To Professor Włodzimierz Staś on his 75th birthday

ESSENTIAL NORMS OF TOEPLITZ OPERATORS ON BERGMAN-HARDY SPACES ON THE UNIT DISK

ARTUR MICHALAK

Abstract: For a Borel measure μ on [0,1] with $1 \in \operatorname{supp}(\mu)$ we consider the Toeplitz operators T_f with $f \in L^\infty(\mu \otimes \lambda)$ on the space $H^2(\mu)$ consisting of all holomorphic on $\mathbb D$ functions in the Lebegue class $L^2(\mu \otimes \lambda)$ on $\overline{\mathbb D}$. We show that for every Bergman-Hardy space $H^2(\mu)$ the following estimations hold: $\operatorname{dist}(T_f, \mathcal K(H^2(\mu))) \geqslant |f(t_0)|$ if f is continuous at point $t_0 \in \mathbb T$, and $\operatorname{dist}(T_f, \mathcal K(H^2(\mu))) = \sup\{|f(z)|: z \in \mathbb D\}$ if f is a bounded harmonic function on $\mathbb D$. **Keywords:** Toeplitz operators, Bergman spaces

The Bergman-Hardy spaces on the disk are generalization of the weighted Bergman space on the disk. Informally we can say that a weighted Bergman space on the disk is generated by the measure which in polar coordinates has the form $(1-r^2)^{\alpha}rdr \times \lambda$ for some $\alpha > -1$, where dr and λ are the Lebesgue measures on [0,1] and \mathbb{T} , respectively. A Bergman-Hardy space $H^p(\mu)$ on the disk is generated by the measure of the form $\mu \times \lambda$ in polar coordinates, where μ is an arbitrary positive finite Borel measure on [0,1] which do not vanish near 1. We do not have explicit formula for the Bergman kernel as well as for a reproducing kernel for all Bergman-Hardy spaces $H^2(\mu)$, and we can not apply the Berezin transform techniques (see [9], [8]) for these spaces. Our approach is more directly, we apply sequences of functions in $H^2(\mu)$ which are closely related to the Cauchy and Poisson kernels in \mathbb{D} . We show that the classical results (see [1], [9]) for Bergman and weighted Bergman spaces on the disk concerning essential norms of Toeplitz operators T_f , when f has a point of continuity on the boundary or f is harmonic, hold for every Bergman-Hardy space $H^2(\mu)$.

The paper is divided into two sections. The terminology and basic facts are explained in the first. We gather in this section basic properties of Bergman-Hardy spaces $H^p(\mu)$ for 0 . In the second section we estimate the

¹⁹⁹¹ Mathematics Subject Classification: Primary 47B35

Acknowledgment. This research was mostly done when the author held a DAAD grant at Paderborn University. The research was supported in part by Komitet Badań Naukowych (State Committee for Scientific Research), Poland, grant no. 2 P03A 051 15.

essential norms of Toeplitz operators T_f if f has a point of continuity on the boundary \mathbb{T} or is harmonic.

1. Preliminaries

We start by explaining basic notation used in this paper. As usual, \mathbb{D} will stand for the open unit disk and \mathbb{T} for the unit circle in the complex plain \mathbb{C} . The Lebesgue measures on [0,1] and \mathbb{T} will be denoted by dr and λ , respectively. Throughout the paper μ will be a positive Borel measure on [0,1] with $1 \in \operatorname{supp}(\mu)$ (the support of μ is the smallest closed set $C \subset [0,1]$ such that $\mu(C) = \mu([0,1])$). By $\mu \otimes \lambda$ we will denote the Borel measure on $\overline{\mathbb{D}}$ given by $\mu \otimes \lambda(A) = \mu \times \lambda(\Phi^{-1}(A))$ where $\Phi: [0,1] \times \mathbb{T} \to \overline{\mathbb{D}}$ is given by $\Phi((r,t)) = rt$. The norm of an element $f \in L^{\infty}(\mu \otimes \lambda)$ will be denoted by $\|f\|_{\infty}$. The space of all continuous linear operators on a given Hilbert space H taking values in H equipped with the operator norm will be denoted by $\mathcal{L}(H)$ and its subspace consisting of all compact operators by $\mathcal{K}(H)$. The essential norm of an operator $T \in \mathcal{L}(H)$ is its distance to compact operators,

$$dist(T, \mathcal{K}(H)) = \inf\{\|T - S\| : S \in \mathcal{K}(H)\}.$$

For a positive finite Borel measure μ on [0,1] with $1 \in \text{supp}(\mu)$ and $0 , we denote by <math>H^p(\mu)$ the space of all holomorphic functions $f: \mathbb{D} \to \mathbb{C}$ such that

$$||f|| = \left(\int_{[0.1)} \int_{\mathbb{T}} |f(rt)|^p \, d\lambda(t) d\mu(r) + \mu(\{1\}) \sup_{0 < r < 1} \int_{\mathbb{T}} |f(rt)|^p \, d\lambda(t)\right)^{1/p} < \infty.$$

equipped with the norm (when $1 \leqslant p < \infty$) and quasi-norm (when $0) defined above. There are many classical examples of spaces of holomorphic functions on <math>\mathbb D$ that are Bergman-Hardy spaces. For example: $H^p(\delta_1)$ is the classical Hardy space $H^p(\mathbb D)$ of holomorphic functions on $\mathbb D$ (δ_1 is the Dirac measure on [0,1] concentrated at 1), the space $H^p(r\,dr)$ is the classical Bergman space of holomorphic functions on $\mathbb D$, the space $H^p((\alpha+1)(1-r^2)^\alpha r\,dr)$ for some $\alpha>-1$ is the classical weighted Bergman space of holomorphic functions on $\mathbb D$. The definition above seems to be artificial, but it generates spaces consisting of holomorphic functions on $\mathbb D$ which are closed subspaces of $L^p(\mu\otimes\lambda)$ with a dense subset of polynomials. In order to check these facts we will need

Proposition 1. Let μ be a positive finite Borel measure on [0,1] such that $1 \in \text{supp}(\mu)$ and $0 . For every <math>f \in H^p(\mu)$ and $z \in \mathbb{D}$

$$|f(z)| \leqslant \begin{cases} \left(\frac{4}{(1-|z|)\mu([(1+|z|)/2.1])}\right)^{1/p} ||f|| & \text{if } \mu(\{1\}) = 0\\ \left(\frac{4}{(1-|z|)\mu(\{1\})}\right)^{1/p} ||f|| & \text{if } \mu(\{1\}) > 0 \end{cases}$$

Proof. Applying the fact that $|f|^p$ is a subharmonic function we get

$$|f(z)|^p \le \int_{\mathbb{T}} \frac{R^2 - |z|^2}{|Rt - z|^2} |f(Rt)|^p d\lambda(t) \le \frac{R + |z|}{R - |z|} \int_{\mathbb{T}} |f(Rt)|^p d\lambda(t)$$

for every |z| < R < 1. Therefore, if $\mu(\{1\}) = 0$,

$$|f(z)|^{p} \leq \frac{4}{(1-|z|)\mu([(1+|z|)/2,1])} \int_{[(1+|z|)/2,1]} \int_{\mathbb{T}} |f(rt)|^{p} d\lambda(t) d\mu(r)$$

$$\leq \frac{4 ||f||^{p}}{(1-|z|)\mu([(1+|z|)/2,1])}.$$

If $\mu(\{1\}) > 0$,

$$|f(z)|^p \le \frac{4 \|f\|^p}{(1-|z|)\mu(\{1\})}.$$

From the proposition follows that the topology of $H^p(\mu)$ is stronger than the topology of uniform convergence on compact subsets of $\mathbb D$. Then spaces $H^p(\mu)$ are Banach for $1 \leq p < \infty$ and p-Banach for $0 . If <math>\mu(\{1\}) = 0$, then $H^p(\mu)$ is a closed subspace of $L^p(\mu \otimes \lambda)$. If $\mu(\{1\}) > 0$, then $H^p(\mu)$ coincides with $H^p(\mathbb D)$, moreover the norms $\|\cdot\|_{H^p(\mu)}$ and $\|\cdot\|_{H^p(\mathbb D)}$ are equivalent. For every f from the Hardy class $H^p(\mathbb D)$

$$\sup_{0 < r < 1} \int_{\mathbb{T}} |f(rt)|^p d\lambda(t) = \int_{\mathbb{T}} |f^*(t)|^p d\lambda(t)$$

where f^* is the radial limit function of f. If $\mu(\{1\}) > 0$, we will identify $f \in H^p(\mu)$ with the function \tilde{f} on $\overline{\mathbb{D}}$ given by $\tilde{f}|_{\mathbb{D}} = f$ and $\tilde{f}|_{\mathbb{T}} = f^*$. Then the norm (p-norm) in $H^p(\mu)$ can be evaluate applying the following formula

$$||f|| = \left(\int_{\overline{\mathbb{D}}} |f|^p d\mu \otimes \lambda\right)^{\frac{1}{p}}.$$

Hence, $H^p(\mu)$ is a closed subspace of $L^p(\mu \otimes \lambda)$ also if $\mu(\{1\}) > 0$. The space $L^p(\mu \otimes \lambda)$ is separable for every $0 , it is a straightforward consequence of the Lusin theorem and the fact that the space <math>C(\overline{\mathbb{D}})$ of all complex continuous functions on $\overline{\mathbb{D}}$ is separable. Therefore the space $H^p(\mu)$ is separable for every μ . For every $t \in \mathbb{T}$ and $f \in H^p(\mu)$, $||f|| = ||f_t||$ where $f_t(z) = f(zt)$. By standard arguments concerning properties of translations (see [3], [7]) polynomials are dense in $H^p(\mu)$ for every μ . Furthermore, the closed unit ball $B_{H^p(\mu)}$ of $H^p(\mu)$ is compact in the topology of uniform convergence on compact subsets of \mathbb{D} . Consequently, the weak topology and the topology of uniform convergence on compact subsets of \mathbb{D} coincides on $B_{H^p(\mu)}$ for every 1 .

2. The main results

The space $H^2(\mu)$ is a closed subspace of the Hilbert space $L^2(\mu \otimes \lambda)$. Let P be the orthogonal projection of $L^2(\mu \otimes \lambda)$ onto $H^2(\mu)$. For every $f \in L^{\infty}(\mu \otimes \lambda)$ the Toeplitz operator $T_f: H^2(\mu) \to H^2(\mu)$ is given by

$$T_f(h) = P(fh).$$

Since P is orthogonal, for every $g, h \in H^2(\mu)$

$$\langle g, T_f(h) \rangle = \langle P^*(g), fh \rangle = \langle g, fh \rangle.$$

In the sequel we will also need the following elementary

Fact 2. For every $\pi \geqslant \delta > 0$ and R > r > 0

$$\int_{-\delta}^{\delta} \frac{dt}{|R - re^{it}|^2} = \frac{4}{R^2 - r^2} \operatorname{arctg}\left(\frac{R + r}{R - r} \operatorname{tg}\left(\frac{\delta}{2}\right)\right).$$

Now we are ready to state our main result.

Theorem 3. Let μ be a positive finite Borel measure on [0,1] such that $1 \in \text{supp}(\mu)$. If $f \in L^{\infty}(\mu \otimes \lambda)$ is continuous at point $t_0 \in \mathbb{T}$, then

$$\operatorname{dist}(T_f, \mathcal{K}(H^2(\mu))) \geqslant |f(t_0)|.$$

Proof. We can assume that $t_0 = 1$ and f(1) > 0. Let us take any $\varepsilon > 0$. Since f is continuous at 1, there exists an open neighborhood U of 1 such that $|f(rt) - f(1)| < \varepsilon$ for every $rt \in U$. Hence, there exists $\delta \in (0,1)$ such that $re^{it} \in U$ for every $t \in [-\delta, \delta]$ and $t \in [1 - \delta, 1]$. Let

$$g_n(z) = \frac{z^n}{1 + \delta/n - z}.$$

Then

$$||g_n||^2 = \int_0^1 \int_{\mathbb{T}} \frac{r^{2n}}{|1 + \delta/n - rt|^2} d\lambda(t) d\mu(r) = \int_0^1 \frac{r^{2n}}{(1 + \delta/n)^2 - r^2} d\mu(r).$$

Since $r \le 1$ and $(1 + \delta/n)^2 - r^2 \ge 2\delta/n$ for $0 \le r \le 1$,

$$||g_n||^2 \leqslant n \frac{\mu([0,1])}{2\delta}$$

On the other hand, for every $0 < r_0 < 1$

$$||g_n||^2 \geqslant \frac{r_0^{2n}}{4} \mu([r_0, 1]).$$

It follows that $(g_n/\|g_n\|)$ is a null sequence in the topology of uniform convergence on compact subsets of \mathbb{D} . Consequently, it converges to zero in the weak topology of $H^2(\mu)$. Let us introduce the following numbers

$$\alpha_{n,l} = \int_{1-\delta/l}^{1} \frac{1}{2\pi} \int_{-\delta}^{\delta} \frac{r^{2n}}{|1+\delta/n - re^{it}|^{2}} dt d\mu(r)$$

$$= \frac{2}{\pi} \int_{1-\delta/l}^{1} \frac{r^{2n}}{(1+\delta/n)^{2} - r^{2}} \arctan\left(\frac{1+\delta/n + r}{1+\delta/n - r} \operatorname{tg}\left(\frac{\delta}{2}\right)\right) d\mu(r),$$

and

$$\beta_{n,l} = \frac{2}{\pi} \operatorname{arctg} \left(\frac{1 + \delta/n + 1 - \delta/l}{1 + \delta/n - (1 - \delta/l)} \operatorname{tg} \left(\frac{\delta}{2} \right) \right).$$

Then

$$\begin{split} \left| \left\langle \frac{g_{n}}{\|g_{n}\|}, T_{f}\left(\frac{g_{n}}{\|g_{n}\|}\right) \right\rangle \right| \\ &= \left| \frac{1}{\|g_{n}\|^{2}} \int_{0}^{1} \int_{\mathbb{T}} f |g_{n}|^{2} (rt) d\lambda(t) d\mu(r) \right| \\ &= \frac{1}{2\pi \|g_{n}\|^{2}} \left| \int_{1-\delta/l}^{1} \int_{-\delta}^{\delta} + \left(\int_{0}^{1} \int_{-\pi}^{\pi} - \int_{1-\delta/l}^{1} \int_{-\delta}^{\delta} \right) f |g_{n}|^{2} (re^{it}) dt d\mu(r) \right| \\ &\geqslant \frac{1}{\|g_{n}\|^{2}} \left((f(1) - \varepsilon) \alpha_{n,l} - \|f\|_{\infty} (\|g_{n}\|^{2} - \alpha_{n,l}) \right) \\ &= (f(1) + \|f\|_{\infty} - \varepsilon) \frac{\alpha_{n,l}}{\|g_{n}\|^{2}} - \|f\|_{\infty}. \end{split}$$

Applying the fact that functions $r \to r^{2n}/((1+\delta/n)^2-r^2)$ and $r \to \arctan((1+\delta/n+r)/(1+\delta/n-r)\operatorname{tg}(\delta/2))$ are increasing on [0,1] we get

$$||g_{n}||^{2} = \frac{1}{2\pi} \int_{1-\delta/l}^{1} \int_{-\delta}^{\delta} + \int_{1-\delta/l}^{1} \int_{\delta \leqslant |t| \leqslant \pi}^{1} + \int_{0}^{1-\delta/l} \int_{-\pi}^{\pi} |g_{n}(re^{it})|^{2} dt d\mu(r)$$

$$\leqslant \alpha_{n,l} + \int_{1-\delta/l}^{1} \frac{r^{2n}(1-\beta_{n,l})}{(1+\delta/n)^{2} - r^{2}} d\mu(r) + \frac{(1-\delta/l)^{2n} \mu([0,1])}{((1+\delta/n)^{2} - (1-\delta/l)^{2})}$$

$$\leqslant \alpha_{n,l} + (1-\beta_{n,l}) \frac{\alpha_{n,l}}{\beta_{n,l}}$$

$$+ \frac{(1-\delta/l)^{2n} \mu([0,1])}{((1+\delta/n)^{2} - (1-\delta/l)^{2})} \frac{\alpha_{n,l}}{\int_{1-\delta/2l}^{1} \frac{r^{2n} \beta_{n,l} / ((1+\delta/n)^{2} - r^{2}) d\mu(r)}{\int_{1-\delta/2l}^{1} \frac{r^{2n} \beta_{n,l} / ((1+\delta/n)^{2} - r^{2}) d\mu(r)}{\mu([1-\delta/2l,1])}$$

$$\leqslant \frac{\alpha_{n,l}}{\beta_{n,l}} \left(1 + \left(\frac{1-\delta/l}{1-\delta/2l} \right)^{2n} \frac{\mu([0,1])}{\mu([1-\delta/2l,1])} \right).$$

Hence for every $l \in \mathbb{N}$

$$\lim_{n} \frac{\alpha_{n,l}}{\|g_n\|^2} \geqslant \lim_{n} \frac{(2/\pi)\operatorname{arctg}(((2+\delta/n-\delta/l)/(\delta/n+\delta/l))\operatorname{tg}(\delta/2))}{1+((1-\delta/l)/(1-\delta/2l))^{2n}\mu([0,1])/\mu([1-\delta/2l,1])}$$
$$= \frac{2}{\pi}\operatorname{arctg}\left(\frac{2l-\delta}{\delta}\operatorname{tg}\left(\frac{\delta}{2}\right)\right).$$

Since the sequence $(g_n/||g_n||)$ is weakly null in $H^2(\mu)$,

$$\lim_{n} K\left(\frac{g_{n}}{\|g_{n}\|}\right) = 0 \quad \text{for every compact operator } K \in \mathcal{K}(H^{2}(\mu)).$$

Hence

$$\operatorname{dist}(T_f, \mathcal{K}(H^2(\mu)) \geqslant \limsup_{n} \left\| T_f \left(\frac{g_n}{\|g_n\|} \right) \right\| \geqslant \limsup_{n} \left| \left\langle \frac{g_n}{\|g_n\|}, T_f \left(\frac{g_n}{\|g_n\|} \right) \right\rangle \right|$$
$$\geqslant (f(1) + \|f\|_{\infty} - \varepsilon) \frac{2}{\pi} \operatorname{arctg}\left(\frac{2l - \delta}{\delta} \operatorname{tg}\left(\frac{\delta}{2} \right) \right) - \|f\|_{\infty}.$$

Since the estimation above holds for every $l \in \mathbb{N}$,

$$\operatorname{dist}(T_f, \mathcal{K}(H^2(\mu))) \geqslant f(1) - \varepsilon$$

To finish the proof is enough to note that $\varepsilon > 0$ we took arbitrarily.

In the sequel we will need the following well known

Fact 4. For every $T \in \mathcal{L}(H^2(\mu))$

$$\operatorname{dist}(T, \mathcal{K}(H^{2}(\mu))) = \sup_{n} \{ \lim \sup_{n} \|T(h_{n})\| : (h_{n}) \subset B_{H^{2}(\mu)} \text{ is weakly null} \}$$
$$= \lim_{n} \|T - T \circ P_{n}\|,$$

where P_n is the orthogonal projection of $H^2(\mu)$ onto the linear span of e_1, \ldots, e_n for some orthonormal Schauder basis (e_n) in $H^2(\mu)$.

Proof. Since

$$||T - T \circ P_{n+1}|| = ||T \circ (Id - P_n) \circ (Id - P_{n+1})|| \le ||T - T \circ P_n||,$$

the sequence $(\|T - T \circ P_n\|)$ is decreasing. The inequality $\operatorname{dist}(T, \mathcal{K}(H^2(\mu))) \leq \lim_n \|T - T \circ P_n\|$ is clear. If $(h_n) \subset B_{H^2(\mu)}$ is a weakly null sequence in $H^2(\mu)$, then

$$\lim \sup_{n} ||T(h_n)|| = \lim \sup_{n} ||(T - K)(h_n)|| \le ||T - K||$$

for every $K \in \mathcal{K}(H^2(\mu))$. Hence

$$\sup_{n} \{ \limsup_{n} \|T(h_n)\| : (h_n) \subset B_{H^2(\mu)} \text{ is weakly null} \} \leqslant \operatorname{dist}(T, \mathcal{K}(H^2(\mu))).$$

Let us select $h_n \in P_n^{-1}(\{0\}) \cap B_{H^2(\mu)} = (Id - P_n)(B_{H^2(\mu)})$ such that

$$||(T - T \circ P_n)(h_n)|| \ge ||T - T \circ P_n|| - \frac{1}{n}.$$

Then (h_n) is a weakly null sequence in $H^2(\mu)$ and

$$\limsup_{n} ||T(h_n)|| = \limsup_{n} ||(T - T \circ P_n)(h_n)|| \geqslant \lim_{n} ||T - T \circ P_n||.$$

Straightforward consequence of the theorem and the fact above is the following

Corollary 5. Let μ be a positive finite Borel measure on [0,1] such that $1 \in \text{supp}(\mu)$. If $f \in L^{\infty}(\mu \otimes \lambda)$ is continuous at each point of \mathbb{T} , then

$$\operatorname{dist}(T_f, \mathcal{K}(H^2(\mu))) = \sup_{t \in \mathbb{T}} |f(t)|.$$

Proof. In view of Theorem 3

$$\operatorname{dist}(T_f, \mathcal{K}(H^2(\mu)) \geqslant \sup_{t \in \mathbb{T}} |f(t)|.$$

On the other hand, for every $\varepsilon > 0$ there exists $R \in (0,1)$ such that $\sup\{|f(z)| : z \in \mathbb{D} \setminus R \mathbb{D}\} < \varepsilon + \sup\{|f(t)| : t \in \mathbb{T}\}$. Let $(h_n) \subset B_{H^2(\mu)}$ be a weakly null sequence. Since (h_n) converges uniformly to zero on $R \mathbb{D}$, for every $(g_n) \subset B_{H^2(\mu)}$

$$\limsup_{n} |\langle g_{n}, f | h_{n} \rangle| \leq \limsup_{n} \left(\int_{R \mathbb{D}} |f | h_{n} | g_{n} | d\mu \otimes \lambda \right)$$

$$+ \left(\varepsilon + \sup_{t \in \mathbb{T}} |f(t)| \right) \int_{\mathbb{D} \backslash R \mathbb{D}} |h_{n} g_{n} | d\mu \otimes \lambda$$

$$\leq \varepsilon + \sup_{t \in \mathbb{T}} |f(t)|.$$

Hence

$$\operatorname{dist}(T_f, \mathcal{K}(H^2(\mu))) \leqslant \sup_{t \in \mathbb{T}} |f(t)|.$$

The corollary show that every bounded Borel function f on $\overline{\mathbb{D}}$ with compact support in \mathbb{D} generates the compact Toeplitz operator T_f in each Bergman-Hardy space $H^2(\mu)$. The next result generalizes the following well known fact for Toeplitz operators on the Hardy space H^2 on \mathbb{T} : for every $f \in L^{\infty}(\lambda)$

$$\operatorname{dist}(T_f,\mathcal{K}(H^2)) = ||f||_{\infty}.$$

Recall that for $f \in L^1(\lambda)$ its Poisson integral $\mathbb{P}(f) : \mathbb{D} \to \mathbb{C}$ is given by

$$\mathbb{P}(f)(z) = \int_{\mathbb{T}} \frac{1 - |z|^2}{|t - z|^2} f(t) \, d\lambda(t).$$

Every bounded harmonic function F on $\mathbb D$ is the Poisson integral of its radial limit function F^* , i.e. $F = \mathbb P(F^*)$, and $\sup\{|F(z)| : z \in \mathbb D\} = \sup\{|F^*(t)| : t \in \mathbb T\}$ (see [2]).

Theorem 6. Let μ be a positive Borel measure on [0,1] such that $1 \in \text{supp}(\mu)$. If $f \in L^{\infty}(\lambda)$, then

$$\operatorname{dist}(T_{\mathbb{P}(f)}, \mathcal{K}(H^2(\mu))) = ||f||_{\infty}.$$

Proof. Since $|\mathbb{P}(f)| \leq ||f||_{\infty} \mu \otimes \lambda$ -a.e. on $\overline{\mathbb{D}}$, $\operatorname{dist}(T_{\mathbb{P}(f)}, \mathcal{K}(H^2(\mu))) \leq ||f||_{\infty}$. Then we only have to show the inequality in the other direction. Since $\mathbb{P}(f)$ is a bounded and harmonic function on \mathbb{D} , the limit

$$\lim_{r\to 1}\,\mathbb{P}(f)(rt)=\mathbb{P}(f)^*\quad\text{exists for λ-a.e. $t\in\mathbb{T}$.}$$

This limit exists for every Lebesgue point of f (see [2]). Let us take any $||f||_{\infty} > \varepsilon > 0$ and any point t_0 for which the limit above exists and $|\mathbb{P}(f)^*(t_0)| > ||f||_{\infty} - \varepsilon$. We can assume that $\mathbb{P}(f)^*(t_0) > 0$. Then there exists $\delta > 0$ such that $|\mathbb{P}(f)(rt_0) - \mathbb{P}(f)^*(t_0)| < \varepsilon$ for every $r \in [(1 - \delta)^3, 1)$. Let

$$g_n(z) = \frac{z^n}{1 + \delta/n - z\bar{t_0}}.$$

Then

$$||g_n||^2 = \int_0^1 \int_{\mathbb{T}} \frac{r^{2n}}{|(1+\delta/n) - rt\bar{t_0}|^2} d\lambda(t) d\mu(r) = \int_0^1 \frac{r^{2n}}{(1+\delta/n)^2 - r^2} d\mu(r).$$

We know from the proof of Theorem 3 that $(g_n/\|g_n\|)$ is a weakly null sequence in $H^2(\mu)$. Let

$$\alpha_n = \int_{1-\delta}^1 \int_{\mathbb{T}} \frac{r^{2n}}{|(1+\delta/n) - rt\bar{t_0}|^2} \, d\lambda(t) \, d\mu(r) = \int_{1-\delta}^1 \frac{r^{2n}}{(1+\delta/n)^2 - r^2} \, d\mu(r)$$

Then

$$\begin{split} \left| \left\langle \frac{g_{n}}{\|g_{n}\|}, T_{\mathbb{P}(f)} \left(\frac{g_{n}}{\|g_{n}\|} \right) \right\rangle \right| \\ &= \frac{1}{2\pi \|g_{n}\|^{2}} \left| \int_{1-\delta}^{1} \int_{-\pi}^{\pi} + \int_{0}^{1-\delta} \int_{-\pi}^{\pi} (\mathbb{P}(f) |g_{n}|^{2}) (re^{it}) \ dt \ d\mu(r) \right| \\ &\geqslant \frac{1}{\|g_{n}\|^{2}} \left(\left| \int_{1-\delta}^{1} \frac{r^{2n}}{(1+\delta/n)^{2} - r^{2}} \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{(1+\delta/n)^{2} - r^{2}}{|(1+\delta/n) - rt\bar{t_{0}}|^{2}} \mathbb{P}(f) (re^{it}) \ dt \ d\mu(r) \right| \\ &- \|f\|_{\infty} (\|g_{n}\|^{2} - \alpha_{n}) \right) \\ &\geqslant \frac{1}{\|g_{n}\|^{2}} \left(\left| \int_{1-\delta}^{1} \frac{r^{2n}}{(1+\delta/n)^{2} - r^{2}} \mathbb{P}(f) \left(\frac{r^{2}}{1+\delta/n} t_{0} \right) d\mu(r) \right| - \|f\|_{\infty} (\|g_{n}\|^{2} - \alpha_{n}) \right) \\ &\geqslant \frac{1}{\|g_{n}\|^{2}} \left((\mathbb{P}(f)^{*}(t_{0}) - \varepsilon) \alpha_{n} - \|f\|_{\infty} (\|g_{n}\|^{2} - \alpha_{n}) \right) \\ &\geqslant (\mathbb{P}(f)^{*}(t_{0}) + \|f\|_{\infty} - \varepsilon) \frac{\alpha_{n}}{\|g_{n}\|^{2}} - \|f\|_{\infty}. \end{split}$$

Furthermore

$$||g_n||^2 = \frac{1}{2\pi} \int_{1-\delta}^1 \int_{-\pi}^{\pi} + \int_0^{1-\delta} \int_{-\pi}^{\pi} |g_n(re^{it})|^2 dt d\mu(r)$$

$$\leq \alpha_n + \frac{(1-\delta)^{2n} \mu([0,1])}{((1+\delta/n)^2 - (1-\delta)^2)} \frac{\alpha_n}{\int_{1-\delta/2}^1 r^{2n} / ((1+\delta/n)^2 - r^2) d\mu(r)}$$

$$\leq \alpha_n \left(1 + \left(\frac{1-\delta}{1-\delta/2}\right)^{2n} \frac{\mu([0,1])}{\mu([1-\delta/2,1])}\right)$$

Hence

$$\lim_{n} \frac{\alpha_{n}}{\|g_{n}\|^{2}} \ge \lim_{n} \frac{1}{1 + ((1 - \delta)/(1 - \delta/2))^{2n} \mu([0, 1])/\mu([1 - \delta/2, 1])} = 1$$

Since $(g_n/||g_n||)$ converges weakly to zero in $H^2(\mu)$,

$$\operatorname{dist}(T_f, \mathcal{K}(H^2(\mu))) \geqslant \limsup_{n} \left\| T_f \left(\frac{g_n}{\|g_n\|} \right) \right\| \geqslant \limsup_{n} \left| \left\langle \frac{g_n}{\|g_n\|}, T_{\mathbb{P}(f)} \left(\frac{g_n}{\|g_n\|} \right) \right\rangle \right|$$
$$\geqslant \mathbb{P}(f)^*(t_0) - \varepsilon \geqslant \|f\|_{\infty} - 2\varepsilon.$$

To finish the proof is enough to note that $\varepsilon > 0$ we took arbitrarily.

W. Lusky [4] showed that a similar fact holds for the angular extension \tilde{f} of $f \in L^{\infty}(\lambda)$,

$$\operatorname{dist}(T_{\tilde{f}}, \mathcal{K}(H^2(\mu))) = ||f||_{\infty}.$$

where $\tilde{f}(rt) = f(t)$ for every $r \in [0,1)$ and $t \in \mathbb{T}$.

For a bounded holomorphic function f on \mathbb{D} the multiplication operator $M_f: H^2(\mu) \to H^2(\mu)$ is given by

$$M_f(g) = f g = T_f(g).$$

Multiplication operators on $H^2(\mu)$ form a subclass of Toeplitz operators. Straightforward consequence of the theorem above is the following

Corollary 7. Let μ be a positive finite Borel measure on [0,1] such that $1 \in \text{supp}(\mu)$. If f is a bounded holomorphic function on \mathbb{D} , then

$$\operatorname{dist}(M_f, \mathcal{K}(H^2(\mu))) = \sup_{z \in \mathbb{D}} |f(z)|.$$

Acknowledgments. I wish to thank Professor W. Lusky for many helpful discussions.

References

- [1] L. A. Coburn, Singular integral operators and Teoplitz operators on odd spheres, Indiana Univ. Math. J. 23 (1973), 433-439.
- [2] P. L. Duren, *Theory of H^p-Spaces*, Pure Appl. Math. 38, Academic Press, New York 1970.
- [3] Y. Katznelson, An introduction to Harmonic Analysis, John Wiley and Sons, New York 1968.
- [4] W. Lusky, Toeplitz operators on generalized Bergman-Hardy spaces, Math. Scand., to appear.
- [5] W. Lusky, On approximation by Toeplitz operators, Acta Univ. Carolin. Math. Phys. **39** (1998), 137–146.
- [6] G. McDonald and C. Sundberg, *Teoplitz operators on the disc*, Indiana Univ. Math. J. **28** (1979), 595–611.
- [7] A. Michalak. Translations of functions in vector Hardy classes on the unit disk, Dissertationes Math. **359** (1996), 1-79.
- [8] K. Stroethoff and D. Zheng, *Toeplitz and Hankel operators on Bergman spaces*, Trans. Amer. Math. Soc. **329** (1992), 773–794.
- [9] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York 1990.

Address: Faculty of Mathematics and Computer Sciences, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland

E-mail: michalak@amu.edu.pl Received: 15 Jan 2000