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the zero free rpolnn for the Riemann zeta function.
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Let 7i(n) denote the number of positive integer solutions of the equation
ning...ng =n, k > 1. Let us define the function Ri(x), x> 1, by the equality

Ri(x) = Z T (n) — rPe_;(log ) ,

l<n<z

where
P _1{logx) = Re§ (Ck(s)—
s=1 \

v

/

and ((s) is the Riemann zeta - function. L. Dirichlet proved in 1848 that Ri(x) =
O(z' =¥ logh ™ ).

In [4], on the basis of the method of trigonometric sums of I. M. Vinogradov
(see [13], [14]), the estimate

IRi(2)] < 217°®) (¢, log )" | (1)

win

ar = ck

(2)
with absolute positive constants ¢ and ¢; was obtained.

Let us notice that the first result here is due to H. Richert [11] (after classical
works by Dirichlet-Voronoi-Hardy-Littewood- Landau), who proved the inequality:

|Ri(x)| < 'm0 - p s pi(e) >0, (3)

1991 Mathematics Subject Classification: 11M26, 11N25.

131



132 A. A. Karatsuba

where ¢ is on arbitrary small fixed positive number. Afterwards this result was
repeted by the author [5]. T was informed kindly about the paper [11] of H.
Richert by Professor A. Ivié. The subsequent research on this theme—in particular
computing the constant ¢ from (2)—followed the scheme of [4] and [5] (cf. [6], [1],
2], [3], [10]). The possibility of obtaining estimate the type (1) or (3) was stated
also in [15] (cf. [7], pp. 127-130).

The uniform estimates of the type (1) make it possible to obtain results
about a boundary for the zeros of the Riemann zeta-function. Let us note that
the estimate (3) and even the Lindel6f hypothesis cannot be successfully applied
in order to obtain any bound for the zeros of the Riemann zeta-function.

The aim of the paper is to establish a connection between the estimates of
the type (1) and the problem to give a boundary for the zeros of the Riemann zeta-
function and to estimate zeta-sums as well. Results of this type were obtained by
the author in [8], p. 112, Problem 1.

In this paper the standard notation will be used; in particular:

— s=o0+1it, i* = —1, where ¢ and t are real numbers,
— I'(s) is the Euler gamma-function,
— ¢, ¢1, ¢3,... are absolute positive constants which may differ in the different
statements,
— constants implied by the O-symbols are absolute,
— Py (z) denotes a polynomial of z of the degree <k —1,
— |z] = integral part of z,
— {x} = fractional part of z.
The following lemma is basic for all the paper.

Lemma. Let a(y) be an arbitrary real function of the real variable y, y > 2,
such that y‘l <a(y) < % Let ¢ > 2 and k be a natural number > 2. Suppose
that for all x > 2 the estimate

|Ri ()] < 2~ M (clog z)* (4)
holds. Then for all t > 2 and % >0 >1—a(k) the following inequality holds:

((o + it)| < Bckt!/* (o + alk) ~ )71k (5)

Proof. For Res > 1 we have
>
o)=Y mimn= = tm (14 Y ngwn—). ©)
n=1 TN SN /
Using partial summation we find that
N
Sv= Y m(nn "= 5/ Ci(uw)u™ 'du + CL(N)N* | (7)
1

la<ndN
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where
Cr(u) = Z k() = uPy_ 1(logm + R (u

AR

—_
Qo
—

l<n<u

From (7) and (8) it follows that

N N
Sy = s/ u P 1(logu)du + s / Bi(u)u™ " Tdu + Cy(N)N ™5 . (9)
1 J1

The polynomial Py._;(logu) is of the form
gl | u’
Pi1(logu) = ;0 bilog )’ = = Res ({k(s)?) .

The following estimates and transformations are obvious:

N ) log N ]
f u” *log? udu = / e V=i gy
1 0

~OXC

= / e P Nyidy 4 O(N~""llog! N)
0

=(s—1)7! jg e "vdv + O(N~"tlog? N)

=TU+D(s-1)7"' L O(N~ log’ N)
=jl(s =17+ O(N"F log/ N) |

fN k—1 k—1
/ u Pe1(logu)du = Y jlb(s — 1)~ +o( —U“Z\bnogﬂN)
1

Jj=0 j=0
k—1 » N
N :SZj!bj(S—l)_]—l +3[ Ri(uw)u ¢ ldy
7=0 1 N

(10)
k—1 _
+ O(N"“ > bs ] log? N) +Cr(N) - N—° .

Jj=0

Since 0 > 1 and Ci(N) = O(N log" N), we can take the limit in (10) as N — 400
and get the new formula instead of (6):

Hs) =1+ st!bj(s -7 4 / Ry(w)u™*"du . (11)
- J1

By (4), the last improper integral converges for ¢ = Res > 1 — a(k), ie. (11)
holds for Re s > 1—a(k) by the principle of analytic continuation. Let us estimate
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the right hand side of (11) for t > 2 and ¢ > 1 — a(k). Estimating it and using
(4) we obtain:

IC(s f"<1+\8\23'fb [t 1+|5[[ ) (clogu)*du
(12)
+tsy/°rfa4unu-a-1du.
1
Let us evaluate
rec
J 2/ u” ") (clogu) du
1
Putting logu = v we successively obtain
J=ct [ elmo—atk)vtvyk gy — o +a(k)—1)"F1 [ e~ Ywkdw
Jo Jo
="kl o + a(k) - 1)
Next, since Cy(u) =0 for 1 < u < 2, we obtain for 1 < u < 2:
k—1
Ri(u) =— ) b;(log w)!
j=0
and
2 k=1 2
| Ry, (w)|u " tdu < Z’bf[/ w7 log’ udu
J1 pEr "
- (14)
<Y bl + 1) og2 .
7=0
Let us estimate |b;|, j=0,1,...,k—1, from above. From (11) and the Cauchy
residue theorem it Fn”n“.s that
1 .ds
o — k — 1=
Js—l|:%

Let us use the fact that for Res > 0 we have

1 o0
(o) =g g e | e,

where

[\.an

o(u) =
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In the formula (15) we have s = 1+ 1 0 < p < 27, s0 Res > 5, and
5 < s| < 2. Consequently,
1 3 [~
K) <24 =+2 | wPdu=4
24
and .
k| < 4F277 (16)

J
From (12)-(186), for s = o + it, S>0>1- a(k), t > 2 we successively obtain:

k—1
G <1+ V2143 gk 077 4mim
j=0
FVE 4R o+ alk) - 1)
k-1
PV 4t 2 () dog2
J=0
< (Bek)* -t (o +a(k) —1) 1
C(8)] < Bck - £/ (0 + (k) — 1)71-1/K

The lemma is proved. |

Thorem 1. Let a(y) denote a nonincreasing function of y, y > 2. Suppose that
for all k > 2 condition of the lemma are fulfilled.
Then in the region

o >1—0.5a(logt) t>e?
the following estimate holds:
I{(0 +it)] < 16e3clog?® ¢t . (17)
Proof. Put in the Lemma & = [log¢] and
~t2et . a>1-05ak). (18)
Then we have the inequality:

o+ a(k) =1 > 05a(k) 2 0.557" > 0.5(logt)" .
Hence, from (5) we find that

[((o +it)] < 8clogt - e2(2k)1/* . 2logt < 16e3clog?t .
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Since a{y) in a nonincreasing function, the theorem follows from the last inequality
and (18). [ |
Corollary. If (4) holds for any x > 2 and k > 2, then the function a(y) tends
to zero as y — —+oc.

Proof. Let us assume the contrary. Since oafy) > y=' >0 and ay) ina
nonincreasing function, there exists o > 0 such that a(k) > >0, k=2.3,....
Consequently, estimate (4) can be replaced by

|Ri(z)] < z'"*(clogz)” .

Without loss of generality we can assume that « < (.5. From the above theorem
it follows that for ¢ > 1 — 0.5« the following estimate holds:

IC(o +it)] < 16e3clog®t,  t>e? . (19)

1 i1 1 101 .1 1 ra YR ~ 1 PR PG | - N -
On the other hand, by the Known ii-theorems, 1or 5 < ¢ < 1 the lollowing refation

holds: .
) logt)' =¢
clo+it) = 0 exp (a&—;\\ (20)
\ ~ \ (loglogt)”//
(compare e.g. [9] or a weaker result in [15], p. 291 and [16]).
For ¢ = 1-0.5c the estimates (19) and (20) contradict each other. Therefore
our assumption that o(y 0 as y — +00 is not true. The corollary is proved.

|
In what follows we assume that o(y) — 0 monotorically as y — +oc.
Theorem 2. Suppose that the assumptions of Theorem 1 are fulfilled. Then
¢(s) # 0 in the region:

,2(og |t])
loglog |t| ’

IV
g+)

1 ~
1L —C

(¥4

Proof. Assume that ¢t > e?. We use the following proposition (cf. [12], p. 57):
Let

as t — 400 in the region
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Then ((s) # 0 in the region

r>1—ec O2t+1)

ST e
- lgp(Qt—i—l) -

Put here ©(t) = aflogt), ¢(t) = 2loglogt. Since a(y) >y, it follows that

S

nlt
At

o)

< (2loglogt)logt = o(e*V) = o(log®t) .

It is clear that ¢(t) and ©~1(t) are nondecreasing positive functions and Oft) < 1.
Therefore ((s) # 0 in the region

a(log(2t + 1))
"2loglog(2t + 1)

t2€2>

From this the theorem follows. |

Examples. Let us consider some examples of concrete functions a(k) in Theo-
rem 2.

L. Let afk) = k™%, 0 < o< 1. Then ((s) # 0 in the region

1 =
- log™ |t|loglog |t] ’

It] > e?

In particular, putting o = % we obtain the result of I. M. Vinogradov [13].

2. Let a(k) = (logk)™®, o> 0. Then ¢(s) # 0 in the region

C2

>1—
7= (loglog [t])a+1

[t| > e? .

3. Let afk) = (loglogk)™*, a > 0. Then ¢(s) # 0 in the region

C2

g 2 1- )
(loglog |t])(log log log |¢])=

It| > e

From Theorem 1 estimates for short zeta-sum can be derived. For t > e2 the
following trigonometric sum

S(a)———Zn“, O<a<t

n<a

is called a zeta - sum. The number a is called the length of S(a). We say that the
sum 5(b) is shorter than the sum S(a) if b < a. The upper estimates for |S(a)}
are closely related to the estimates for |((s)] (compare e.g. 8], [15]).
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Theorem 3. Let the assumptions of Theorem 1 are filfilled. Then the following
estimate for |S(a)| holds:

|S(a)| < eral00elloat) (jog t)3 (21)

Proof. Using the inversion formula (see e.g. [8]. p. 75, [15]. p. 347) we obtain

b+lT ailr
smy———/ Cw + it) —duw
JE—:T w

ab aloga
Ol 7 O .
" (T(b—l)) ~o(7 )
where 2 > b6 > 1. T > 1 and the constants implied by the Q-symbols are absolute.
Set here

b=1+(loga)™'. a>e’>. T=05¢.

We obtain

1 T a’ aloga
S(a) = — '+ it)—dw .
(a) = /biT C{w —H)u' lL+O( T )

Consider the rectangular I' with the vertices b+ T, u 4 iT . where

u=1-0.5ax(logt) .

i

Using the Cauchy residue theorem we find that

1 a”
— '+ it)—dw =0.
2ﬁ2£C(u+Zt)w w =10

Consequently.
1 b+iT auy
l—, C(u'+zt)—dw < Jl +J2+=]3 . (22)
271 Sy or w
where
T Ui
J1 = L ((u+z‘{t‘+t))a dz!i .
2| J_7 u 4w
1 b o+ T ‘
Jr = — Clo+ (T +1)) —do| .
2T Sy ) o+ |
1 b a—T
Jy = — ) _T d l .
]3, 97 /. C(O’+l( +IL))O_72_T O'I
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Let us estimate Ji.J2 and J3 from above. Applying (17) to IC(s)| we obtain:

T qrdy

——— | = O(a"log®t) .
)\/T) (*log™1)

b
a’do a
J2 =0 logztf =0{=log’t} .
(( V), T (T & )

a 2
— 1 T).
TOg

Ji=0 ((loth

Jr=0(
From (22) we find that
Sla) =0

The theorem is proved. [ ]

Remarks. 1. The estimate (21) is non-trivial if

7

a>exp(

AN

6loglogt + 2logc
a(log t) )

From this it follows that the estimates for S(a) obtained in this way are of any
value only if

Let us note that in the classical Dirichlet theorem we have alk) = 1/k
{(compare c.g. {12]: pp. 313-314).
2. Let a(k) =k7*. 0 <o < 1. Then (21) is of the form:

IS(a)| < Clalfll,{ri(]ugl‘) “ IOgSt: al .

% we obtain

Putting a = :

loga :
A = C1 €Xp (—05w) lOggf . (23)

The known estimate of I. M. Vinogradov is of the form:
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Comparing the estimates (23) and (24) we can easily see that for all a the estimate
(24) is the better one.

1220 N

Let us finally note that the estimate (23) is nontrival for

a > exp(es(log?/® t)(loglogt)) .

and the estimate (24) is nontrival for

- ; v N2/
a = exp(ci{logt)™") .
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