (2.6) three times the first term is hidden in the second term; and thus the
latter does not represent the non-diagonal part of the sum (2.3) in the traditional
sense. A direct extension of Atkinson’s device might be to classify the summands
in (2.3) according either to the norms of k¥ and [ or to the ideals generated by
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them. Then it would, however, be difficult to relate the result of dissection with

any Kloosterman sums or like. In our argument we exploit a geometric feature

arnerifio o the ring Z01- that ia r dAicanrtian ia haand an +tho lattias rathar than
BPCU[“[J [V V) ¥ L wt lllls ”Jlbj lll‘.alb ID, Uu‘ umbhbnlull Y LFQROULAL WAL ulaL bubbbbb, 10..)1].01 Lilcuil

arithmetic, structure of Z[i]. If one tries to consider the fourth moment of the
Dedekind zeta-function of any imaginary quadratic number field with class number
larger than one, the dissection argument will become an issue. We note that our
argument has, nevertheless, a certain generality as well; it extends to

~rn

j IGr(L + it, a)Cr(L + it, b Pg(t)dt (2.33)

for any a, b € Z. See also Remark at the end of Section 14.

3. The group PSL,(C)

The Sy in (2.31) is a sum of Kloosterman sums. The spectral decomposition
of it requires a considerable dose of the representation theory of the Lie group
PSL»(C).

With this aim in mind, we shall work with functions on SL,(C) which are
left-invariant over SL,(Z[i]). Since it is implied that they are even, ie., f(—g) =

f(ﬂ'\ weoe are nﬂfilﬂllir Anallhn‘ l‘lrl‘l’}\
JIBJy Y Gal Gouvudn A CRILIAE, YV L UKL

G = PSLy(C), I = PSLy(Z{i]). (3.1)

Denoting by [‘; Z] the projective image of the elements + (‘; 3) of SL,(C), we

put ) ”
nfz] = [1 ﬂ hfu] = [“ 1/u]’ kla, 8] = [—QB g] (3.2)
for z,u,a,€C, u#0, jof* +|B|* = 1; and also
N = {n[z]: z € C}, A= {alr]: r > 0}, K = PSU(2) = {k[a,8]: o, € C} (3.3)
with alr] = h{y/r]. We have, for the Euler angles ¢, 8,9 € R,
k{os 6] = h[e*/2 klcos(10), isin(10)[ble™/2]. (3.4
We have the Iwasawa decomposition
G = NAK, (3.5)

which we write, e.g., g = nak = n[z]alr]kle, 8], and understand as a coordinate
system on G. With it, Haar measures on respective groups are given by

1
dn=dy, da=_dr, dk= 8—;2 sin@ dy df dip, (3.6)
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and .
dg = Edridadk. (3.7)
We have, in particular,
[ dk =1 [ d 2 (2) (3.8)
/K = 4 j[‘\G g = ;r"z_CF ) .

where, with an obvious abuse of notation,
ING=I\G/K -K=TI\H K. (3.9)
Here H3 is the hyperbolic upper half-space, and I'\H? is represented by the set

(3.10)
\ ~7

These generate the universal enveloping algebra U(g). We identify them with
right differentiations on G; that is, e.g.,

(H2f)(g) = lim 2

ROt—0 dtf(g exp(tHz)) = (04 f)(8)- (3.12)

Then U(g) is the set of all left-invariant differential operators on G. The center
Z(g) of U(g) is the polynomial ring C[Q2,,_] with the two Casimir elements

1 ) . .
QL = g ((H1 F ‘I,I'Ig)2 + (V1 F ‘l,‘hlg)2 - (W1 F ‘I,Vg)z) s (313)

where the factor ¢ means the complexification of respective elements. In terms of
the Iwasawa coordinates we have

1 ret®

]_ i ]— . i
0, 21-23,32 +3re ®cot89,0, — 5ire’*0:00 - 5020w (3.14)
1 1 1 1 1
+ §r23,2 - iira,.ag, - 533, - éra, + iiag,;
and
1 | S 1 . —ip
0 = 5770,0; + e cot 00:0,, + sire *¥0;0 - %l—eaza¢ (3.15)

1 1. 1 1 1,
+ §r23,2 + —ird, 0, — 58?, - gra, - Zz

7 8.
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Restricting ourselves to the maximal compact subgroup K, we note that its

Lie algebra €, and thus its universal enveloping algebra U/(¥) are generated by
H,;, W;, and W,. The center 7”’\ of 71“‘\ ig the nn]vnnm\a] rin C[Q.] with

=22, jLogl ey § 3 Vos L 4 L1 8 L) oy aatsdaat

Qp = %(Hg + W2+ W32). (3.16)
In terms of the Iwasawa coordinates we have
Qp = —é-géz—b- (8% +sin®08; + 87 — 2c0s 09,0y + sinfcos 0 ) . (3.17)
Tt T2(K) he the ~t arac

L€v L7\ ] De the Hilbert Space of all functions on K which are bquare-lnl:egr able
over K with respect to the Haar measure dk. To describe the structure of L?(K),
and hence the unitary representations of the compact group K, we put, for |g| <1,

(az — B) 1Bz + &)t = Z !, , (klo, B)a’ P (3.18)
p=—1
We have
@ = (1Pl (3.19)

Also we have, with (3.4),

pa(kle, B) = e PeT VL (k[cos(}6),isin(36)]), (3.20)

Q.«:b;,q =-1(*+ z)<1>p 2 quﬁ,,q = —iq@i,,q (3.21)

follow with the convention <I>:,,q =0 if {p|, |g| <! is violated. The set

is an orthogonal basis of L2(K) with norms

ot = [ obaoorad' == (2 V(%) am

The matrices ®; = (<I>:,,q) realize all unitary representations of K; in particular,
we have

qﬁ(kll{g) = q’l(k1)‘1>z(k2), ki, ko € K. (324)

LY(K) = @ L3(K;l,q), L*K;l, q)=EPcel,. (3.25)
l [q lpl<i
q
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We have
LY(K;l, q) = {f € LX(K): Quf = —3(P+ 1), Hof = —igf}.  (3.26)
We call L?(K; 1, q) the subspace of L3(K) of K-type (I, q).

More generally, in a space in which K acts, we shall say an element has
K-type (l,¢q) if it is a simultaneous eigenvector of 0y and Hy with eigenvalues
—%(l2 +1) and —iq, respectively. This concept corresponds to the weight in the
theory of modular forms on the upper half plane.

We shall be concerned with representation spaces of g for ..hich we can
use the principal series representations as a model space. The of K -finite
vectors in the principal series is

H (v, p) = {finite linear combinations of ¢; ¢(v, p) } (3.27)
with
l
pra(v,2)(nalrlk) = r' 0L (k) (v € C). (3.28)

Formulas (3.14)-(3.15) and (3.20) imply that H (v, p) is a simultaneous eigenspace
of Q4

Qiprqe(v,p) = %((V F9)* - Drq(vp). (3.29)
The space H (u o) ) is not G- invariant, but known to be g-invariant and irreducible
for values of (v,p) that are of interest for our purpose. Restricting functions in
H(v,p) to K, we have a scalar product on H(v,p). If Rev = 0, the group G
acts unitarily in the resulting Hilbert space — unitary principal series. In Section
8 we encounter these unitary representations as models for irreducible subspaces
of L*(I'\G) to be defined there. The irreducibility can in fact be confirmed by
computing the actions of the six elements in (3.11) over each ¢, 4(v, p), though we
skip it. In what follows we shall see that in most cases H (v, p) is the space we are

artirally r AdAaaling with via mang Aatmimitine with the onticn [ [

actuailly dealing with via maps commuting with the action of g or t:(]uwd.wuu_y of

Ug).

Remark. The general theory as well as specific treatments of unitary representa-

tions of Lie groups can be found in [17], [32], [33], and [34]. The fundamental region
(3. 10) is due to Picard [29], and its volume, given in (3.8), to Humbert [13]. Formu-
las (3.14), (3.15), and (3.17) are obtained by first mterpretmg (3.13) and (3.16)
in terms of the local coordinates g = nz;1]h[z2] [; 7] n[z3] with (z1, 22, 23) € C3,

over the big cell of the Bruhat decomposition of G, and by changing varlables
according to the Iwasawa coordinates. Our choice of basis elements (3.22) is
somewhat different from common practice as is indicated by (3.23). This is for
the sake of convenience for our later discussion. The maps which commute with

the action of g are usually called intertwining operators.
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4. Automorphic forms

T ot £F700L1 TN 7Y Lo the craee ~AFf 21l crnmanth 1o P oinoarian N _qvibnsnanndhia
LEL i \ D€ L€ sSpade 01 aii SINooull i€iv 1 -invariant or 1 -a.ubuuxuxyuu.

functions on G We consider subspaces composed of simultaneous eigenfunctions
of 1, Q¢, and Hy: Let x be a character on Z(g). We put

Aug(x) = {F € C=(I\G) : Quf =x(Qu)f, and of K-type (La)}.  (41)

Elements of A; 4(x) are called left I'-automorphic forms on G of K-type (I,9)
with character x. Obviously they are counterparts of PSL,(Z)-automorphic forms
on PSL.( ]R\

—ax\==7

As being eigenvalues of differential operators, X(Qi) cannot be arbitrary:

Lemma 4.1. If A; 4(x) # {0} then x = x..,. Here x, ; is the character of Z(g)
defined by

Xo,0(€14) = g«u #9)* - 1) (12)

with certain v € C and p € Z, |p| < !, which are uniquely determined modulo
(v,p) = (-v, -p).
This assertion is a consequence of a study of Fourier coefficients of automor-

phic forms, which we are going to develop. Thus, for any f € C*°(I'\G) we have
the Fourier expansion

fle)= Y F.f(g), (43)

weZ(i]
where
F,f(g) = [ P (n)_lf(ng)dn (4.4)
I'v\N
with
I'y=INN, 1,(n[z]) = exp(2riRe (w2)). (4.5)

Obviously the operator F,, commutes with every element of U(g), implying that,
if fe A q4(x), then F, f is in the space

Wiq(x,w) = {h € C®(G) : h(ng) = pu(n)h(g), (4.6)
of K-type (I, g) with character X}-

Thus the above lemma, is a corollary of

Lemma 4.2. If W, 4(x,w) # {0}, then there exist v € C and p € Z, |p| LI,
such that x = xu,p-

Let h € Wi 4(x,w). We note that for any fixed g € G the function h{gk
€ K belongs to L?(K; I, q). In particular we have

N

h(g) = D hp(na)®, (k). (47)

[p|<!
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The formulas (3.14)-(3.15) and (3.20) imply that the condition Q+h = x(21+)h
is equivalent to

X hp = £ (=PI Buhpis + 5 (r202— (14 20)r0,+ 410,05+ p(p+ D)y, (45)

1 1
x(Q-)hy= —§(l+p)r35hp_1—i—g(1'2334—(2p—1)r3,+4r2323,—,+p(p—2))hp, (4.9)

where it is supposed that h, =0 if |{p| > |. We shall first consider the case w = 0.
Then (4.8)-(4.9) can be written as

r2hY — rhl, + (p% + Dhy = 3(ag +a_)hy, (4.10)
P"h;: — php = %(a_ = a4)hy

with x(924) = 8(a+ 1), x(-) = (a_ —1). If p # 0 the second equation has
a solution space spanned by rit¥ w1th v = (a— — a,)/4p; and the first equation
gives ay = (u:;:;o)2 If p=0, we have a;, = a_. If a; # 0, then r1*¥ and

r1=¥ with v? = a span the solutions of the first equation. If a; = 0 then r and

- owrs tha A3 1y —
logr are the corresponding solutions; and we have # = 0. This settles the case

= 0. We next move to the case w # 0. For each t € C\ {0}, let £, be the left
tra.nslatmn

‘I

_____

£.f(g) = j(h[t]g). (4.11)
We have
B Wiq(x,) = Wig(x, ), (4.12)

which reduces the problem to the case w =1. Any h € W 4(x, 1) has the form

h(n[z]alr]k) = exp(mi(z + 2)) Y Bm(r)®, 4(K). (4.13)

|m| <t
Again by (4.8)-(4.9) we have

rhll — (2m + D)rhl, + (m? + 2m — 4727 — 8x(Q0,))hm (4.14)
= —4rmi(l - m)rhmy1,

r2h! + (2m — Drhl, (r) + (m® — 2m — 47%r® — 8x(Q-))hm (4.15)
= 4mi(l + m)rhp,1.

We write x(Q+) = 3(p#3 — 1). We may assume, without loss of generality, that

0

IA

Rep, <Rep_. (4.16)
It is immediate that there exist constants ¢y, d+ such that

hi(r) = cer' 1K, (2nr) + dyert T L, (277). (4.17)




38  Roelof W. Bruggeman & Yoichi Motohashi

We consider first the case py ¢ Z. Applying inductively the equation (4.15)
to hi(r) we see that in the expansion of h_;(r) all terms are multiples of either
T""+ —l4+142m or T~#+_[+1+2ﬂ' with integera m m > O mthasanthar hand if C_ # 0

ns RAALUH/YAS rivy dv s WAL vl vt liadid,

in (4.17), then h_;(r) has a term equal to a multiple of #~#-++1_ Thus we have
either py, —l+14+2m=—pu_+1+1or —pr—l+142n=—u_ +1+1. The
first identity gives i, +pu— = 2{{ — m), whence 0 < m < and pr=v+({l—m),
p- = —v+ (I —m) with a v € C. The second gives p, = p_ — 2(1 — n);
that is, g, = v —(l —n), p_ = v+ (I —n) with a v € C, where we have
0 < n < [ because of (4.16). This settles the case c_ # 0. In other case,
we should have h_,(r) = d_r'*1I, (2rr). Applying inductively the equation
(4.14) to h_;, we proceed in much the same way, and obtain the assertion of the
lemma. Next, if u_ € Z, then the above procedure yields that all terms of hy(r)
are multiples of either r#~~!+1+2mogr or ph-—l+142n with integers m,n > 0.
According as either ¢, # 0 or = 0, we have p-—i+1+4+2m=pu, +I1+1or
p-—4i+1+2n=p, +1+1, respectively. Thus we are again led to the same
conclusion. Finally, we observe that u, € Z implies - € Z; and we end the

roof. [ |
P

It should be remarked that in the above it is proved that if (v,p) # (0,0),
then

Wiq(xv,p,0) = Coig(v,p)®C erq(~v, —p); (4.18)
otherwise
Wi,q(x0,0,0) = C1,4(0,p) & C8yip1,4(v, P)|u=0 . (4.19)
Thus dim W7 4(xv,5,0) = 2, but for w # 0 we know only dim Wi 4(xy p,w) < 2 at
thiz otz

) (4.20)
as r T oo with a certain real constant b, then we say that f is of polynomial
growth. The dependency of the bound on the set where n and k move around is

to be mentioned in our discussion. Automorphic forms with polynomial growth
are the most interesting ones. The Fourier terms inherit this growth property, and

we Dt

WO pruav

Wiz (Xuipsw) = {h € Wiq(xup,w) ¢ of polynomial growth, (4.21)
uniformly over K}. ) '

In this way we get rid of the I-Bessel term in (4.17), which is of exponential

T

growth. On noting basic properties of the K -Bessel function, we have readily

Lemma 4.3. Let w #£ 0. If Wi, l(x,,,p, w) is non-zero, then it has dimension one.
Any generator h satisfies

h(nafr]k) = O (|wr|be—2"lwlf) , (4.22)

as r T oo, with a certain real b.
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We shall prove in the next section that we have actually dim m{)OI(XU’p, w)=1
for any w # 0. Moreover, we shall later show that dim VVg,q(Xu,p,u.;S = 2 always
(see (6.17)).

We next introduce the notion of cusp forms: Let

APZ (xwp) = {f € Aug(xvp) : of polynomial growth, (4.23)
uniformly over N and K}; -

and put
A1 g(xvp) = {f € AP (xvp) : Fof = 0}. (4.24)

Ve | =]

This is the space of cusp forms of K-type (I,q) with character x,,,. The descrip-
tion of the Fourier terms in (4.17), and (3.14)—(3.15) imply:

Lemma 4.4. All cusp forms f are real-analytic and of exponential decay:
f(najrjk) = O(e ™) (4.25)
uniformly over N, K as r tends to infinity.

Remark. Automorphic forms can be defined on much more general Lie groups,
see, e.g., Harish Chandra’s lecture notes [11].

In order to give explicitly an element in the space VVII”:J(XV,;,, w), w# 0, we shall
appeal to the Jacquet integral. This device turns up in the computation of the
Fourier expansion of Poincaré series.
Thus, let f be a function on I'y\G, with which we generate the Poincaré
series 1
Pre)=5 > f(r8)- (5.1)

T oye'N\I

We shall ignore the convergence issue temporarily. Via the Bruhat decomposition

we have

T ixda

Pie) = 5 U@+ SN 13 Y. 3 Y rald/elt/dwnld/c+lg), (52)

c#0 dmode w
(d,c)=1

where w = [, 7']; dd = 1 mod c. The innermost sum is, by the Poisson sum
formula, equal to

> exp(ariRe (do/c)) [ () S@id/dhit/clwme)in  (53)

W
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with 1, asin (4.5). If we suppose further that f is such that

f(ng) = o (n)f(g) (5.4)
with an ' € Z[], then we have
1 .
Pr(g) = 5 (f(g) + f(hlilg)) (5.5)

r-hlr-—-i

ZZ Sp(w, ' C)/ Yo (n) "' f(h[1/c]wng)dn.
w o0

Hence we have

1
F,P; = —-(6_,,__'f + 60— bif) + I z‘-F(-‘-’:-”; ) At sof, (5.6)
c#0

where § is the Kronecker delta, ¢ is as in (4.11), and

Aef(g) = / 1g(n) ™" f(wng)dn (5.7)
JN
is the Jacquet integral. A property of Ag is

L Agty = |t] ' Ayae (5.8)
for any £ :£ 0; thus only Ag, A matter actually. Obviously A¢ commutes with

any element of Ug).
Now, let us compute A1 4(v, p), which is in W 4(x, p,w). We remark that

wlehi =0 | o [ ] L
e e e N W ive e o
and thus
Awtpz,q(u,p;na[r]k[a,ﬁ]) (510)
1y [ @Rl (] 3 -1 1, .

—,—;q,\ k 1\ 3
jc (1+ |z|2)"+1 7.9 \ l_ '_"_1 n IZIZ, ——"—1 n |2|21K a, Pi} ajz.
This shows that for Rev > 0
Aupio(v, p) € WPOI(XUp) (5.11)

We have, by (3.24),

Auwtprg(v, i nalr]k) = g, (n) > vl (r) @, 4(K), (5.12)

Im|<i
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where
) ) P e—zwiRe(wrz) /T = -1 1\
v, (r)=r""] —————P k diz. (5.13)
m(7) jc (1+ [2]?)r 1 p’m( l\/1+|/'«'|2 V1t [z ) -
The relation _ _ _
ke, 6] = hle~**"*k[a, B]h[e /7] (5.14)

and (3.20) imply that, after the change of variables z = ue®, the last integral
becomes

(S 519

Kid

X j exp ((p + m)i¢ — 2miRe (wrue*®)) de du.

Thus we see that if w = 0, then

(r):Zﬂﬁﬂ_prl‘”[ LY _ (k[ Y ]\ : (5.16)
’ Jo (L+u?)vtl "P7P | /T2 \/1+u2J/

and if w # 0, then

U (r) = 20717 (i f{w]) 7™ (5.17)
T (‘)7r 2 —1

Jorm(@nlwlr) r N 4
<SR (e v )

The integral in (5.16) is, by the definition of ®

] -
p,—p» €qual to

l pl {pl /l_'LH %\ /l:ipi\ oo ’U,ZCH_I
L ( i )k . )/0 ——(1+u2)u+t+ldu (5.18)
o - 1—|p| L
_LT(+ fpl + DT + [p)) i(—l) (t P\ (v+Ipl)a
20(v + 1+ 1)2lp| +1) & a /) (2pl+1)a
1T 1 PR ™l
_tiuti—v) 1\IPITV)
TU+1+ ) T(p|+1=2)

The last line depends on the identity

k
— (M@ Bk |
L( ly\ )(g)j - ([3)::'"’ () =ala+1) - (a+j-1), (5.19)

j=

which can be shown by induction. On the other hand, we observe that if p+m < 0
in the integrand in (5.17) then we may replace (p, m) by (—p, —m) without
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affecting the value of the integral, since we have (3.19) and J , = (-1)%J, for
a € Z. Thus, according as sgn(p +m) = +, the integral is equal to

(—1)i-7 min{l%'mp}(_l)a (l F m) ( L+m ) (5.20)

a IFp—a

uIm+p|+1+2“J[ 1o (27 |w|Tu)
u
)u+l+1

T T

0 b

[+]
H

—Nn
—u

y co ylmtritlg L (27wlry) .
0 (1 +u2)u+l+1—b

n—
a=

Exchanging the order of summation, the sum over a taken inside is equal to

BI(21 — b)!
p)(! +p)!

- (5.21)
y (z_ 3(Im+p|+m - pi)‘) (i— 3(lm+pl - im—pi))
b b '

In fact it is

min{lFm.lFp} ) o I+m \ /o)

2 (. )kz:Fp—a) \e) 22

1
1

_ (b’ - u).(l +!1):
N Z (A—a)/(B-a)l(a —b)a+c)!

with A=1Tm, B=1Fp, c=|m+ p|; and on the assumption A < B
min{A,B}

L A-b\ (b-B)
Z T (A-b(B- b)(c+b):2 ( d )m (5.23)

a=b

(
(A+ B+ c—b)
T (A-bUB-b)(A+ (B + <)

because of (5.19). Hence we get (5.21).
Collecting these and invoking the formula

which holds for —1 < ReT < 2Ren+ 3 (formula (2) on p. 434 of [35]), we obtain
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Lemma 5.1. We have that for w =0
Ao oy LG TL=v) D(plty)
TORRSE TP+ 14+ ) (| + 1 =) T
and for w#0
Awtprq(v, p)(nalrk)
= 2(=1)""Pr |w|* T pu(n) Y (iw/|w]) TP ok, (v, i |wlr) B, o (K)

[ P
|77 ¢

o~
ot
o]
o

S’

—
ot
)
(=]

-

with
ot (v, p: r) (5,27)

TR NT Y LT
t_[m+Pl/2_Im‘p{/2 (WT)[+1_J

- Z (_1)j£:3(m’j)r‘(y 141 = ,,‘\KV+l—lm+P|—j(27rT)'
]=0 TN L T o7

We see that with respect to v the function Aoy ¢(v, p) is meromorphic, and
for w # 0 the function A, 4(v, p) is entire. Thus, taking into account analytic
continuation, we may extend A, so that Ay q(v,p) is given by the right side
members of (5.25)—(5.26), as far as they are regular. In this way we define the

Trnmaionf amomatoe.
JUuLyuclr vporuwLor.

Ao H(v,p) = WPy, 5, w) (5.28)
where the right side is the space spanned by all VVE;_)] (xvp,w), |9l <1, lg| <.
The function A, 4(v, p) spans the space Hffgl(x,,,p,w), w # 0, for all values
of v € C, p € Z. In particular, since the space W/fg] (X—v,—p,w) is identical to

I/le;’](x,,’p, w), the function Ay q(—v, —p) is a multiple of Awpyq (v, p). Checking

the coefficients of ®! o(k) in these functions we find the functional equation
(nfl)™ (o /)T + 1+ 1) Aoip(v,) (5.29)
= (7|w)” (iw/|w)) P + 1 = v)Awp(-v, —p).

Note that the term Jacquet operator is limited to its application to the space
H(v,p), whereas we use the term Jacquet integral wherever it applies. This abuse
of terminology should not cause confusion in our later discussion.

Now, the most important example of automorphic forms that are not cusp-
idal but of polynomial growth is offered by the Eisenstein series of K-type (l,q):

e =3 S eap)vE)  (Rew>1) (5.30)

YEIN\T
with p € 2Z. We need this condition on p to have a non-trivial sum; note that
(3.20) implies ¢ 4 (v, p; hli]g) = (—1)Pp1q(v, p; g). The series converges absolutely
in the indicated domain of v, and is regular there, which is the same as in the K-
trivial case. The Fourier expansion of e; (v, p) can be obtained as an application
of the foregoing discussion. Obviously we have

Autr/epr,q(v, p)(alrfi) = (¢/1c])lel ¥t Auipro (v, p) (alrlk). (5.31)
Thus, by (2.18), we have
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Lemma 5.2. The Eisenstein series e 4(v,p), p € 27, is meromorphic over C with
respect to v. When it is regular, we have the Fourier expansion

ZuF(l+1 —I/) CF(I —I/,p/2)
Tl+1+0) G tv,0/2)¢

e DAL L)

erq(hp) = @rq(v,p) + 7 La(—v,—p) (5.32)

We also have the functional equation

7y -

KT+ 14+ )61+ b/ 2en(v,7) (533
=a'T(l+1—-v)p(1 —v, p/2)eyq(—v, —p).

Proof. These assertions are consequences of the previous lemma, the identity
(5.29), and the functional equation

“T(ip| + v)Ce(v,p/2) = = T (|p| +1 = V)G (1 — v, p/2). (5.34)
[ |

Note that in the present arithmetical situation we do not need to establish
Langlands’ analytic continuation [20] of Eisenstein series. We stress also that
the above discussion implies that each cusp-form v € %4, ,(x, ) has the Fourier
expansion

b= (Wi aprg(,p) or  Fup=cw)lupre(v,p)  (5.35)

Yl
wF

with certain complex numbers c(w). Because of this, instead of considering indi-
vidual automorphic forms, we study systems that behave under the action of g in
the same way as the ¢ 4(v, p). Thus, automorphic representations move to the
focus of interest; that are linear maps from the model space H(v,p) to C®°(I'\G)
that commute with the action of g. Specifically we have, for any X € g,

FoX1) = c(w)Au Xy ¢(v, p). (5.36)

‘This means that the result of a right differentiation applied to a cusp-form is a sum
of a finite linear combination of cusp-forms, since H(v, p) is g-invariant. Moreover,
we see that the set of automorphic functlons gy or U( )¢ share the Fourier
coeflicients {c(w)} in the sense expressed by the identity (5.36). In passing, we

v b 1. . & fE 9\
note that in (9.35) we have

¢(—w) == (—1)Pc(w). (5.37)

This is because h[i] € I and £;A4, = A_ £ 1.
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Remark. The operator A, has been studied by Jacquet [14] for more general
groups than PSI;(C). For PSI,(R), one obtains an expression in terms of Whit-
taker functions. Basic properties, like (5.34), of Hecke L-functions associated
with Grossencharakters can be found in [12].

6. Goodman—Wallach operator

The Jacquet integral has given a solution to the system (4.14)-(4.15), which is at
most of polynomial growth in the sense of (4.20); and it has fixed the operator A, .
The formula (4.17) suggests, however, the existence of a solution of exponential
growth. To construct such a solution we shall employ a method due to Goodman

aﬂd Wallach {10] ‘We shall have a map

B : H(y,p) = W(xvp,w), (6.1)

where the right side is spanned by all W, 4(x,.p,w), |p| <1, g < 1.

H
Thus, let ¢ € H(v,p) be arbitrary. We shall find an infinite vector {a(m,n) :

n)
y 18 £V, py be arbiulaly € Snai

m,n > 0}, which depends only on v, p,w, so that

Bup(g) = Z a(m,n)a 87 p(wnzlw 'g)|.=o (6.2)
m,n>0
satisfies
Bup(ng) = Yu(n)Bue(g), (6.3)
or
O Bowo(nltlg)i—o = miwBow(g), O;Buw(n(tlg)li—o = miwB,v(g). (6.4)

We note that

wfl[z}w—l(g 8)(wn[z]w~1)~1:t(8 (1)>+tz((1) _01>—tz2((1’ 3), (6.5)

Considering the exponential of the right side in a vicinity of ¢ =0, we have

up(wnlzw " nltle) oo (6.6)
= Buple” |wn[zlw g0 + Buplwnlz2 + 2l )0
— (1 +v = pap(wnlelwg) + Dp(wnfzlwg),

since for £ =&, +1&§ (&1, & € R)

¢(hlefnalrk) = p(afe™ rlh[e™ k) = XTI 28T (afr]k), (6.7)
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The formula (6.6) gives
8, 67" G2 p(wnlz]w nft)g)(5=(o,0) (6.8)
=m(v —p+m)d; " 87 p(wnlz]w ' g)|s=0.

In just the same way one may show that

n

n;,'(P’WHiZ]W_1n[f]g)i(z,t)=(o,0) (6.9)
=n(v+p+n)0;7 07 p(wnlz]lw 1g)|,m0 .

[aY
Ot 0

From these and (6.4) we see that the coefficients a(m, n) should satisfy the recur-
rence relation

miwa(m,n) = (m+1)(v —p+m+ Da(m + 1,n), (6.10)
miwa(m,n) = (n+ 1)(v+p+n+ a(m,n+1).

We set the side condition
a(0,0) ={T(v +1+pr+1-p} L (6.11)

Then we are led to

(Tiw)™(miw)™
minl(v+1—p+m)Lv+1+p+n)’

(6.12)

B P PN

L€ vector, the sur utel 1y for aiy eiemeit
@ € H (v,p). Indeed, the analyticity of g) provides us with a
necessary bound of the derivatives. We stress that the sum is entire with respect
to v.

S thCP f f‘hﬂ vector the sum (6
?

Obviously the operator B, commutes with all elements of U(g); and it maps
¢1,q(v,p) into Wy 4(xu,p,w). Thus there should be an expansion of Buwig(v,p) in
terms of ®! im} < I:

m,q?

Lemma 6.1. We have, for any w # 0,

(na[r]k) (6.13)

p—m ol s IR

4NN . 1N
Vo) p  (—iw/[w))"™™ B, (v, p; lwr) @}, ,(K),

where

I—[m-+p|/2—Im—p|/2

B (v, p;7) = > &(m i)z

=0

(1/+l+1

)Iu+t imypl—j(277). (6.14)



Sum formula for Kicosterman sums and fourth moment of the Dedekind zeta-function 47

We have also

7 (mlw|) Y (—iw /| )PTQ + 1 + 1) Aupre (v, p) (6.15)
iw|)¥
= T Gl I+ 1+ ) Buspralv, )
, (o]
D o )PP+ 1 = 1) B =),

which is a refinement of (5.29).

Proof. Let us suppose that v ¢ Z. On the right side of (5.27) we replace the

174 Dmcn‘ otinn hy itg daflning avnroagioe .

£33 TLIGOOUGL J.l\.,lJlUl.l I.}_y lUD uc. Lll.lll.l5 CAPICD-DIUIJ

Ke(u) = (T-g(u) — Ie(w))- (6.16)

251[1 w€

Then the function ! (v, p;r) is a difference of two parts; one is ¥ times a power
series in r, and the other 7= times another power series. Taking these into the
system (4.14)-(4.15), we see that each part satisfies the system. The first part
is equal to a multiple of 8 (v,p;r), whence the right side of (6. 13) belongs to

Wi ¢(xvp,w). The other part yields another member of W, a{xv.p,w); and these

two are linearly independent. Since we have shown dim W, 4(x,,p,w) < 2 already,
we find that
dim W, 4(xv,p,w) = 2 (6.17)

under the present specification. On the other hand, it is easy to see that there is

a power series P such that B L1 q\u,y, a.ll“ = (’I,(G G)I 1+VP(I} with r\U) =1.

Hence Bjy,q(v, p) should be a constant multiple of the right side of (6.13) with
w = 1. The constant is equal to 1, as can be seen by checking the term with
m = p. Observing that

B8 =B, (6.18)

because of h{t 1}wu{o}v‘v’_ .I.llb}

w. As to (6.15) we note that B,y (v, p) and B, o(—v, —p) are linearly inde-

oz 2 BY S | -
zlw™ !, we get (6.13) for general non-zero

pendent elements of Wpo (Xv,p;w); and thus A, 4(v,p) is a linear combination

of them. Computing the coefficients of ®! (k) in these three elements we obtain

(6.15). The case v € Z is settled with analytlc continuation, since both sides of
(6.13) are entire in v; and (6.15) is similar. This ends the proof -

iilal e 212 il 183 Saraiaiida TLIMS ULIT AL VUL,

Now, we shall show that operators A,,, and B,, are related in a way which
will turn out to be important in our later discussions of the sum formula for Kloost-
erman sums. We observe that by (6.13) we have B¢, 4(v, p;na[r]k) = O(rRev+1)
as r | 0 for any ws # 0. Hence the Jacquet integral A, B, 4(v, p;nafr]k) con-

verges for Rev > 0:

Lemma 6.2. Let wy # 0, Rev > 0. Then we have that

sinmy I'(l+1—v)
B., = (=17
Ag g@l,q(’/ap) ( ) y2 pz F(l+1+V)

@1,q(~v, —D); (6.19)




48  Roelof W. Bruggeman & Yoichi Motohashi

and for wy # 0
Ao ng ‘Pl,q(Va p) (6 20)
= (7?|wiwa|) ¥ (wiwa / |w1wa| )P o, p (27 yw1w3 ) Ay 1,0(v, D)
with
Bup(w) = [u/2P" (u/|ul) P J;_,(u) ), (). (6.21)

Here J}(x) is the entire function of x which is equal to J,(z)(x/2) " -for z > 0.

Proof. Let ¢ € H(v,p) with Rev > 0. We may take the integral defining
Aw, B, inside the sum for B,,. The (m,n)-th term is equal to

a(m,n) / exp(—2miRe (w121))07 0% p(wnlz + z1]|g)| .m0 d421  (6.22)
C

= a(m, n)/exp( 27iRe (w1 2))07 0% p(wn|z]g) dyz
C
= a(m. ) (rie )" (xi1 )" A p(8).
This and (5.25), (6.12) readily give (6.19)—(6.20). |

Remark. The operator B, is due to Goodman and Wallach [10], but for a more
general context than PSL,(C). Miatello and Wallach use it to express Fourier
coefficients of Poincaré series in terms of their 7-function, which coincides with
our J,p if specialized to PSL;(C); see Proposition 2.7 in [22]. An extension of
[10] is given in [21].

7. Lebedev transform

The Lebedev or the K-Bessel transform
oo dr
o [ oRmE (7.1

plays a significant role in the theory of sum formulas for rational Kloosterman
sums. Since the function K, appears in the Fourier expansion of the classical
Eisenstein series over H?, it appears natural to anticipate that the corresponding

function, i.e., Awp14(v, p), in the Fourier expansion of ¢ q(v, p) should work anal-
OQ‘D]]QIV in thF DTPQth context WP shall Q}’lr\ur n later csectione fhnf H'He 1Q 1nr]nnr]

LIS Y T Iiv LRALIVTAL. T SiiGal Siatvy 1GuTl SULLVIUVILYS viidiv vl JAC L wi ¥ §

the case. Here we shall carry out some preparatory work. In particular we shall
prove an extension of the one-sided inversion of the Lebedev transform:

o)~ % [ Kl ] 7€) Ke(r)€ sin(n€)de dr, (7.2

where 7 is to satisfy an appropriate regularity and decay condition.
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Thus, let w #£ 0 and put

b e ] ry v \

1,¢(N\G,

=
[9N]
~—

f rf \ I f N rr N\ rf o 1 \ rs
i Jng) =v,\n)j Kg)’ Ol A-Lype (i, gq), \
fla[r]k) = O(r1to®) asr | 0, = O(r1 7<) as r T oo},

where constants 0q, 0s > 0 may depend on each f. We define an extension L‘l*j a
of the Lebedev transform applied to an f € P, ,(N\G,w) by

o f(v,p) = Tl +1-)"

where dg = r—3dr dk for g = afr]k € N\G. From (5.27) it follows that the integral

converges absolutely for |Rev| < o9, and that L f(v,p) is a regular function
there. If Rer < 0, then we have an integral reprwentatlon for Auerq(—7,p)(g),
which being mserted into (7.4) yields an absolutely convergent double integral

over N\G x N. Hence for —og < Rev <0 the last integral is equal to

[f(g)so:a( v, p,wg)dg = [ /f(an)soz a(—V,p;g)dndg (7.5)
N\G JN

= | Aof(@prq(-7,pig)dg.

We may write

o~
=
e
o~
-3
=)
S’

Then, we find that for — min(gg, o) < Rev < gy

o0

L4 £,8) = 72l (=i W) UL gl T+1-0) [ wp(r)r=2ar. (7.7)

~
s U

Using this relation we shall show that there exists a one-sided inversion of Ly

Theorem 7.1. Let us assume that the function n is defined over the set
{(v,p) €ECXZ: [Rev| <o, |p| S 1} (7.8)
with a fixed ¢ > 1, and satisfies the conditions:
1. n(v,p) is holomorphic on a neighbourhood of the strip |Rev| < o,
2. 7(v,p) € e ™®¥/2(1 4+ [Imy|)~ for any 4 >0,

3. n(v,p) = n(-v, —-p).
We put

iwf|w|)?

M g1(e) = 557 (ﬁ

lpl<t -na"K

[{m (o) (rlw) “TA+1+v)  (79)

X Aupt,g(v,p)(€)v"® sin T
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with €(0) = 1 and e(p) = —1 for p #0. Then My, n € P,q(N\G,w), and we have

2 P+l
— I ¢*=v® nw.p). (7.10)
1<5<1

My (v, p) = ;

Proof. We shall consider the first assertion. To estimate My’ n(na[rlk) as r T oo,

we note that the integral formula

rE+3) [~ eue
2y/m(u/2)% (14 z2)é+%

which holds for © > 0, Re& > % , Bives, after a multiple use of partial integration,

Ke(u) = _dz, (7.11)

k.

Ke(u) < e ™E2((1 4 |€]) Ju)Reé+k (7

SEQAT ~ = R ) P B A

for each fixed & > 1, uniformly for |Re£| < 2k, u > 0. This and (5.26)—(5.27)

imply that 'M'“’q'n(nalr]k\ is of rapid decay with respect to r as r T 00. Next, to

T

treat the case where r | 0 we observe that by (7. 2) the contour in (7.9) can be
shifted to () with 0 < @ < o. Then (3.23), (6.15), and the condition 3. give

eente) = 5 3 = { A } Al (7.13)

[y
¥ .=
x Tl + 1 + v)Buwiqe (v, p) (g)v P dv.

We may shift the contour (—a) to (), and have

M?,;,(g):i?‘.(lﬂ_lf_'l:_.f (v
ipl<l ” pq”K -](a)

x T+ 1+ ) wpLq (v, p) (@) Pdv

u Y G B 0,5)E)

1<[p| <l ” P:q"

v. o) (mlw?
N iV AN i rs

—
=
|~
=

g

The formulas (6.13)—(6.14) imply that as r | 0 the first sum on the right is
O(r*+%), and also

(iw/|w])”
oy T/l—nﬂfl(O,P)'Bm,q(O,P)(g) (7.15)
1<jpi<t Paall
= () (n)r’@q 4 (k) + O(r)
= b(m)Bure(1,0)(g) + O(r),
where | > 1, and b(n) = —nl - i'n(0, 1)|w|||(I) ||_ . Collecting these we have
indeed .’:‘nl’qﬁ € P, 4(N\G,w). We note that the ld.bB line in (7.15) is to play a role

in Section 9.
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Consequently we may use (7.7) in computing Ly M m(v,p). We thus apply
Aq to the identity (7.14). It is easy to check the absolute convergence that is
necessary to exchange the order of integration, and by (6.19) we have

o i (i [])PRh o ()

AoMy  nieg) e (7.16)
g ” q”K
lpl<i
f v 1P sin v v
x [ (- p ol T+ 1 - )
(a) D
This and (7.7) yield, via the Mellin inversion,
[ @ NIW anf \ D207 4 1 4 AT 1 1 \Ue(p) sin v (.. =\ i 1
~l,q4u1‘q':"‘\u,p,: —4TW LT i T V) \a—rl—:‘/‘)—wﬁ\ij,p), (7.17¢)
which ends the proof. [ |

The above discussion implies in particular that M 7 € Lz(N \G). Related
to this we shall show a Parseval property of the transform My,

Lemma 7.1. Let 1 and @ satisfy the three conditions in the Iast theorem. Then
we have

f M (&) Ve (2 d (7.18)

25(p)+1 sin Ty

Z[ (v, )8, p)— o H(J

| I<i

Proof. We replace My, 6(g) b

y its defining expression. The resulting double
tegral over N\G x iR is easil sily seen

een to be absolutely convergent; and consequently
we have
Min(g)My,0(g) dg
o f‘v‘\G
(7.19)
21” P f LN, p)O(v, )P sin v du,
F2S
which gives the assertion. [ |

Further, we shall show

Lemma 7.2. For any non-zero wy, wa, 7 we define the map

K(wy,w2,7) : 71— XK, p(2n7\/wi02)7, (7.20)
Xop(€) = ) = 3v,p(€)} (7.21)
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with §, , defined in (6.21). Then we have, for n as in the last theorem,

A £ M2 m(v, p) = !wr!zM‘f;n(wl,w T)n(v, p). (7.22)
Proof. It is trivial that k(wi,ws, )7 satisfy the three conditions in the last the-
orem. Hence the right side of (7_9')\ is well-defined. To transform the left side we

use (7.14). Formally we have

(@)

w114 .ANA M cm f2; NFoA - €(D) g
XLt + 14 V)AL, Dr2y,, PrqlV, PIEV ay

iT2wa f|7%ws )P
' “Ile Z ( qu)/l I :I) T,(O'p)'AWIBT2w2(Pl,Q (01p)(g)7
1<ipi<t HEpgiiK

where we have used (6.18). To verify the exchange of the order of integrals implicit
in (7.23) we need only to invoke (7.15); note that it also aliows us to use (6.20)
even for A, Br2,,¥1,4(0,p), p# 0. Thus we have, by (6.20),

A M2, ) () = |TI2Z£—|};%I—”—H’—IL [ akal™ (129
lp| <t P.q

X DU+ 14 1)30,p(277 /rw2) A, i (v, P) () V) dv
+U* Y (..z:f/lfll) 1(0, p)d0,p (277 \/w1W3) Aw, ©1,4(0, ) ()

1<pl<t el

We shift the contour (o) of one half of the last integral to (—a); then the last sum
disappears. To the integrand over (—«a) we apply the functional equation (5.29).
After a rearrangement we get (7.22). [ ]

Remark. This section is a detailed work-out of the last chapter of [34] in the case
of PSL,(C). It is in fact the harmonic analysis of the space of N-equivariant
functions. The L}, could be called a Whittaker transform, but we regard it
rather as an extension of the Lebedev transform, paying respect to its origin. For
(7.1)—(7.2) see Section 2.6 of [25]. For an interpretation of X, , see Section 15.

8. The space L*(I'\G)

In the next section we shall treat inner-products of certain Poincaré series, es-

pecially their spectral decompositions. Here we shall briefly develop the relevant

Shilly vialal Ul SRl ReLAAJL N ARASILASLS,. 220 Siifedr Rriaflil Y vl 1 Qi

spectral theory of the space L?(I'\G) composed of all left I'-automorphic func-
tions on G which are square integrable over I'\G with respect to the measure
induced by dg. To this end we shall employ the unitary representation of G re-
alized over L?*(I"'\G) via right translations by elements of G. We shall see that
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automorphic forms on G, especially the basis elements for the Parseval formula
over L2(I'\G), do not occur singly but are parametrized through maps of the
model space H(v,p) and live in right-irreducible subspaces of L?(I'\G) sharing
Fourier coefficients, as is indicated at the end of Section 5. This point of view will
be essential in describing the sum formula for Sp.

We first observe that the constant function and all cusp-forms over G belong

to L2(I'\G), because of (3.8)—(3.10) and (4.25). We have
LY(I'\G) = Ca L*(I'\G) & °L*(I'\G). (8.1)

Here 9L 2(1"\(‘\ is the subspace spanned by all cusp-forms, and called the cuspi-

dal subspace, the subspace °L2(I'\G) is the orthogonal complement. The space
OL2(I'\G) is G-invariant, and we have a decomposition

T2(\G) = PV (8.2)

into countably many subspaces V irreducible with respect to the action of G. Each
V has a dense subspace that is a common eigenspace of the Casimir elements, and

Lemma 4.1 implies that we should have

Q:!:IV = Xvv.pv (Q:{:) -1 (83)

It is known that for the group I' all V are of unitary principal series type, and
we can suppose that

vy € i[0,00). (8.4)
Moreover, there exists a linear isomorphism

v: H(vy,pv) =V, (8.5)

which has a dense image and commutes with the action of g. This has the followi
immediate consequences: We have the decomposition

V= P Vig Vig=CTvo(w,pv), (8.6)
|PV|SL|QISI

where V], is the subspace spanned by all cusp-forms of K-type (l,q) in V; that
is, dimV;,4 = 1. Besides, the umtary structure of H(vv,pv) mentioned at the
and ~F Q.

Akian D g Frangfares Tk ~
€I1G 01 DeClioll o is ui'a.i"m1crft:d oy JV ultu \o u’ t‘i‘ﬁd wW<E hﬁ'v’c

ITvenq(vv,pv)lirve = 1B, 4llx (8.7)

with the norm || - ||\¢ corresponding to (8.9). By (5.35) we have the Fourier
expansion

Tvorg(w,pv) = Y ev(w)Auprqa(vv,pv). (8.8)
w#0
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The Fourier coefficients cy (w) depends only on V and w. This is because both
Ty and A, commute with the action of g. The vector {cy(w)} is fixed by V

up-to an arbitrary multiplier of unit absolute value.

We now restrict the decomposition (8.1) to the subspace L*(I'\G), , spanned
by all square—mtegrable left I'-automorphic functions of K-type (I,q). Then the
cuspidal part is well described by the above assertions. What remains is the non-
cuspidal part, and it is rendered in terms of Eisenstein series of K -type (1,9), as
is embodied in the fundamental

Theorem 8.1. Let fi, f; € L>(I'\G),,,, and denote their inner-product by

. . r o —
(f, f2) e =j f1(g) f2(g)dg. (8.9)
Ve,
Then we have the Parseval identity
2
(f1, e =60 (2 \(fh Dme(l, P ne (8.10)

{(f, Tven (v, pv)i me(Tven (v, pv), o) e

+Zu

t Z 27””(1) ”2 / Eyqlv, p; f1]Epqlv, p; fo]dv,
.

|pl <t
p€2Z

leq l

where the convergence is absolute throughout Here V runs over a complete or-
o TN

thogonal system of right-irreducible cuspidal subspaces of L*({I'\G) that Intersect
the space L?(I'\G), , non-trivially. Also

r _—
Eyqlv,p; fi] = jP\G fi(g)eqo(—2, p; g)dg (8.11)

Proof. This is a special case of a general result due to Langlands [20] (see a
[11]). We stress, however, that our particular assertion could be established in a
direct way. [

Next, we shall take into consideration the action of Hecke operators: We
define the Hecke operator labeled with n € Z[i] by

where 1 is to be left I'-automorphic; the choice of the square root is irrelevant.

If ¥ € %4; 4(xv ), then we have, from (5.8) and (5.35),

12]) P Aunsaz 1,4 (v, D). (8.13)
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The commutativity of the algebra {7} and the metric property of each 7, in
L?(I'\G) are analogous to the rational case. Since the right side of (8.12) com-
mutes with the right transiation by elements of G, we may assume that every V
in (8.2) is an eigenspace of T, for all n with the eigenvalue ty/(n) € R. The Weil
bound

Sr(wr,wa; €) < |(wr, w2, €)||cloo(c, 0) (8.14)

yields the estimate s
tv (n) < [nf*/?< (8.15)

for any fixed £ > 0, where the implicit constant depends only on ¢; see Corollary
10.1 below. The equation (8.13) implies that in (8.8)

1 v - ~2v
tv(m)ey () = Zlnl™ (ol P 3 1dl 2 8/ ld) PV ey (wn/d).  (8.16)
d|(w,n)
In particular we have, for all n € Z[z],
cv(n) = ey (1)|n|™"Y (n/|n|)?v tyv (n), (8.17)
where we have used (5.37). This and (8.16) give
1
ty (m)ty (n) = 7 > ty(mn/d®). (8.18)
dj(m,n)
We have
tv(l) = 1, tv(—n) = tv(n), tv(in) = EVtv(n) (819)
with €, = 1.
Further, let
1
Hy(s) = ; >ty (n)in| % (8.20)
n#0

be the Hecke series associated with the irreducible subspace V under the conven-
tion (8.17); note that when ey = —1 this vanishes identically. The identity (8.18)
implies that in the region of absolute convergence

Hy (1) Hy (32) = 26e(51 + 82) 3 00 —an ()t ()il 2. (8.21)
B n#0

Properties of Hy (s) as a function of s can be read from

Lemma 8.1. Let b € Z, and put

Hv(s b

m»—-‘

i tyv(n)(n/|n])®|n| 2. (8.22)
n0
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Take b € 2Z and i® = ey to have a non-trivial sum. Then Hy (s,b) is entire in s
and satisfies the functional equation

w2 C(s + 3(lpv + 8| + w))T(s + 5 (Ipv = b = wv))Hv (s,0)  (8.23)
= (—1)maxBllevDa2e-ip(1 — s 4 L(lpy — bl +wv))
x D(1 - s + 1(lpv + 8| = vv))Hy (1 — s, —b).

Yo (s, b k) (8.24)
= [l /) P Tp(bluianu

= [r (1l @/l Typlull) + [P~ (/) Toplafuwid) s

where ¢ = ¢ (vv,pv) with [ = max(j], [pv]|), and w is as in (5.2). Obviously
Yv(s,b;k) is entire in s, and Yy (1 — s, ~b; wk) = Yy(s,b;k). In view of (5.8),
(8.8), and (8.17), we have, for Res sufficiently large,

Yv (s, k) = 4cy (1)Hy (s, b) / |u|**72 (u/|u])~ A p(h[u]k)d *u. (8.25)

By (5.26)—(5.27) this integral is equal to

00
2(_1)l—Pvib—Pvﬂ.l+vvq)l_b,l(k)f 252 tb(VV VT )d (8.26)
0
(_1)i—PV ib—Pv 7ri+2+vv
Fl+14v)

%v (—b,o)q)l—b,l(k)/o MUK py b (27T)dr

On noting that @} ,(wk) = (-1)'*°®" , ,(k), we obtain (8.23).

Remark. For the spectral theory of automorphic forms on semisimple Lie groups
see, e.g., [11]. The assertion (8.4) depends on the absence of exceptional eigenval-
ues for the non-Euclidean Laplacian over I'\H® (see Proposition 6.2 in Chapter
7 of [9]). That suffices, as the complementary series occurs only for p = 0. The
bound (8 14) is a spec1al case of Theorem 10 of [2], which applies to all number
fields. It should be stressed that for our purpose it is enough to have any non-

buvuz.l CJ&[JUI.].CI[D I.I.I. pJ.H-Ub' Ul L ‘1’ £, Wlllbll lS UESL possu.ne I.Il L[le pI'OOI OI B[le 1a.sc
lemma we followed [15]; see the proof of Theorem 6.4 there.

Aq to (R r)‘ it mav be worth mentioning the ollowing multiplicity one result:

it may be worth mentioning the following multiplicity one resu
£

For given :I:(u p) €EiRxZ and {t(n) € C: Z[i], n #£ 0} there is at most
one irreducible subspa.ce V of 0L2(1"\G’) w1th (vwv,pv) = £(v,p), and tv(n) =
L= ey 7)

b
L\n) for all n. ul(leeu, the Fourier expansmn (2. JO) and (zs i show that an
automorphic form of a given K-type is determined by (v, p) and the t(n) up to a



Sum formula for Kloosterman sums and fourth moment of the Dedekind zeta-function 57

scalar factor. This shows that the decomposition (8.2) is unique if we impose the
condition that the spaces V are invariant under all Hecke operators.

9. Preliminary sum formula

We now enter into the discussion of the sum formula for Kloosterman sums Sy .
The formula will be derived via spectral and geometric computations of an inner-
product of two particular Poincaré series. This is analogous to the rational case.
However, the choice of these series gives rise to a discussion. A possible way to

. Qoo goanarata tha Datnacet cnmios <l
take 1s to use an exphc:t function as a accd L0 gENeEraie thie Poincaré S€ries, wiiich

extends Selberg’s argument for the rational case. This works well if we restrict
ourselves to the K-trivial case, but it does not seem to extend easily to the K-
non-trivial situation. On the other hand, a method that Miatello-Wallach [22],
[23] developed for a far more general situation offers us a flexible way to choose
the seed function. Here we shall follow their argument, adopting it to our present
specifications.

Thus we shall employ M} 7 to generate a Poincaré series, where 5 is to
satisfy the three conditions o‘lw:-n in Theorem 7.1. We notice immedizately that

Sabisly LT LI LOLALIALS viil LN S w0 S vl 8 0 TOAIUUIVE LT IGUTL Y vilGv

(7.15) causes, in general, a convergence problem. This reminds us a similar situa-
tion that Hecke encountered in his investigation of holomorphic modular forms of
weight 2. He used analytic continuation to overcome the difficulty. In much the
same spirit we shall consider, in view of the last line of (7.15), the sum

[Buler,q(v, p)(g) = 2 L Bupr,g(v, p)(78) (9.1)
YEI'W\I

with non-zero w € Z[i], though we actually need only the case p = 0. By (5.30)
and (6.13) we see that the sum converges absolutely, for Rev > 1, to a left I'-
automorphic function of K-type (l,q) with character x, ,. The combination of
(5.5)-(5.7) and (6.18)—(6.21) yields that

1
[Boleralv, p)e) = 5(Bw + (-1)PB-u)erq (v, p)(g) (8.2)
sinty (1 +1—-v) o_,(w,p/2)
_1)?P ’ —y —
+ ( 1) 2 -—p2 F(l +14 _,) (_:p(l + 5’133’/2) ‘Pl.q( v, p)(g)
+ D Fuplw, M urrg(v,p)(8),
w'#£0

where the second line appears only when p € 2Z; and

Illl

1
L d A
Teron) = e (o) & P

{ Vo N
—=Sp(w,w’; )dup (—c'—'\/ww’) .

The bound (8.14) implies that for Rev

> 5 the function J, ,(w,w’) is regular
and of polynomial order in w, w’. Thus [B,|p

1,¢(v,p)(g) is regular for Rev > %,

__.wlr—
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and analytically continues to a left I"-automorphic function of K -type (!, q) with
character x, ,. It is, however, of exponential growth with respect to r, g = na|rik;
and thus it does not belong to T2(T’\ (1\ We then appeal to a common practice:

we attach a factor p(yg) to each summand of (9.1). Here p(g) = p(r) with an
abuse of notation, and p(r) is smooth, being equal to 1 for r < 10 and to 0 for
7 > 19+ 1 with 7o > 2. If » > 1 then this affects actually only two terms in

(9.1), which correspond to the cosets represented by v = 1 and h[i]. We thus
have, instead of (9.1)-(9.2), that

PBlpap)E) =5 3 p(rE)Buprglv,p)(ve) (04)

YELN\I
for Rev > 1, and that if r > 1, Rev > %,

[pBulwte (v, p)(g) = [Bulerq (v, p)(g) (9.5)
+5(p(r) = 1)(Bu + (-1)"B-w)ere (v, 0) (8).

[pBulerq(v, p)(g) < r'7Re” (9.6)

L or . | r ) . 1
Uniormiy 10r nev > 3

Returning to (7.14)-(7.15) we define M 7] by

T = M+ b(m)pBur (1, 0), (9.7)
and [M{' | by
[M?jq]n = [M?f;*]n + b(n)[PBw}@l,q(l: 0), (9.8)
where
(M T = % Z My n(ve) (9.9)
yETN\I
By the construction we have that M;;"n(g) < r**¢ with an € > 0 as 7 | 0, and
< r~A forany A >0 as r T . Thus {.Tv{‘l‘f{’]*}r(g) L 77 f as r T co. This and
(9.6) give
MY In(g) < 1. (9.10)

Now, let 77, 6 satisfy the three conditions given in Theorem 7.1, and let us
consider the inner-product (M 1n, M 710) g with wi,wa € Z[i], wiwa # 0.
We are going to apply Theorem 8.1 to it. To this end we note first that the above
discussion implies

(MEIm Fyma = (M I, Fime -+ b(n ), hm MpBulpig(#,0), ime  (9.11)
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lor any left I"-automorphic f which is integrable over I'\G. In this we have, by
the unfolding argument,

;% — 1 W, Tv 77N -
(Mg Nime = 5 /N “ M n(e) Fu f(g)dg, (9.12)

(PBkeraw0), e = 5 [ p@)Buspr 0)@TL (B

N\G

Thus, assuming that

I o
lim / p(8)Buiprq(v, 0){(g) Fu f (8)d8 (9.13)
v=14+0 G
_[ I Vss] f1 N\ NTY rf N 2
—j P\E)DuL g\ L UNE) W S E)OE,
N\G
we have
(Mgl e = M (g P f(g)dg. (9.14)

The functions Ty q(vv,pv) and el,q(u,p) with Rev = 0 are integrable over
I'\G and satisfy (9.13). Hence we have, on noting (7.4), (8.8), and (8.17),

(Mgl Tveorg(vv, pv)) e (9.15)
(I)l
— %(—7)pvvr2_"’Vr:v(l)tv(r_l)r(ll :‘{ q“K ) i“q -:)q"}(—"v’up'v’)
— VV ¥ )
_ [ V<PV sin
= (_—Z)pv’ﬂ‘ UVCv(l)tv (u)ll@év’qllgr‘(l + 1+ Vv)—vp—yln(uv 'DV)
v ¥V

by virtue of Theorem 7.1 or rather (7.17). Similarly we have, from (5.32),

B, gl s 2 ] = (—1ypr2 ) P (o, ~p/2)

9.16
r(l—v,—p/2) (8-16)
veP) sin 7ty
X || Mk DI+ 1+ V)TTW(IAP)
for Rev = 0, p € 2Z. Further, we have obviously (M, Im 1) me = 0.
Collecting these we get, by Theorem 8.1,
(v q}Tia [Mm]g) "G

lev (1)Pty (w)bv (W)X (wv, pv)n(vw, pv)8(vv, pv) (9.17)

Il
c M

« (wiwp/lwiwa|)? [ ou(wi, —p/2)0u(wn, —p/2)
= 271 j(O) lwiwa|YICR(1 + v, p/2)|2

\ S NS N Y T
AU DTV, DG Y, p) av,
i
P




60  Roclof W. Bruggeman & Yoichi Motohashi

where V N L3(I'\G), , # {0}, and

M(v,p) =T+ 14 )00 +1— 1) (

4P} sin 7ru) 2 (9.18)

V2 — p?

Next, we move to the geometric computation of the inner-product. To this
end we make a trivial observation that

Fo,M216 = F, [Jv[‘l‘:;)*]g + b(6) UEIII-}—O Fo, [pBuglr,q(v, 0). (9.19)

Here we have, by (5.6),

) 1 W, %
Fo VG200 = — (au,lmm,“j;’*e SR F % Vs 9) (9.20)
1 oy L A\ ) a LN LI PN
+ Z; P (w1, wa; ©) Au, €17V, 26

1

M 1 . f. A ¥ m e ALY € s m 7 AN S e

Lwy PP w]|¥PLg\Y, 0)= 5 Ouwy,wa PPwz PLg Wy U) T 0wy —wp Xif Doy P11V, U)) (9.41)
+

1
" Z Sr(wr, wz; €)Aw, £1/cpBuyo1,4(v,0).
c#0

We have, by definition,

‘Awlellchwz(pi,q(UvO)(g) (9-22)
= (c/le|)?P|ef 2+ [N Y, (0) "} p(h[1/c]Wng)B,,, /201, (v, 0)(wng) dn.

In view of (5.9) this integral is bounded by a constant multiple of

~

], 1Buserina(v, 0)(wnlzle) .2 (9.23)

where N* = {z : r < 2r|c?(r? + |2|?)} with g = a[r]k. By Lemma 6.1 we have,
for z € N*,

14+Rev
T
B 0 —_—_— 9.
wz/cz(Pl,q(Ua )(Wn[Z]g) << (|C!2(1‘2 + !2!2)) b ( 24)

NS
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where the implicit constant depends on v, ws but neither on ¢ nor on r. In this
way we get the estimate

Awr£1/cpPBunprqe(v,0)(g) < rje| 74 er (9.25)

uniformly for r > 0, Rerv > 0, and Z[i] 5 ¢ # 0. This means that we may take
the limit of (9.19) inside the sum of (9.21). Then, by virtue of Lemma 7.2, we
have

1
Fon[M2)0 = (5w1 wgmwza By M 9) (9.26)

T Z P |2 5 Sr (w1, wa; )M qn(wl,uz, 1/c)0.
c#£0

The formulas (7.22) and (7.24) with appropriate changes of notation imply that

Z 7157 (1,025 MG g elwr, w2, 1/€)0(v, p) alr k) (9.27)
c;£0
r~4 asr 1 oo,
< { ri  asr |0,

(M), [M2060) G = = [ MO (@) Fo 0 de. (9.28)

Moreover, we may insert (9.26) into this and perform the integration inside the

infnite g1 setiing
Manite suiil, geling

1 pp—
4(«sz s+ B -n) / M EOE) d (9.29)

5 S el [ e Ron on 1/o0E)

r':éﬂ
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Invoking Lemma 7.1, we have, from (9.12) and (9.29),

Lemma 9.1. Let 1, @ satisfy the three conditions given in Theorem 7.1. Then
we have, for any non-zero wi, w» € Zl[i],

p[ o (w1, —p/2)0,(wz, —p/2)

Alw, p)n(v, p)0(v, p) dv

?
\/

[} <t 2m -/(0) lwiwa [ [Cr (1 + v p/2)[°
pE2ZL
5@1,(.,2 + 5(‘)11_“)2 r ,
— Am34 Z/ ( 1p)77( ) (I/ p)(p — v )dl/
mg(m
;0 \
+ Z DF\Su:z’Cljj (') (O) vp (4—:\/—3) Ai(v, p)n(y, p)O(v, p)(pz _ uz)dy’
Ipl<l”

where V N L3 (I'\G), 4 # {0}.

Remark. For the idea of Hecke see Section 2.2 of [25]. The inner product of two
Poincaré series is the basis of almost all proofs of the sum formula. In Kuznetsov’s
original proof in [19], the seed function is explicit; and the sanie is in [26], where
the K -trivial case is treatcd. A more general class of sced functions is used in (1]
for PSL2(R), and in [23] for the K -trivial case on Lie groups of real rank one.
Our discussion in this section is different from that of Miatello and Wallach (23]
in that we positively exploit the arithmetical situation. Any non-trivial estimatc
of Kloosterman sums suffices for the continuation of [B, ] (v, p) to a neighbour-
hood of v = 1, as has been indicated already. In the general situation considered
by Miatello and Wallach a spectral decomposition is needed for analytic contin-
uation. It gives in fact a meromorphic continuation to C. In this respect our
argument is specific.

10. Sum formula. I

Based on the abhove discussion, we shall establish the first version of our sum
formula, in which a given bilinear sum of Hecke eigenvalues, or equivalently Fourier
coefficients, of cuspidal irreducible subspaces of L2 (I'\G) is expressed in terms of

the arithmetic sums Sp

oY

} Z for SOIT

oLl

Theorem 10.1 (Spectral-Kloosterman sum formula). Let h(v, p) be a func-
tion defined on a set Iu cC : |Re y# < al

1
wrl Qo0 O a4 8C o

1 a > 0, satisfying

@

L
the following cond1t1ons. i
h(uﬁ p) = h(—l/, '_p) )

h(v,p) is regular,

h(v,p) < (1 + |v| + |pl)=*=° with a small b > 0.

w o
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Then we have, for any non-zero wy,ws € Zli],

> lev () Pty (w)ty (weh(vy, py) (10.1) i
v ]
e [wiw \P [ oy(w,—p/2)0,(ws, — p/2)n(u ») dv ;
p%;/ i k|w1w>|) j(O) lwiwa|*|Cr(1 + v, p/2)|?
_ 5&)!5(‘)2 + (Swl;—(‘)')

T L n(l/ p)(p i 4 )au
4731 pezj

—)

+3° L si Br( %
éalcpkp(wl,w ;c) k \/UJ](.U')).

Here V' runs over all Hecke Invariant right-irreducible cuspidal subspaces of
L*(I'\G) together with the specifications in Section 8; and

1
Bh(u) =Y — | X, ,(w)h(v,p)(p® — v*)d 10.2
W);mk)p)mw ) (10.2)

with X, , as in (7.21). Convergence of these expressions is absolute throughout.

Pranf Wa Aonnte thea laoft Al r. f (101 he F

Proof. We denocte the left and right si (10.1) by Lo, w,h and Ky, w,h,
respectively. We may regard L., o,, Ro, o, as linear functionals on the space
of functions defined on iR x Z. The eigenvalues of Hecke operators ty(w) are
real, and so are the quantities {w/|w|)?o, (w, —p/2)jw|™*. Thus L o 1s positive
definite for any non-zero w € Z[i]. We put

_ 2,2 2,2 2 2\ —2-6/2
mo(v,p) = (1= *)°(d =) 24 =7 4 p°) 7>7%2, (10.3)
In (9.30) we may set n{v,p) = "‘-i(-"’ap)ﬁlﬂ'ﬁ(-"’ap)eayzy and (v,p) = e®" with
6 > 0. Thus we have
P !
Lwl walls = ‘Rwl,wznﬁa (10'4)

where 75(v,p) = ng(u,p)ez’s‘ﬁ, if |p| <1, and = 0 otherwise. Using this we are
going to show that

N a N Y
lm Hm Ly, 076 = Luywato. (10.5)
I—oo § -0+
Since {Luy wyil < (Liy wn M+ Doy on fg) , and n} is increasing on iR X Z as

610,17 oo, it is obviously sufficient to show that L, .5} is uniformly bounded
for I >0, 6 2 0. To this end we shall prove that uniformly for { >0, § >0

Brj(u) < [uf'* (10.6)

as |u} | 0. Here € > 0 is small and may depend on b. Then, by the bound (8.14),
one may confirm our claim by showing that lim;_,cc lims-.o+ Rw,wTI,Is =R, uno.

A 2t
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By definition we have

Bnj(u) (10.7)
=y = / K, p(12)0(v, 2)? (67 — )y
Ip |<l
' 31/ U v 1 2
= [ e e 62 - i+ 3 o p(ine(0,5),
ATl J (o) smm/ A
Ipl<i Inl<t
where % < a < 1. Since we have
Bo.p() = (=17 Wi ()* < (/27 /(1p|1)? (10.8)
the last sum of (10.7) is negligible compared with (10.6). Also, we have, as |u| { O,
Rev = «a,
fq 1T [l A
Jvp\l) 20 IM\UP| — ¥)]|
; < 10.9
sin v ful [C(p| + 1+ v)| (10.9)
il Ip|—1 %"
e T-vl F7 - ul>
(Il + LN =5 i +vl el + vllv]Pe
Inserting this into (10.7) we indeed get (10.6).
Next, we put
ha(v,p) = —ic®"y/ ~ f MEP) psie?ag, (10.10)
() To(&, (&)
We repeat the above discussion with ¢ = hs and the same 1. We have first
Loy wy 5 = Ruywo f, where f§(v,p) = no(v, p)hs(v,p)e®” for |p| <1, and = 0

otherwise. Then we note that fi(v,p) < no(v,p) uniformly for § >0, l >0, and
that f} = h on iR x Z as 6 | 0, I co. Thus, by (10.5), we get

lim lim Ly, w,ff = Lo, wh- (10.11)

l—00 60+

borrespondmg to (10.6) we have to estimate B ja(u) In (10.7) we replace Tla by
fi andset a =2 5 +a with a > 0 given in the condition 2. above. Accordingly, we
shift the contour in (10.10) to (c), and see that fi(v,p) < |no(v,p)| uniformly
for I > 0, 6 > 0 with Rev = o and arbitrary integer p. Hence we have the
counterpart of (10.6) for fi. This gives

lim m R, o, ft = Ry w,h, (10.12)

l—00 § 50+

which ends the proof. u
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As the first application of the sum formula (10.1) we shall prove

Corollary 10.1. There exist infinitely many V'’s, and we have, uniformly for
N, P > 1 and non-zero w € Z[i]
Y. lev(DPtv(w)’ < (NP +[w ) (N + P?) (10.13)

jvv <N, |pv|<P

with any fixed € > 0. In particular, we have the bound (8.15).

T
;]
)
)
+
6
:.

A
rom (LG 131’ 15 a.ualug

of [25). To prove the firs
and

o,
A LU, L1 (¥ iw

of PSL, (.Z) ee the proof of Lemma 3.3
assertions we put in (10.1) w) =wr = w

u

@C)

h(v,p) = h(v,p; N, P) = exp((v/N)* — (p/ P)*). (10.14)

We note that (p(1 + v,p) > log™ '(|v| + |p| + 2) for Rer = 0, with the implied
constant being absolute. This can be proved as in Sections 3.10-3.11 of [30]. The
necessary uniform upper bound for {p(s,p) in the critical strip foliows from the
functional equation (5.34) and the convexity argument of Phragmén and Lindelof.
Thus we have

Z lev (DPty (W) h(vv, pv; N, P) + O(N Pog(w)?log? (NP +2)) (10.15)

=2 /,, z;:(QN 4 N3)e=@/P) +E, 1,,sF(w,w;c)Bh(zm/c).
pe

We are going to show
Bh(2nw/c) <« min(1, |w/c|?)(N? + P?). (10.16)

This and the bound (8.14) give (10.13), as well as an asymptotic formula for the
first sum in (10.15), which gives the first assertion.

By (12.1) below we have
N3 * fF AT AY dy I \
Bh{27w/c) = 57372 j{ w/e(¥; N, P)exp(—(N Logy)z)?, (10.17)
where
Cuselws N, P) = > (—=1)P((p/N)? — (N logy)® + 1) (10.18)
pEZ

x Jap (27w /cllx]) exp(~(p/P)* + 2pi)

et - dicaihaeilibsinia L : S ——— ¥ . —— i i T r— Iii“m
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with = = |z[e®¥ = ye™ 4 (ye™)™', ¥ = arg(w/c). Using an integral representation
for Jo, we have also

1 o
Cugelt N, P) = 5 [ expl@mile/llelcos(o + ) (10.19)
Vis
x Y ((p/N)* — (Nlogy)® + 1) exp(~(p/P)? — 2pi0)d0
pEZ
P [" expnilu/cla]cos(6 1 9))
i X .
NG ‘/“”e p(27ijw 0s
x ST ((PINY (3 = (P(0 + qm)?) = (Nlogy)? + ) exp(—(P(0 + qm))?)do

where the last line is due to Poisson’s sum formula. This gives
Cuse(y; N, P) < (P/N)* + (Nlogy)® + 1 (10.20)

uniformly for all parameters involved. Now, the case |w/c| > 1 is settled by
inserting (10.20) into (10.17). If |w/c| < 1 then we divide the integral in (10.17)
at ¥ = y/|c/w|. For the infinite integral thus obtained we use again (10.20), and

see that the contribution is negligible compared with (10.16). To estimate the
remajning part we use (1(] 12\ together with Js (a) — (‘l + Ofa2 \\(n /’)\OP/(‘)-n\l

aallAls LWl AUV 10 AN =aV L Zp\eg AT Y | \“fr fe

for small @ > 0. We have, for 1 <y < /|c/w],

Cose(y; N, P) = —(Nlogy)® + é + O (|w/c*z?((N logy)® + 1)) . (10.21)

3 - 1 1272

The contribution of this error term to (10.17) is < |w/c[*N?. As to the main
term, we note that

A OO

jlw (—(Nlogy)® + 1) exp(—(Nlogy)g)% =0, (10.22)

Thus the relevant contribution to (10.17) is easily seen to be negligible. This ends
the proof. [ |

Remark. The class of test functions in Theorem 10.1 is as large as possible. The
strip on which the test functions are required to be defined is narrow, due to
the Weil bound (8.14) (cf. (3.6.24) of {25]). The use of general seed functions in
Lemma 9.1 leads to an extension step with a functional analytic lavour. The proof
is similar to those in [1] (for PSL2(R)), and [3] (for PSL;, over the product of the
archimedean completions of a number field). The proof in [26] for the K -trivial

case is an extension of Kuznetsov’s original treatment [19] of the rational case.

PR b | rTr

The corollary is a counterpart of Kuznetsov’s estimate for the spectral mean
square of the Fourier coeflicients of Maass forms over the modular group; see
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Lemma 2.4 of [25]. In Lemma 11 of [26] the K -trivial case of the corollary is
given. The bound (10.13) is essentially the best possible. We could prove an
asymptotic result in which the main term is a constant multiple of NP(N? + P?).
Note that the proof of the corollary requires the rather deep integral representation
of X, in Theorem 12.1, whereas the series expansion defining J,, suffices for
the theorem.

Generalization of the Spectral-Kloosterman sum formula and the bound

(10 1?\ to other imaginarv auadratic number fields and consruence suheorauns

LY.L VLALLAL LIMQHAGL f sl Gults [ ES 510 LwFy AUD GG VUL UL T U RL VU RD

seems p0551ble, as long as we have a counterpart of (8.14). Without such a bound,
one has to be content with test functions which are holomorphic for |[Rev| < 1+a
with an @ > 0, and have prescribed zeros at v = 1 for most values of p (see
(9.18) and Lemma 9.1). In contrast to what we have seen in the above there
might be, in general, irreducible subspaces V of complementary series type as
well, corresponding to exceptional eigenvalues. We note also that the assumption
that the spaces V are Hecke invariant is not essential for the spectral sum formula,;
that is, the sums over V in (10.1) and (13.1) could be formulated in terms of
Fourier coefficients in place of Hecke eigenvalues.

11. A Bessel inversion

The aim of this section is to demonstrate a one-sided inversion of the transform
B defined by (10.2). Results of the present and the next sections will play basic
roles in the proof of the second version of our sum formula for Sg, which is to be
developed in Section 13.

Theorem 11.1. We put

T

Kf(v,p) = Kup(u) flu)d . (11.1)

¥R

Then, for any f that is even, smooth and compactly supported on C*, we have
2nrBKf = f. (11.2)

Proof. We shall prove, instead, the Parseval identity

—
]
’-—A
o

N

[ [ o (PR N S NS | rr AN \fo2 AYE]
Ju)g\ujau = e Ly pihg\v, p — v )av,
Jex 2.5 J )(p )

where f, g are to satisfy the condition given in the theorem. This implies (11.2),
since a simple manipulation shows that the right side is equal to

/(;x BK f(u) - g(u)d™u. (11.4)
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Here the necessary absolute convergence follows from the estimate

Kf(v,p) < (1+{v|+ [p]) ™4, (11.5)

where A > 0 is arbitrary, and the implied constant depends on Rewv, A, and the
support of f. To show this we put

3 (,p) = ]C ()8 () (11.6)

so that
Kf(v,p) =

By definition we have

{3f(~v,~p) = 15 (n,p)} (11.7)

sin v

— (1) 2etmrIM f(u b m 4, p —-m + n)
mnll(v —p+m+4+ D)+ p+nt+1)

(11.8)

1

2w
e A e o e )

U

A multiple application of partial integration gives, for any integers 4, B > 0,
i 1 ‘ I'(2v) | 2Revi+A+B

—— Mf(y,p) ¥ r

U8 < T rar T By
where the constant r; depends on the compact support of f, and the implied

constants only on A, B and f. Collecting these, we get (11.5). Thus we see also
that the right side of (11.3) is equal to

, (11.10)

1 i , ,
lim 4—] Kf(v,p)Kg(v, p)(p* — v°)dv (11.11)
2 .

<P iT
+ / }f(“)y(U)RP,T(u, v)d*ud>v,
Jaicior  Juisio |

where P = P(T') € Z is to be chosen later, and

Rpr(u,v) = Z f Ko p(u) Ky, (v) (07 — v)dv, (11.12)

|p |<P

We shall consider the case |u| < |v|. We indent the contour [—iT, iT| with
the right half of a small circle centered at v = 0. Denoting the new contour by
Lt , we have, by (11.7),
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where Lz = {v: —v € Ly}. This implies that

"2 2

—_— 17
i

Rpr(u,v)= > = /C 3o (YK, p(v) = dv (11.14)

sin v
p]<P

52 2 ("1 agdyp(w)Kep (o) - %),

lp1<p 0<q<P

where ag = 1, a, = 2 for ¢ > 0, and Cp 7 is the oriented polygonal line connecting
the points —iT", P+ 5 1T, P+3 L 14T, ¢T in this order. This double sum vanishes,
because of the ld nhhm for anv nqEZ,

In fact, the first identity is trivial, and the second follows from the expression

£ 0N T =N . 7 £as f =\ 11 182\
gp\¥) = 7 1 X q-p\U}Jpq\U) T Jp—q\U] I ptq\lt}] - \11.10)

Here Y,, with n € Z is the Hankel function, which satisfies Y, = (—=1)"Y_, (see
p. 59 of [35]). Hence we have

say, in an obvious mode of division.

Now we have frlvm”v

[, ol F()g(0) Ry (u, v)d"ud™ = / (r172) "' Qpp(r1,v; f, g)dr1 dr,
Jju<jy| v <2
(11.18)

where

I 2T
QFp(r1,m2 f,9) = j F(r16®)g(r26 ) RE 1. (r1€°%, 72¢%92)d6; dO,.
0 0

1110
\Li.1eF

L

The series expansion of 3, , implies that

By (@), (o) B — 2| (2 (v (11.20)
Ug—p V)7 — — - .
P DT (sin wv)? v (M) ( U|)
o (L) 9) 2R (5 19)2 (4 /2)27 (3/2) 2

I =7
X 2. k!l!m!n!/\(u, ok, L, m,n) ’

kElmmn>0

pviscailrsmd ol lanane
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where Mv,pik,I,m,n) = (v—p+ (v +p+1)i(—v+p+ Dp(—v—p +1), with
(a)x asin (5.19). Thus we have

Q;’T(Tlarz; fa g)
(_1)k+l+m+n(rl/2)2(k+l) (T2/2)2(m+n)

- MZSP k,:,;nzo Klllmin] (11.21)
X fp-kt1(r1)g-p-min(r2)Spp(r1/re,p; K, 1, m, n),
where g, is analogous to f,, and
o2
Sprle,pikl,m,n) = —2i fCR ok n)du. (11.22)

Similarly we have

Qb r(ri,72; f,9)
_ v (=D 12)2 54D (r 12)2man)
=3 ¥

et
{p|<P k0,mn>0 EN'm!n!

X fp—k+l (Tl)gp—m+n(T2)Sj.§7T(T17‘g, pik,l,m,n),

where

Slt,T(p)p; kalam) n)
_o-2 | (r° — v*)(p/1)*
ij-r (sinmv)’T(v—p+k+ DI +p+1+1)
X — 1 - du.
F'v—=p+m+TI'v+p+n+1)

(11.24)

Assuming that 2P < T we shall estimate Qnrr'(r1 ,72; f,g); implicit con-
stants may depend only on the parameter A and the supports of f and g. To
this end we stress that the first estimate in (11.10) implies readily that for any
A>0

(/22049 (1 /2)%mm) 1
Z 1 !n =/= If't) k+l(r1)0+n——n1+n(7"?)|<<*_ﬁ. (1125)
k,l,m,n>0 remen: (1+ Ipl)
Amulzmz as in (10.9) we see that the integrand in (11.24) is O((p/4)2RE"{F(—y)/
I'(v)]?). Hence we get immediately
1 1
Qpr(r,r2; f,9) Li—=+ = (11.26)

logT PV



Sum formula for Kloosterman sums and fourth moment of the Dedekind zeta-function 71

where the terms on the right come from the horizontal and the vertical parts of
Cp,r, respectively. As to Qp p(r1,72; f,g) we note first that

iT
Sp(p,p;0,0,0,0) = —2; / P dv. (11.27)
B —iT

If (k,1,m,n) # (0,0,0,0), then on the horizontal part of Cpp we have |A(v, p: k, I,
m,n)| > T, and 1f p < 1, then the corresponding contribution in (11.22) is
< min{(1, (T| log p|)~1). We restrict ourselves to the vertical part of Cpr. We may
assume naturally p > 0. Then, if either I > 0 or n > 0, we have |A(v, p; k.1, m, n)|

> P + |v|. By partial integration we see that the correspondmg contnbutlon to
(11.22) is

P4 1 hY
< (k+ 14 m+ n)log T min (1—~—) 11.28
( ) i (11.28)

provided p < 1. If I =n =0, and 0 < p < P/2, then obviously we get the same
conclusion. Otherwise the contribution in question is < logT') provided p < 1.
Collecting these, we have, for r; <19, 2P < T,

QPT("h’?:f g) = —2i Z Jp(r1)9- p(r2) / (7‘1/7‘2 2 dy (11.29)

[pl<P
) 1 logT

+O(lOngln (1’ 2 13 PRV /‘. \|\\ O(Og

\ \  Hogir T2/ /

which ends the discussion of the case |u| < |v].

The case |u| > |v], i.e., r1 > ra, can be treated in just the same way. We
return to (11.12), and this time we shift the relevant contours to the left, getting
the same assertions as (11.26} and (11.29). In this way we now have

f(u)g(v)Rpr(u, v)doudoy (11.30)
JOX xCX
iT 2
— 1 log T)
= -2 Z /m Mf(v,p)Mg(-v, —p)dv + O (loaT + =)
lpl<pP ™ e 4
Hence we set P = [lo,q T|. We find that the right side of (11.3) is equal to
-2i ) f Mf(v, p)Mg(—v, —p)dv. (11.31)
= o
pEZ

With this and the Parseval formulas for Mellin transform and Fourier series ex-
pansion, we finish the proof. [

RV

o0 A i s
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We shall also need the following property of the transform K :

Lemma 11.1. Let f be an even smooth function on C* with a compacl support.
Then we have

Z jgm KS 0 p)@” = v7)dw = 0. (11.32)

PEZ

Proof. Let v € C be such that Rev > 0 and |v — k| > 3 forall k € Z. Then
(11.8) and (11.10) give

(Tf /2)2Re v+2(m+n)

Ifvp) < Y (11.33)

py . |

. = HI
Iibllblll

(v—p+m+ |0+ ptntl)

X = - Tf T .
(I+|p—m+n|)v+m4n|B

If [p~m+n| < 1|p|, then we have n+m > 11p|, and consequently lv+m+n|>
[#| + |pl; otherwise we have |[p —m + n|lv + m + n| > |pv|. Thus we have, for any
fixed large C > 0,

(rf/2)2Reu
(v~ [p| + (v + [p] + 1

If(v,p) < I (Il + |pl} €. (11.34)

This estimate allows us to carry out the same procedure as in (11.13)-(11.14):
We have, for any positive integer P,

P ”

=

" P . o
4 2] p~ —
/ Kf(V;p)(p“ - y“)dl/ =2 E / Jf(y,p) -
p 7 (0) b pJ(P+1/2) sin v

dv.  (11.35)

'p:~P

As before, the sum of residues arising from this shift of contour vanishes because
L7

11NN h R

r
of the first relation in (11.15). The last integral is, in view of (10.9) and (11.34),

2P oo
< ()7 [y pca (11.36)
\2P/ J__
uniformly for |p| < P. This obviously ends the proof. =

Remark. The inversion formula (11.2) could be formulated as a discontinuous
integral of new type in the theory of Bessel functions. The idea of the proof is to
view the transformation K in (11.1) as a perturbation of the Mellin—Fourier trans-
formation on C*. Insert the power series expansion of i, 1, into the integrals
hidden in Kf(v, p)Kg(r,p) on the right of (11.3). Two of the four lowest order
terms describe the Mellin—Fourier transformation on CX in polar coordinates, as
is well indicated by (11.20). The proof of the inversion consists of showing that
all other terms do not contribute. The key to achieve this is the vanishing of the
double sum in (11.14). That is, a certain rearrangement of products of J-Bessel
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functions of various orders is taking place behind our argument, which further
points to a relation with the Neumann expansion (see Chapter XVI of {35]). The
basic idea is present in Section 2.5 of Kuznetsov’s preprint [18], which deals with
the Bessel inversion for the modular case, and is indeed the first instance of such
investigations (see also Section 2.4 of [25]).

Our proof is, however, admittedly technical, and one may wish to find a more
structural proof that takes into account the way through which the functions 3, P
and X, , come into our discussion. They correspond to functions on the big cell in
the Bruhat decomposition of G, transforming on the left and the right according
to non-trivial characters of the subgroup N, and turn out to be a basis of the
solutions of Q4 f = L((v Fp)? — 1)f. These and the adjoint formulation (11.3)
suggest that the inversion should be a part of the spectral theory on the big cell.

A proof along such a line might work for other Lie groups of rank one as well. A
further discussion is given in the final section.
As to Lemma 11.1, we remark that there are test functions h such as the

ane intradiiasd o 10 Y A 11
one introduced in {10.14), for which

> / h(v,p)(p® ~ v%)dr # 0. (11.37)

Thus Lemma 11.1 shows that (11.2) gives only a one-sided inversion of the trans-
formation B. Also see Remark at the end of Sectien 13 for an alternative argument

The main feature of Theorem 10.1 rests precisely in the integral transform B
defined by (10.2), and thus in the kernel K, ,. In this section we shall prove an
integral formula for X, ,, which has a practical value for our purpose, and an
interest of its own.

Theorem 12.1. Let |[Rev| < 2. Then we have, for any p € Z and non-zero

4
uéeC,

Ky p(u)
2 [ g1 ye® + (ye¥) ! \2p ' ' (12.1)
:/—l\p_ L 2v—-1 : 7 £1. .11 119 p POy —11\
\ J 7r.j0 Y Iye'n9+ (Jeﬂg) llj J2p UU”ye +(y€ ) |)ay’

where u = |ule®™

Proof. Since X; p(u) = K,,_p(u), we may assume that p is non-negative. We
shall first show that we have, for Rev > —p,

Bup(m) = (1722 S (. [T (12.9)

[rm|<p

X %; eXp(z'ﬂf — mRe (“2)/5)1,,,,,;(7r]u|2/§)§_2p“1dg_
(1)
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The basis for this formula is (6.20), where the function 7, , enters into our inves-
tigations. We set there wy = 1, ws = u?, | = p, and ¢ = p. On noting (6.18), we
have, for Rev >0, r >0, and k € K,

/ e2miResp o, o) (hfulwnlz]alr]k)d. 2 (12.3)
C

= 1~ " w8, p(2mu) A1y (v, p)(alrK),
where, by (5.9},

h(u]wn(z]a|r] (12.4)

L

—u’z |uu}?r u z -7
=1 2 2 a3 2 hi—1k b) 3! ) 2
|72 +1z2]  [r? + |2 |as L\,ﬁ“+lz!“ /T2 + 2% |

Using (3.24), (5.26)-(5.27), and (6.13)-(6.14), we equate the coeflicients of
®P (k) on both sides of (12.3), getting

‘U \*7 - 1
2p,.—2p
K, (277) 3y, p(210u) = "“'—2’:-— > i™u/ful) P Usm(u, 7). (12.5)
[m|<p
Here
Reu?z
U, (7)) = [ ex (—27rirRez—27rz'—-——— 12.6
i) =[x AR (126)

27jul? . z -1 diz
Iy—m(—__)ép, —_
8 (1 +|2?) ’“»"([1 zDuﬂzP)W

where the asterisk denotes that we have extended the definition (3.18) in an obvi-
ous way. We are going to compute U, p(u T) asymptotlcally when r tends to infin-
ity, so that the result yields the cancellation of the factor K, (2mr) ~ 37~ 1/2e=2""
on the left side of (12.5). We put z = z + iy with 2,y € R in (12. 6) and then
regard the integral as a double complex integral. Studying partial derivatives of
the argument of the exponentiated factor, we see that a saddle point exists at
T = —i+c1/r, y = caf/r, where c1, co are asymptotically constant as r T co.
Because of this we make the change of variables (z, y) — (—=#(1-1/r)+z/r, y//T).
Here the factor 1 — 1/ is to avoid the singularity at (—i,0). We have
Ir (u Y ,r2p—%p—21r(-r—1)

Upm(u,r) =1
at —a{x +1)/r — by
/ / exp — 2mix + 27r12+J (_213:)4/— (w+.jz/);//_r)
@p' ([ z+(m+z/r—zy/f . -1 . D
—i+(z +i)/r +iy/Vr
27r}u|‘g dzdy
2+ y? —213:+(3:+z)2/r)(2+J~—2m:+(9:+z) 2fr)2p 1’

——
o
o
~J

ot

x I, m(
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where a = Reu?, b=Imu?. It is easy to check that this double integral converges
absolutely and uniformly as r | oo, provided Rev > 0. Thus we have

. u,? 271a
rl—l—»Igo rzpz;?((?,'trr / / P 2’”(1 ~ie) = 2+ 42 229:) (12.8)
2
P,* —1 —1] I ( 27I'|’U.| dg;d'(
§ (D”‘")([ 1 —i ) T2+ y? —2im) (2 +y? — 2ig)2rt

We shift the contour of the z-integral to Imz = —y?/2. We then find that

. Uyp(u,1) |
Hm —2PA™ 7 12.9
r-l—roo szK-y(z’R'T) ( )

p mlul?2y  df
1“1 Wiy

L r TN rr—1 —11y [ Tu
= —i2 2”/(1)6)\})( —_5‘) fn ul _iJ)Il/ m( € ) 2p

On noting that ®%% ([;’ :Z]) = (—1)%’"( Y, we get, from (12.5) and (12.9),
the representation (12.2) at least for Rev > 0, and then we use analytic continu-
ation with respect to v.

We move to the proof of (12.1). We shall treat first the case p > 0. Since

J—v—p(u) = J_5p(u), we see that (12.2) gives, for |Rev| < p,

—2m
%, p(2mu) = (<12 |47 S (% ) () (12.10)
i AL ’ |< \p—i—Tn/ \|Ul/

7rRe(u 7jul?
z_mJ{Dem(%rf— : )K,,m( z \fzp 1dg.

Observing that Re£~! > 0, we have

2p u\ ™ 7lul?
J; (P+m> (IUI> Ko ”( £ ) (12.11)

1 f //—9"9

- Iv,p(uv ‘S) + I—V,p(ur E))

say, where 9 is as in (12.1), and I, »(u,£) is the part corresponding to y > 1.
We put

(1‘) 12)

Ay

=0l e (ore - D) Loa( 6 .
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We insert into this the integral representation of I, »(u,£). The resulting double
integral is absolutely convergent for Rev < 0, and Xz, (27ru) is regular there. To
get analytic continuation to Rev >0, we tum the ime of integration of I, ,(u,£)
around the point y = 1 through a small angle which has the same sign as Im¢.
We get immediately the bound I, ,(u, £) < [€|R®¥*P  which means that X p(2mu)

is regular for Rev < p. Thus we have the decomposition
_ar* * —_
Ko p(2mu) = K5, (27u) + X*, (27a), (12.13)

provided |Rev| < p. We now assume that —p < Rev < 0. Then, because of the
absolute convergence mentioned above, we may exchange the order of integration
in (12.12). We get

9
Vojupe [ 0 w1\ 15 14
‘x:,p(z"r“):(_l)pzﬂfia J1 ( \v@c’ + ye“’} (12.14)
2
(ome TP | oso 1P oy,
x./l)el\P \2'”5_ % |V/?}€z k- ﬁe“" /f P=RdE dy

X Jap (27r!u! 1/?}61:19 +
\ |
By the asymptomc property of the J-Bessel function, the last integral converges
absolutely for Rev < 1. This fact and the identity (12.13) gives rise to (12.1), if
p#0.
We shall next consider the case p = 0. We are unable to use the formula
(12.2). Nonetheless the right side of (12.1) converges absolutely for p = 0 and
|Rev| < 1. By Neumann s addition theorem for Jy we see that it is equal to

23 (-rymem / V% () Il /), (12.15)

mE?

where the necessary absolute convergence is easy to check. By Lemma 6 of [27]
this is transformed into

8 2 ?
—cosvruZ( )™ ,mm/ Jom(lu] sinT) Ko, (2ul cosT)dr  (12.16)

meZ
8 w/2 '
= — cosTY / cos(2|u| cos ¥'sin 7) Ky, (2|u| cos T)dr,
- 0
where the second line depends on the definition of the .J-Bessel functlon of an inte-

gral order. According to Lemma 8 of [26], the last integral is equal to 7r“5(f,, o(u)/
cos v . 'T'his ends the proof. |
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Next, we turn to the mean of X, , over C*. We shall later require that it
Is not too large.

Lemma 12.1. Let

1
2|Rev| < p< 5 (12.17)
Then we have
/ Ixygp(u)lglulgpdxu < (1+ Ip[)z‘”‘l, (12.18)
N
where the implied constant depends only on p and Rev.
Proof. The formula (12.1) and the Cauchy-Schwartz inequality give
I P V2 4 [CO/ Mev |, —2Rev\2 —n—1;, 19 10)
[Av,plTE i lﬁj v TY Jy oay (12.19)
1

m - . r)
x J/ YLy (rlye® + (ye®) )2y,
1

where we assume 4|Re v| < < 2p. We multiply both sides by r?*~! and integrate
with respect to r and ¥, getting

jix 15, p ()P e d™u (12.20)
He'e] 2 oo
& yn_llyew + (yem)_llfgpdﬁ dy / Jopp| (r)3r2F ldr.
J1 Jo Jo
The right side converges. Then we invoke
o 3 2p- 1A =2p)C(2p| + p)
Jojp (r)2 2P Ny = 9% 1 - 12.21
/0 2l (7) P(L—p)*T2lp| +1 - p) (12.21)

(see p. 403 of [35]). This ends the proof.

F10y 1N s

Remark. The integral formula (12.1) appears to be new; despite its classical
outlook we have not been able to find its tabulation. An alternative proof of
(12.1) is indicated in Section 15.

It seems worth remarking that X, , appears in the context of Section 2 as
well: We consider, more generally than (1.1), the mean value

[ 1aG ringed i dnPata, (12.22)
where p € 27Z. Then we need to treat

Y. oaln, 3p)os(n- m,—Lp)g*(n/m;v,6) (12.23)
n{n+m)#£0
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with m # 0. Corresponding to (2.31) we have the sum of Kloosterman sums

o
—t
[N
Y
RN

g

1
L Ic lsz(m n; c) [glpk \/mn a, B, *7,0)
c#0

where

g1y (s v, B, 7,6) = (ful/2)20++8 3 (- 1ymexphia u/|u] 20+0) (12.25)

qgeZ
I‘l—s+ D+ q l+a—s+s35lp—4q|) 5
« 3lp + g 1P =, 6)lul/2) s
J(n) I'(s |p+q|)1 (s ~a+ 2Ip ql)

with 7 < 1 + min(0, Rea). We compare this with {14.13), and are led to the
expression

[a)p(u; , B, v, 8) (12.26)
= mi(u/|ul)? (|ul /2)2* ) f g* (657, )X - p(iuy/0) (0 / o])P [T *d"0.

x

This belongs to the family of Voronoi transforms in the theory of lattice points.

13. Sum formula. 11

We are now ready to invert the sum formula (10.1}. The result is one of the main
assertions of the present article, and is embodied in

Theorem 13.1 (Kloosterman—Spectral sum formula). Let f be an even
function on C*. Let us suppose that there exist constants p and o such that
0<p<j<o,and

L. f(u) = O(|uf7) as |uf 10,

2. [ Is six times continuously differentiable, and for a + b < 6

/ [(28,)* f ()| *|u|’~?Pd™u < oo.
cx

Then we have, for any non-zero wy,ws € Z[i],

/o \
Z| E Flwi,wa;c)f (——\/wlwg) (13.1)
c#0 ¢
=273 " fev (1) tv (wi)tv (w2)Kf (vv, pv)
Vv
iy (w2 \T S cfu(wl,-p/2)0u(wz,—p/2)Kf,V p) do
2 \jwwal) oy PG rop2)P P
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where the transformation K is defined in (11.1), and V runs over all Hecke in-
variant right-irreducible cuspidal subspaces of L*(I'\G) together with the speci-
fications in Section 8. The contour is the imaginary axis, and the convergence is
absolute throughout.

Proof. We denote the left and the right sides of (13.1) by Lg, ., (f) and R, ,,(f),
respectively. Let X > 0 be large, and let x(r) be a smooth function which is equal
tolfor 1/X <r < X,and 0 for » < 1/(2X) and r > 2X, and monotonic oth-
erwise. Also let ¢ be a smooth function on C such that

I‘ v " . ~ o~ - ra ~ ~ .- 1 - b wr - N\
] pd*u=1, ¢(u)>0,and ¢p(u) =0 if ju—1}>X 1. (13.2)
X
A4l $haan wra v
YYLULL LLIICOU WU yllb

fr(w) = [ ofu/ux(iol s ()" (13.3)

This function is smooth and compactly supported on C*, and converges pointwise
to f as X T 0o. By virtue of Theorems 10.1 and 11.1 coupled with Lemma 11.1,

w,we (-f ) W]_,wg (fX) (13.4)

Jim L (fx) = Loy s () (13.5)

To deal with the right side of (13.4), we observe that

udfx(w) = [ #(u/o)od. (DS @)] 2, (13.6)

and that
K[bufx|(v,p) = (v — p)*K fx (v, p) (13.7)

with b, = (udy,)? + u®. The latter is due to the fact that J,, and thus X, p
are eigenfunctions of Bessel’s differential operator b, with eigenvalue (v — p)?.
Invoking Lemma 12.1, we have

K /x(v,p) < min (|| fx|lp b3S xolv ~ p|7%) (13.8)

for any v € iR, p € Z, where || - ||, is the norm of the Hilbert space L(C*,
luf~2rd™u). By the deﬁmhnn we have || fx|l, < |[fli,- A multiple use of (13.6)
gives that

b
lu® (ud)" Fx Nl p < lu®(@du)xfllp < D u® (udu) £, (13.9)
3=0
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since (ud,)’x is bounded. This and the condition 2. imply that b2 fxll, is
uniformly bounded. That is, we have, from (13.8),

Kfx(v,p) < (L+ ||+ |p|)~° (13.10)
uniformly in all involved parameters. Following the argument leading to (10.5),
we find that

A OO I s
This ends the proof of the theorem. |

Remark. Note the similarity between Theorem 13.1 and Theorem 2.3 of [25].
Comparing (11.1) with (2.4.8) of [25], the impression will be enhanced. One may
improve Theorem 13.1 by relaxing the second condition. It appears, however, that
our assertion is sufficiently precise for practical purposes. For a possible alternative
approach to Theorem 13.1; see the final section.

The identity (13.4) does not contain the delta-term corresponding to that in
(10.1). This is of course due to Lemma 11.1. Then, it might be worth remarking
that the assertion {11.32) is a consequence of the spectral sum formula as well.
Namely, one may prove it alternatively in the following way: We write (13.4) with
the f in Lemma 11.1, in place of fx, but without using the lemma, so that the
delta-term remains in the identity. Specialize it by setting wy — 1 and ws = n,
multiply both sides by (r(1 — B)o_o(n)In[*"P~! with [Rea| + ReB < —2, and
sum over all non-zero n € Z[i]. Applying some rearrangement partly depending
on the arguments in Sections 2 and 14, one is lead to the conclusion that r(1-0)
times the left side of (11.32) is regular at 8 = 0, which is naturally equivalent to
(11.32). This is definitely far more complicated than the above proof, but seems
to have certain interest of its own.

It seems possible to extend Theorem 13.1 to other discrete subgroups of
PSL2(C), provided we have a non-trivial bound for the sums corresponding to our
Sp. Otherwise, the test functions in Theorem 10.1 have to live on a wider strip
[Rev| < 1+4¢ with an £ > 0, and have prescribed zeros at v = +1. Then the
problem is that the transforms Kf, for f even, smooth, compactly supported,
need not posses those zeros.

14. An explicit formula

In this final section we shall apply Theorem 13.1 to the sum (2.31) and establish
a spectral decomposition of Z3(g,F) defined in (1.1). The underlying principle 1s
the same as in the rational case but the procedure is naturally more involved (cf.
Sections 4.4-4.7 of [25]).

e first to exar ions in Theorem 13.1 are salisfied

ei o 1
by the function [g](u;e, 3,v,8) while (2.27) is assumed. The first condition is

We h'c'!.‘.":' firet to examin The
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easy to check. As to the second we observe that [g] is smooth and, together
with its derivatives, of rapid decay as |u| T co; indeed, by virtue of Lemma 2.1,
it is enough to move the contour in (2.32) far to the left. Thus we may restrict
ourselves to the vicinity of the point © = 0. Then we note that ud, = %(r@r —1i0p)
with u = re?. This implies that when applied to [g] the operator ud, does not
change essentially the asymptotic behaviour of the function as |u| | 0. Note that
again Lemma 2.1 plays a role. Hence we have to check only the case a =b =20 in
the condition 2. of Theorem 13.1. The confirmation is then immediate.

Now, let us put

Pp(v) = Bp(v; 0, 8,7, 6:9) = sz Kop(v) lg](w; 00, B, 7, 6)d™u. (14.1)
Theorem 13.1 gives, on (2.27),
Smn(e,B,7,6:9) = {S5) + S, Ha, 8,7, 6;9), (14.2)
where
Siin(e, 8,7, 6;9) = 27ry\lcv )Pty (m)ty (n)Bpy (vv), (14.3)

SPn(e,8,7.6:0) ——zZ(, ) [ 2Bt B g, 1) . (14,4

Y o TR |
pezz N/ J(oy 1T FUlL T ¥, p/
To consider the function ®,, let K, ,(r,q) and G(r,q) be the 2¢-th Fourier coef-
ficients, in argu, of the functions X, ,(u) and [g(u; a, B,, ), respectively. We
have, from (2.32),

G(r,q) = (r/2)" 20 F+P) (14.5)
L(1 - s+ 3g)l(1 + a
[Tttt e s talaly oy ryapteas
J () L{s+ 319 (s —a-+ 3i4])
with 77 < 1+ min(0, Rec). Note that on (12.17) the assertion (12.18) induces
Zf |Kyp(r, g)r?Pdr < oo, (14.6)
q€Z

and that by the above discussion we have, given (2.27) and 0 < p < 15,

Z/ r= 2" 1dr < co. (14.7)
qEZ
These imply that

®,(v) = 21I‘Lj K, p(r, 9)G(r, ) . (14.8)

q€Z

=SSR ISR T S r—— |
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Further, let f{,,,p(s, g) and G(s,q) be the Mellin transforms of K, »(r,q) and
G(r, q), respectively, as functions of . Then the last expression is transformed
into
¢, (v) = —sz K, »(5,q)G(~s, q)ds. (14.9)
qcZ (P)

This is the result of an application of the Parseval formula for Mellin transforms to
each integral in (14.8) (see Theorem 72 of [31]). The formula (14.5) is obviously

pqnn_m]pnf to

L3 kw B 3 0]

G(s,9) =iy (3(1 + @ + B) — 15;,7,6) (14.10)
g1 D@8 + 301 —a— B+ |a)l(5s + 3(1 + o~ B+ a)
PO +a+B+1g) - 35001 ~a+ B+ lg) - 1)’

provided (2.27) and Res > 2(Ref + [Rea| — 1). To find K, ,(r, q) we combine
Theorem 12.1 with Graf’s addition theorem (formula (1) on p. 359 of [35]), getting

max 2 m v—
Kuplrg) = (~1)mebiaD 2 [ 2oty i)ty (1410
T Jo

for [Rev| < 1 (cf. (12.15)). Via the formula

/ Je(w)y*dy = 2271 (14.12)
=R

n
v J

with —Ref < Res < %, and the Parseval formula for Mellin transforms, one may
express K, »(r,q) by an inverse Mellin transform. Then we get

7 7 \ s asmaxlinl la) 25_2 i
Kyp(s,q) = (—1)merliad = (14.13)
LGt 3t ta)Cs-3v-lp-a))

P —gs—5(v—-Ip+a))0(1 - 35+ 3(v+ip—4q)))’

provided 2|Rev| < Res < 1 — 2[Rev]|.
The combination of (14.9), (14.10), and (14.13) yields

Lemma 14.1. The function ®,, continues meromorphically to C°. We have the
representation

-

A L el e 1 3 - .
Bp(vi 0 B,7,6,9) = 5 ) (~1) (14.14)

100

f
xj Gq(8;77,6)y(s; a)l'p 4(s, v; o, B)ds,
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where

7

_ P —s+3ig)P(0 — s+ o+ 3iq))

L.(s; ) , (14.15)
! U(s + 3g))T(s —  + 3|q|)

D (s v ) = 3@t B-vi D)t gl (14.16)
P L(l-s+ifatB-v+1)+ip+q) '
o Te—sletBtv+)+3p—dl)

L(l—-s+ ia+B+v+1)+ip—gq|)

In (14.14) it is supposed that the pales of g4(s;~,0)'q(s; @) and those of I, (s, v;
o, 3) are separated by the contour to the right and the left, respectively; and the
parameters are such that the contour can be drawn. It follows in particular that
if Rev, o, B3, v, and § are bounded, then we have, for any fixed A >0,

Dp(v; @, 8,7, 6, 9) < (1 + v + fp) ™

o~
‘—‘
-
\—A
~3

j -

as |v| -+ |p| tends to infinity.

Proof. We assume first (2.27) and (12.17). Then we may insert (14.10) and
(14.13) into (14.9). After the change of variable s — 45 — 2(1 + o + ), we
get the expression (14.14) with the contour (0). The expression for the general
situation follows by analytic continuation. The meromorphy of ®,, is an immediate
consequence of (14.14). As to the bound (14.17), we need only to shift the contour

in (14.14) far to the left. The resulting integral and the residues are estimated by

Stirling’s formula and (2.12). This ends the proof. ]

We assume (2.27) again, and collect (2.30)~(2.31) and (14.2)—(14.4). We
obtain

,:F;

B (e

B lom N = L BAD L AL 2 %0 a0 AN
My Ay vy Lum il J\‘-‘ MY\ vl

—
[0.¢]
~—

Here we have
BO (e, 8;6* (57, 0)) = —2i7r2’3lm|°+‘3“ZICv(l)Ith(m) (14.19)
v
x Hy(3(1 —a = B8))Hy(3(1 + o — 3))®,, (wv),
and

B (ei.9°(37,8) = —w~Hm]* o+ (14.20)

Uu(m:_2p)
* Z (|m|) /0) im|*|¢r(1 + v, 2p))?
XCF( (1-a-8+v),p)r(z(1 —a—B—v),—p)
x p(3(1+a—=B8+v),p)r(3(1+a -8 —v),—p)Pyp(v)dv
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The expression (14.19) depends on (8.15), (8.21) and (10.13). On the other hand,
(14.20) depends on the following formula: For any a,b,c € Z, 7,§{ € C we have,
in the region of absolute convergence,
1 -
= > (n/Inl)*ar(n,b)og(n, )ln| > (14.21)
T n#0
Cr(s,0)p(s — T a+b)p(s —&a+c)p(s —T7—§a+b+c)
(r(2s—7—&,2a+b+c) '

This is an extension of Ramanujan’s well-known identity for the productrof four
values of the Riemann zeta-function, and the proof is similar (see (1.3.3) of [30]).

Returning to (2.6), we specialize (2.29) and (14.18) with a = 21 — 23,
B=2z3—z4, ¥ = 21, and § = z3. We shall assume temporarily that

1 <Rez; <Reza<Rez;+1, 1< Rezz< Rezs—3. (14.22)

The condition (2.27) is satisfied. Hence, via (2.28)—(2.29) and (14.18)-(14.20),

the formula (2.6) is transformed into

I(21, 22, 23, 223 9) = {3 + 79 + 3(6)} (21, 22,23, 74; 9) (14.23)
in the domain (14.22). Here we have

Cr(z1 + 23)Cr (71 + 24)Cp (22 + 23)Cp (22 + 24)
4Cr(z1 + 22+ 23 + 24)
Cr(z1 + 23 — D)Cp(2z2 + 24){p(1 + 22 — 21)Cp(1 + 24 — 23)

I (21, 22, 23, 225 9) = §(0) (14.24)

+7r 2CF(?4-7q4—7A—71—23) (1 21,23)
N WCF(ZZ + 23 — 1)(p(21 + za){p(1 + 21 — 22)¢p(1 + 24 — 23)
2(p(2 + 21 + 24 — 22 — 23)
X go(1+ 2, — 29; 21, 23),
m2(z3—za)
J(C)(thf_), 23,24, 8 ) T b |Cv{1)|2Hv( (21 + 2o 4 23+ 24 — 1)) (14 25)
Vv
X Hv(%(lg 4 24— 21— 23+ 1))Hv( (Z]_ + 24— 29 — 23 + 1))
X ®p, (Vv 21 — 22, 23 — 24, 21, 23} 9),
and
"(8)121, 29, 23, 24, y") - Ej;e)(zl, 22y %3, 24, g), (1426)
pEL
where
2(23 24) 1
J;e)(zl,zz,zs,zz;;g) == 4 [ Cr(3(z1+ 22+ 28+ 20— 1 +v),p) (14.27)
(0)

x (p(5(z1+22+23+24—1—w),
x (p(3(za+ 2 —21— 23+ 1—0),—p)p(3(21 + 24 — 22 — 23 + 1 + V), p)
V), Pyp(v; 21 — 22,23 — 24, 21, Zs;g)d

p)CF( (224 24 — 21— 25+ 1+ v),p)
D)
P~ oL+ 5, 20)Ce (L — v, ~2p)

X (p(3(z1+ 24 —20 — 23+ 1 —
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We then observe that by Lemma 8.1 the function Hy(s) is entire, and of polyno-
mial order in s, py and vy if Re s is bounded. Thus 7(2) is meromorphic over C*
by virtue of Corollary 10.1 and Lemma 14.1. To see the situation at the point p 1
we note that if (21, 22, 23, z1) is sufficiently close to py, and v € iR (see (8.4)),

2
then we may take (3) as a contour in (14.14). This implies readily that UOR
regular at p 1, and we have
19 (py: ) = =3 lev ()P Hy (22 ®py (v30,0, 1, 1; 9) (14.28)
(py;9) = 5; 2 lev(I"Hv (3) ®py (473 0,0, 3, 35 9)- (14.28)
v

{(e) ;o . Fa d h

N - p v N : {~ 1
As to the sum of J,“ over p # U, it 18 analogous to J\*/, and we have

D4, (50,0, 3, 5, 9)dv.  (14.29
47"—‘J(o) IKr(1 + v, 2p)|? 43’( 2: 3 ) ( )

6
Zj;e)(p%;g): 1 T ICe (31 +v), p)|

pel
p#0 p¢0
It remains to consider the function Jg ). We note first that it is meromorp puu,

over C*. This can be proved either shifting the contour appropriately or simply

3(()6), in (14.23) are already known to be
75

let (z1, 22, 23, 24) approach to p 1 in a specific way, as we shall do shortly.

observing that all terms, except for

meromorphic over C*. Thus, to see the nature of near the point p i, We may

We start from the domain defined by (14.22), where we have the repre-
sentation (14.27) with p = 0. We shall move the contour, closely following the
discussion on the corresponding part of the rational case (Section 4.7 of [25]). In
the process we shall encounter singularities of the integrand, and the difficulty lies
in that they depend on 21, 22, 23, 24 . To facilitate the discussion we put

vi=21+2tz3+24 — 3, vo =22+ 24 — 21 — 23 — 1,

(14.30)
V3 — 21+ 24 — 29 — 23 — 1.

The zeta-part of the integrand in 365) has singularities only at the six points *u,,
+vy, *v3 and at the zeros of {r(1 + v){r(1 — v). Then we make an observation:
Lemma 14.2. The singularities of ®g{v; z1 — z2, 23 — 24, 21, 23; g) as a function of
v is contained in the set

Y

LT A

11 {14 21\
LJ- \ ’

Proof. The singularities can occur only when we are unable to draw the contour
im 14 1A +haot
1 \l"’:- L"t’ ) Lirauv ID,

——
[ S

(a+ﬂiu+1)—li:Z9li20} (14.32)

A {1ty 1oty y 4 6+ s Z3 1,0,k >0} #0.
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We now set

moreover the pomts v, = 10t —1, 1o =6t—1, v3 =4t —1 are not in the Set
(14.31). Thus, the last lemma mehes that we can move the contour in ﬂgf) 50
that the points v1, v2, vz are on the left of the new contour, but none of the
points in (14.31) and zeros {p(l — v){r(1 + v) are encountered in the process.
Leaving the residues at vy, 1 and 13 for a later discussion, we consider the
resulting integral as a function of ¢ as t — 0, while keeping Ret > 0 and moving
the contour stepwise. We observe, via the last lemma, that, except for the cases

=2 %, %, we can draw the contour. These exceptional points obviously make

no trouble; for instance we may assume Imt > 0. Thus the integral continues
analytically to a small right semicircle centered at the origin. Then, having ¢ in
this domain, we shift the contour back to the original, i.e., the imaginary axis.

This time we encounter singularities at —vy, —u5, and —us but none else. Note
that at this stage we may leave the specialization (14.33), and suppose, instead,

that (21, 22, 23,24) are in a small neighbourhood of Py - The integral 30* thus
obtained is regular at PL, and we see readily that

1 Gr (531 + )|
789 (pa - 0,1, 1 g)dv. .
0.x(Py;9) = -~ o G ®o(150,0, 3, 3; 9)dv (14.34)

Gathering these, we obtain the assertion
Jpy;9) = {M +3¢) +ﬂ§e)}(p%;g)- (14.38)

Here 7{% is the sum of the right side of (14.27) over all p € Z, but with a different

(21, 22, 23,24). On the other hand M is the sum of 7} and the contribution of
the poles at v = £uy, vy, and +v;3 that we encountered in the above procedure.
We stress that M is regular at p L. This is because all other functions involved in
(14.35) are regular at P1.

Hence it remains for us to compute M(z1, 22, 23, z4; g). We have, in a small
neighbourhood of p 1

1

(r(z1 + 23)Cr(21 + 24)Cp (22 + 23) (R (22 + 24)
4¢p(z1 + 22+ 23 + 24)

M(z1, 22, 23, 24;9) = §(0)  (14.36)

142 — Ltz —
—iz‘z)CFg + 22 zlch( t 2 zs)ﬁo(l; 21, 23)
, 3)
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Cr(zo + 23 — 1)Cp(21 + 22)Cr (1 + 21 — 22)CR(1 + 24 — 23)

+
20p(2 4+ 21 + 24 — 29 — 23)

(1 + 21 — 22, %1, 23)

2(za—za)+1 SF(22 + 24 = 1)(p(2 — 21 — z3)Cp(21 + 24 — 1)(p(2 — 25 — 23)

+ i
4Cp(4 — 21 — 29 — 23 — 24)
X ®g(21 + 22+ 23 + 24 — 3; 21 — 29, 23 — 24, 21, 23;9)
+im2E— za)+1$P(2z2 + 24 — 1)(r(21 + 23)Cp(2s — )Cp(21 — 22+ 1)
4Cp(2 — 20 — 24 + 21 + 23)
X @Q(Zg +2a—21 23— 17 21 — 23,23 — Z4, 21, 33).?’])

+ 7

2(z3—2)+1 SF(21 + 24 — 1){r(22 + 23)Cp(2a — 23)(p(22 — 21 + 1)

X ®o(21 + 24 — 20 — 23 — 1; 21 — 20,23 — 24, 21, 23; ).

This is obviously a linear integral transform of the weight function g. The six
members on the rlgnb side have bluguml ities at pL, but these have to cancel out
each other as M is regular at the point. Thus, what matters actually are the
constant terms m; (1 < j < 6), respectively, in the Laurent series expansions of

these members at p L That is, we have

o rarriad 1+ oh thao sSaine wa
€ calricea ouu u1 Iucn e saiie

u Il O1 77 10 way 1
case (see pp. 176-178 of [25]) t is possible to write M(p1;g) down xphc1tly in
terms of g and derivatives of the I'-function, but we stop here to restrict ourselves
to the description of the overall structure of our subject.

To state our final result we put A,,(g) = (2i)71®,(1;0,0,1, 2,g) and
Mr(g) = M(py,9) + aog(3i) + bog(—3i) + a1g'(54) + brg’ (——z) with ao, a1,
bo, b1 as in (2. 2) We thus have established

Theorem 14.1. Let g be as in (1.1). Then, with the transformations My and
Ay, defined above, we have the identity

Z2(9,F) = Mp(g) + Z lev(D)*Hv(5)*Avy v (9) (14.38)

+3 L'm
Liw

1 11+ v),p)|®
.5 / lcF(?< PO

where V' runs over all Hecke invariant right-irreducible cuspidal subspaces of
L?(I'\G) together with the specifications in Section 8. The contour is the imagi-
nary axis, and the convergence is absolute throughout.
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Remark. Despite the special nature of our dissection in (2.6) the arithmetic
ingredients in (14.38), i.e., the functions Hy(s) and {p(s,p) are in fact defined

nvar intacral idaals of n{-‘l\

VUVLL LIt plal iyoaio Vi

15. Concluding remarks

result (14.38), in the light of recent developments made to understand the explicit
formula for Z3(g,Q), the fourth moment of the Riemann zeta-function { = (g.
We shall also ponder on an intriguing nature of (14.38).

Theorem 4.2 of [25] is now translated into

22(0, @) = Ma(9) + 3 lev(DPHv (3)*Aun (9) (15.1)
v
R CTURE0) N
371 Joy LT P |

Here Mg has a construction similar to Mp, V runs over all Hecke invariant right-
irreducible cuspidal subspaces of L2(PSL2(Z)\PSL2(R)), and cv(n) (Z 3 n # 0)
are the Fourier coefficients of V, to which the Hecke series Hy is associated. The
v is the spectral parameter of V; that is, being restricted to V, the Casimir

operator over PSL2(R) becomes the constant multiplication (14 — 1) - 1. The

functional A, is to be made precise qhnrt]v

FRVISLURVILES SR 7 R SAGRA0 P ULASL SIIUL

The snmla.nty between the formulas (14.38) and (15.1) appears to the au-
thors to suggest the existence of a geometric structure yet to be discovered. In
particular, these results are expected to extend to a wide family of automorphic
L-functions (cf. {16]). To enhance this observation, we quote, from [28] with minor
changes of notation, the integral representation

[ dllos(t+1/r))
M= [ otz (15.2)

where § is as above, and

Zu(r) = §L v(u /T)JO(_U)\/IU—I R* = R\{0}, d*u=du/|ul (15.3)

o (w) = ‘/'? {JS*‘“‘” (r/Tul) - T Tah b, (15.4)

with Jf =J,, J; = I,,. Correspondingly, we have, for F = Q(?),

[N 25 P
glZlog |l + 1/uj)
Avp(g) = jc : [Pz, (u)du, (15.5)
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where

Zua) = 1= [ _dup (VoT8) doo (V=0) T =, (15.6)

om Jex
with

Juf?

sin v

Jup(u) = 207 |u|2K, ,(2nu) = 272 (A-v —p(27u) — 3 p(27u)).  (15.7)

The last three formulas follow readily from (12.26), with p = 0, and (14.1).

a matter of fact, the Bessel kernel j, that originates in Kuznetsov s works [18]
119] can be identified as the Bessel function of irreducible representations of the
group PSLy(R), and so is the Jup in its relation with PSLy(C). For these facts
see [28] and 7], respectively. This interpretation of j, is given in Cogdell and
Piatetski-Shapiro [8]; and |28] contains an alternative and rigorous approach to it
via the concept of local functional equations of Jacquet and Langlands [15]. Its
extension (15.5)-(15.7) is proved in [7]. Hence, the resemblance between (14.38)

~ ~anlr o nota A+ .
and (15.1) in fact reaches deeper than the sheer outlook suggests. At any events,

the last expressions sliow how tightly the mean values of zeta-functions are related
to the structure of function spaces over linear Lie groups.

This is naturally the same with sum formulas of KKloosterman sums. The
work (8] in fact indicates a way to directly connect the Kloosterman-Spectral sum
formula with j,, without the inversion procedure of the Spectral-Kloosterman
sum formula for PSL(R) as Kuznetsov did. Since the principal means on which
8] is based have been extended to the present situation, in [7] as remarked above,
one may argue that we could prove our Theorem 13.1 without first establishing
Theorem 10.1. That appears to be the case, but in tlie present work we have chosen
the way to extend the argument of [23} to include all K -aspects. This is because
the combination of the Jacquet and the Goodman-Wallach operators provides us
with a flexibility, perhaps greater than the extension of [8] could. Moreover, the
present version of the sum formula for PSLy(C) is more suitable than existing
ones for applications in the study of Kloosterman sums and in the investigation
of the distribution of automorphic spectral data. It should, however, be remarked
that Theorem 12.1, the above proof of which depends on the Goodman—Wallach
operator, could be derived also from the interpretation of j,, as Bessel functions
of representation of PSLy(C). For this see [7] again.

Finally, we make a naive comparison between (14.38) and

{15 1

(15.1
asymptotic aspects. Here exists a remarkable difference between these formulas.
That concerns the nature of the term Mp(g) in (14.38). In (15.1) the Mg(g) is
indeed the main term in the sense that with a Speciaiizatlon of g it gives rise to
the main term in the asymptotic formula

E 1Y in thai
-1}

~T

] G it |4t = TPy(log T) + O(T3 og® T) (15.8)
_r

as T' T oo, where P, is a polynomial of order 4 (Theorem 5.2 of [25]). The function
that is the counterpart of the above M for { has an expression similar to (14.36),
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and at the point p L the terms involved in it have singularities of order 4 at most;
see Section 4.7 of [25]. Analogously the functions on the right of (14 36) have

la+ritiog nf arder A t

Y and the conatriietion of M<(2) ic &l
Dlllsula.ll 1UVLIGO Ul ULl T & LANd $ s (=)

y & e CONSsLrucuion ¢ .l.'&ld \y, o

p

Mg(g). We have, however,

(&

rT
j ICr (3} + it)|*dt = Q(Tlog® T), (15.9)
T

which can be proved by the argument in Section 7.19 of {30]. Thus, it is hard to
regard Mp(g) as the main term in (14.38). This appears to raise a basic question
about the fourth moment of (¢, and remotely the same about the eighth moment
of the Riemann zeta-function.

References
[1] R.W.Bruggeman, Fourier Coefficients of Automorphic Forms, Lecture Notes

in Math., 865, Springer-Verlag, Berlin, 1981.

2] R.W. Bruggeman and R.J. Miatello, Estimates of Kloosterman sums for
groups of real rank one. Duke Math. J., 80 (1995), 105-137.

[3] R.W. Bruggeman and R.J. Miatello, Sum formula for SLy over a number
field and Selberg type estimate for exceptional eigenvalues, Geom. Funct.
Anal., 8 (1998), 627-655.

[4] R.W. Bruggeman, R.J. Miatello and I. Pacharoni, Estimates for Klooster-
man sums for totally real number fields, J. reine angew. Math., 535 (2001),
103-164.

[5] R.W. Bruggeman and Y. Motohashi, A note on the mean value of the zeta
and L-functions, X, Proc. Japan Acad., T7(A) (2001), 111-114.

[6] R.W. Bruggeman and Y. Motohashi, Fourth power moment of Dedekind
zeta-functions of real quadratic number fields with class number one, Func-
tiones et Approzimatio, 29 (2001), 41-79.

[7] R.W. Bruggeman and Y. Motohashi, A note on the mean value of the zeta

and L-functions, XIII, Proc. Japan Acad., 78(A) (2002), 87-91.
[8} JW. ("noﬂnﬂ and I.T. Piatetski- QHnnlrn T;)p Arithmetic and q'nec tral Anal-

ysis of Pomcare Series, Academic Press, San Diego, 1990.
[9] J. Elstrodt, F. Grunewald and J. Mennicke, Groups Acting on Hyperbolic

Space, Springer -Verlag, Berlin, 1998.

[10] R. Goodman and N.R. Walla.ch, Whittaker vectors and conical vectors, J.
Funct. Anal., 39 (1980), 199-279.

[11] Harish Chandra, Automorphic Forms on Semisimple Lie Groups, Lecture
Notes in Math., 62, Springer-Verlag, Berlin, 1968.

[12] E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur
Verteilung der Primzahlen, Math. Z., 6 (1920), 11-51.

[13] G. Humbert Sur la mesure des Classes d’Hermite de discriminant donné

g r1aAdr Irmaginaire of giir corfaing nliimag nan prnlidisna

Il COT pPo qua\.u auu.iuc lillagplliall v, €U SUr Cerualiis voLurlics rion CULLI\JLGLID

A d. Sci. Paris, 169 (1919), 448-454.

ana
aLio



Sum formmla for Kloosterman swns and fourth moment of the Dedekind zeta-function 91

[14]

[25]

[26]

[27)

28]
[29)
30)
31)

32}

H. Jacquet, Fonctions de Whittaker associées aux groupes de Chevalley, Bull.
Soc. Math. France, 95 (1967), 243-309.

H. Jacquet and R.P. Langlands, Automorphic Forms on GL(2), Lecture
Notes in Math., 114, Springer-Verlag, Berlin, 1970.

M. Jutila. Mean values of Dirichlet series via T.an]a('P transfor in: Y. Mo

O LUy AVALRA: Vil A S22 SLALSL T DRSS L 1] 4

tohashi (Ed.), Analytic Number Theory, Cambridge Univ. Press, Cambrldge,
1997, pp. 169-207.

71 A.W.Knapp, Represeniation Theory of Semisimple Lie Groups, An Cverview

based on Examples, Princeton University Press, Princeton, 1986.

N.V. Kuznetsov, The Petersson conjecture for forms of weight zero and the
conjecture of Linnik, A mimeographed preprint, Khabarovsk, 1977. (in Rus-
sian)

N.V. Kuznetsov, The Petersson conjecture for parabolic forms of Weight
zero and the con]ecture of Linnik, Sums of Kloosterman sums, Mat. Sb.,
111 (1980), 334-383. (in Russian)

R.P. Langlands, On the Functional Equations Salisfied by Fisensiein Series,
Lecture Notes in Math., 544, Springer-Verlag, Berlin, 1976.

H. Matumoto, Whittaker vectors and the Goodman—Wallach operators, Acta
Math., 161 (1988), 183-241.

R. Miatello and N.R. Wallach, Automorphic forms constructed from Whit-
taker vectors, J. Funct A’nnf 86 [1 QRQ\ 411-487.

R. Miatello and N.R. Wallach, Kuznetsov formulas for real rank one groups,
J. Funct. Anal., 93 (1990), 171-206.

Y. Motohashi, The binary additive divisor problem, Ann. Sci. Ecole Norm.
Sup., (4) 27 (1994), 529-572.

Y. Motohashi, Spectral Theory of the Riemann Zeta-Function, Cambridge
Univ. Press, Cambridge, 1997.

Y. Motohashi, Trace formula over the hyperbolic upper half space, in: Y. Mo-
tohashi (Ed.), Analytic Number Theory, Cambridge Univ. Press, Cambridge,

LACWORIL (A0, fy Jristovlyuel LV wideUTs REAe T RS R t ) ALl 2ARal,; W alllT A 5N

1997, pp. 265-286.

Y. Motohashi, New analytic problems over imaginary quadratic number
fields, in: M. Jutila M and T. Metsankyla {ids.), Number Theory, de
Gruyter, Berlin, 2001, pp. 255-279.

Y. Motohashi, A note on the mean value of the zeta and L-functions, XIL
Proc. Japan Acad., 78(A) (2002), 36-41.

M.E. Picard, Sur un group de transformations des points de I’espace situés
du méme cbté d'un nlan. Bull Soc. Math., Prance, 12 (1 RRA\ 43-47.

[S S S Lvl SN v VLT prerad, SrGL. VL. SESLI. FLieLl, 24 S0

E.C. Titchmarsh, The Theory of the Riemann Zeta—Functzon, Clarendon
Press, Oxford, 1951.

E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Clarendon
Press, Oxford, 1967.

Ja.N. Vilenkin and A.U. Klimyk, Representations of Lie Groups and Special
Functions, Mathematics and Its Applications (Soviet Series), Vol. 1, Kluwer,
Amsterdam, 1991.




92  Roelof W. Bruggeman & Yoichi Motohashi

[33] N.R. Wallach, Real Reductive Groups I, Pure and Applied Mathematics,
132, Academic Press, New York, 1988.

(34] N.R. Wallach, Real Rcuuuz’ut: Groups 11, ibid., 132, 1992.

[35] G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge
Univ. Press, Cambndge, 1944,

Addresses: Roelof W. Bruggeman, Department of Mathematics, Utrecht, University, P.O.Box
80.010, TA 3508 Utrecht, the Netherlands;
Yoichi Motohashi, Honkomagome 5-67-1- 901 Tokyo 113-0021, Japan

E-mail: bruggeman@math.uu.nl; amBy-mths@asahl-net or.jp

Received: 9 April 2003



