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1. Introduction
Let p be prime and denote by F, the field with p elements, F;, the multiplicative

group of nonzero elements of F, and (]F;)k the subgroup {z* : z € F>}. Let
Q(Xy,...,X;s) be a quadratic form with coefficients in F,. It was shown by
Schinzel, Schlickewei and Schmidt [12] that, for odd s, there is a subspace of F
of dimension (s — 1)/2 on which @ is zero. This result is, in fact, best possible.

Theorem 1.1.
(i) A quadratic form Q in F,{X,,..., X ] with det Q # 0 cannot vanish on a
subspace of F} of dimension greater than [s/2].
(ii) If, further, s is even and (—1)*/2det Q ¢ (F%)?, then Q cannot vanish on a
subspace of dimension s/2.

In [12] the ‘subspace theorem’ cited above is applied to show that for a
quadratic form @ in Z[X,,..., X,] (s odd), any congruence

R(x) =0 (mod m)
has a solution satisfying
0 < x| = max(|z1], ..., |zs]) < m!/2H1/(29),

This has been improved for s > 4 by Heath-Brown [9]. Finally in {12] the above
result on small solutions of congruences is used to prove

mi13M||Q($1,...,J:S)H < C(s,e) N72FmeFe, (1.1)

Here @ is a quadratic form, @ € R[X,,..., X],e > 0,7, is explicitly given and
s7s is bounded; and ||...|| denotes distance from the nearest integer. For im-
provements of (1.1) see Baker and Harman [4], Heath-Brown [9] and (for s = 2)
Dyke [8].
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Analogous results for forms of higher degree are known in the additive case.
Throughout the paper let

A(Xy, . X ) =ar X+ 4 a. XE

If A has coefficients in F,, then Aj vanishes on a subspace of F, having di-
mension [s/3], provided p > C)(k). This follows from the fact that a ternary
additive form over F,, with p > C;(k) has a nontrivial zero |2, page 167]. Using
the geometry of numbers as in [12] (or Theorem 2.1, below}, one can then solve
any congruence

Ap(zy..... ) =0 (mod m) (1.2)
(where Ay € Z[X,..... X,]) with
0 < x| < Cy(k)ym!~s/3/s, (1.3)

For s = 3, the exponent 2/3 in (1.3) is best possible [2, §2]. For s > 5. a different
method provides solutions smaller than in (1.3); the exponent in (1.3) would be
1/2+1/(2s — 2) + €.

Theorem 1.2. Let s > 4,m > Cs(s,k,€). Let By,..., By be positive numbers
with
Bi...Bs > m3/tHs/(2s=2)+c (1.4)

The congruence (1.2) has a solution x # 0 with
|:L“EI§B, (221,\8) (1_5)

This is Theorem 1A of [2]. Recently Dietmann [7] pointed out that if A €
Fp[X1,...,Xs] (s odd), then A3 vanishes on a subspace of F, of dimension (s —
1)/2. This enabled him to replace the exponent in (1.3) by 1/2+1/(2s) for odd s.

If Dietmann’s method is generalized to degree k, the following result ensues.

Theorem 1.3. Let k be odd, k > 3. Let s be odd, s > k. Then for p > Cy(k),
a form Ap(Xy,... , X,) over F, vanishes on a subspace of ]Ff, having dimension

(s —k)/2+ [k/3].
We also note a simple extension of Dietmann’s congruence result.

Theorem 1.4. Let s be odd, let m > 1, and let By, ..., Bs be positive numbers,

Bi...B, > m?®/?t1/2, (1.6)
Given Az € Z[X,,...,X,], the congruence
Asz(z1,...,2) =0 (mod m) (1.7)

has a solution x # 0 satisfying (1.5).

Since Theorem 1.3 yields no improvement of Theorem 1.2 for &k > 3, it is of
interest to obtain complementary results.
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Theorem 1.5.
(i) Let k > 3 and 1 < s < k+ 1. Let p > 5. Suppose that a form A, in
FplX1,...,Xs] with a,. a& # 0 vanishes on a subspace V of F, having
dimension d. Then {1,..., s} can be partitioned into subsets By, 01, ..., Ba

such that (vi),ep, Is the zero vector for all v in V, while

L a;u; = (1.8)
€8,
for 7 =1,...,d; the vector (ui)ies; is nonzero (j =1,...,d).
(i) Let k > 3,1 < s < k. If p> s and k|(p — 1) there is a form A; in
FplX1,..., X, that does not vanish on any subspace of dimension greater
than [s/3].

It is easy to see that for s > k, the integer [s/3] in (ii) could be replaced by
[k/3] +s—k

However, the following result is stronger for large s.

Theorem 1.6.

(i) Let s be odd and let p > max(k,s). A form A, in F,[X,,...,X,] with
ai...as # 0 cannot vanish on a subspace of F} of dimension greaier than
(s —1)/2.

(ii) Let s be even and p > max(k,s). Suppose A is a form in Fo[ X1, ..., X
with ai...ag # 0 that vanishes on a subspace of TF; of dimension s/2. If k
is even, then (—1)%/2%a; € (F3)2. If k is odd and p > max(k, s!), then
after renumbering the varlab]es we have

agi 10z, € (F)F (i=1,... s/2). (1.9)

(iii) Suppose that (p — 1,k) > 1. Let s be even, and suppose p > max(k, s!).
There is a form Ay in Fo[X,... , Xs| that does not vanish on any subspace
of F;, having dimension s/2.

We note a result for a ‘general’ form

— § : 51 %
G(Xlﬁ“'vXS)_ / a(ola ,35))(1 ‘){SS
120,120
1+ 4is =k

Theorem 1.7. For G as above, and s > k + 1, any congruence
G(x) =0 (mod m) (1.10)

has a solution satisfying
0 < |x| < mF/ kD), (1.11)



22 R. C. Baker

In contrast, for s = k the congruence (1.10) may have only the trivial solu-
tion, as explained in [2].

We now turn to additive forms over R. It was shown by Cook [6] that, for
real Ay,...,A,,

min Az} + - 4+ A zh| < Cy(k, )N/ K e
0<|x|<N

K denotes 28=1. Assuming that k is relatively small, this is still the best result
known PX(‘PT)f that the case k=2 ¢= =1 (n theorem nF Heilhronn [1“]\ hag hooan

Lila LT Lase &y 0 ViAO U TRl e 2aTH LRI [V ) G T

improved by Zaharescu [14]; the exponent —1/2 + € is replaced by —4/7+¢€. The
ideas in [12] enable one to go beyond the exponent —1+ € for s > K ; see [2], [9],
[7]. In the present paper we refine the approach in [2] and obtain the following
result, which sharpens those in [2] and [7].

Theorem 1.8. Let k£ >3 and let s > K. Let

0.3 = min (E nax min( 2h(s —3) + 4h S_h+5\\
=37 \& sshgs  \(h+1)(s —3)+4h" 4 j/

(2h —2)(s —k)+4h—4 s—h+K+1\\

f{ 1.\ A A 2
N n—1—1\n\.> \ IL\a—ﬁ,)-T—H:IL—&

for k > 4. Then for real \y,..., A,

min Az} + -+ Aazh| < Cs(k, ) N7oxrFe,
0<|x|<N

In particular, we have 053 =5/4 and 0,4 = s/8 for 9 < s < 12.

2. From subspaces to small solutions

Theorem 2.1. Let s and d be natural numbers, s > 2d. Suppose that for
p>Cs= C’6(k s), every form A, inF [X;,.... X ] vanishes on a subspace of F
()f dim on d Let B. R he an'li'nrp ni ”IQFQ

LSS EI LA S fika u\/L

Bi...Bs > Com®™ ¢ (2.1)

where
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Then for every modulus m, and every form Ay in Z[Xy,..., X,], the congruence
(1.2) has a solution x # 0 satisfying (1.5)

Proof. Let u =[] ., p. Suppose first that m is squarefree, (m,u) = 1. By
hypothesis, for each prime p dividing m there is a set of linear forms Ki,....,K,_4
in Z[X;,..., X,] with the property that

Ki(x) =0 (mod p) (1<i<s—d)

implies A(x) =0 (mod p). By an application of the Chinese remainder theorem
we obtain s — d linear forms L;,...,L,_,4 in Z[Xq,... , X ] such that

A(x) =0 (mod m)

whenever
Li(x)=0 (mod m) (1<i<s—d).
Minkowski’s linear forms theorem yields a nonzero (z1,...,225—q) In Z277
such that

linSBi (’3'21,...,8)7
|Li(z1,. . 2s) —masqi] <1 (3= 1,...,s —d).

For the determinant of the 2s — d linear forms in question is m*~?, which is
< By...Bs. Clearly (z3,...,75) # 0 and

Ap(ry,...,z) =0 (mod m).

For a general modulus m, write m = ¢?vn where v and n are squarefree,
vlu and (n,u) = 1. Given B; satisfying (2.1) there is a y # 0 with

Ar(y) =0 (mod n),
il < Bi/(fv).

| I
ror
By...Bs/(fv)° > u*mS U5y~
> ms~d£—s > ns—d
since
gsns-d < (€2n)s—d < ms—d.
Now

A(vy) = 0% Ar(y) =0 (mod m)

while fvy # 0,
|tvy:| < B;.

This completes the proof of Theorem 2.1. [ ]
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3. Subspaces on which Ay vanishes

We now prove Theorem 1.3 by induction on s. The case s = k is covered in
the introduction. Let s > k. s odd, and suppose the theorem already known for

s —2. If any a;, say a,, is 0, then the form a; X + ng in (X3, Xz) vanishes
on a subspace of dimension 1. Since Ax(0,0, X3,...,X,) vanishes on a subspace
of dimension
s—2—-k [k
S + — .
2 3

we obtain in an obvious way a subspace of dimension

Los=2=k k] _s—k Tk
T T3l T T3 T3

on which Aj vanishes. Hence we may assume that no a; is 0. Now (]F;)’* has
(p—1.k) cosets in [F}. Since s > k, there must be two a; (say aj.az) in the same
coset, so that a; = ufas.u € ]F;. Now (t, —ut)(t € F,) gives a 1-dimensional
subspace on which a; X} + a; X4 vanishes. We now complete the induction step
as before, and Theorem 1.3 is proved.

Proof of Theorem 1.4. By a result of Lewis [11], the congruence
al:zf1 + a2:1:2 + agxg =0 (mod p)

is solvable nontrivially for every p. and thus we may take C}(3) = 1 in Theorem
1.3. Applying Theorem 2.1 with Cs = C7; =1.d=(s—3)/2+1 = (s —1)/2. we
obtain the desired result. [
We conclude this section by proving Theorem 1.7. According to the Chevalley-
Warning theorem [13. page 136] for given p there is a € IF;‘;“\{O}, such that

G(a) = 0. The multiples of a form a 1l-dimensional subspace on which G
vanishes. Arguing as in the proof of Theorem 2.1 with d = 1.s = £ + 1 and
By =...= By = m* "+ we obtain a solution of (1.10) satisfying (1.11).
4 nrms that do not vanish on anv larege subhsnace
X A LA ALALAWY WALARAL RAW Rivsuw VEAKLLAWIAL WSEA RAaka J ARAx av SRR BT pF RAR R
Proof of Theorem 1.1. We observe that if R is a quadratic form in F,{X;..... X
and
R(O..... 0, Wyns-.-. ) =0 identically

for some t < s. we may write R in the form

R(wy...., cws) = w My(wy, .. ws) + - +wMy(wy, . ws)
where AM,, ..., A, are linear forms. To see this, we may proceed by induction on

t. The case t = 1 follows from the Remainder Theorem. In the induction step,
choose Af;(w) so that

R’:R(wl,....w ) wlj\ll( )
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does not contain wu; explicitly. Then R’ = R'(wa. .. .. ws) vanishes when wy. .. .. i
are zero. Accordingly.
R = woMa(wa. .. .. We) 4+ My ws)

\

and the induction step is complete.

Now let s be even and take a quadratic form @ in F,(X;y.....X,,) that
vanishies on a subspace of IFE,* of dimension s —t. There are llnearl\ independent
linear forms L;(X)..... Li(X) such that Q(x) = 0 whenever Li(x) = ... =
Li(x) =0. Choose linear forms L, ... .. Ly, such that det(L;..... Loyg) # 0 and

make the change of variables y; = L,(x) (1 < j < 2s). We write

Since Q'(0... .. O.we .. ... wzs) = 0 identically. we have

Q1 y2s) = AL(y) + - + M (y).

Since there are no terms y,y; with 7 > £.j >, the matrix of Q' may be written

[ A B]
Rtr 0
L d

where A is txt and B is t x (s —t). If t = 5/2.det Q' = (- )“/Q(detB) Since

det () = T‘(]N’O for some r c (TP;"\Q_ we have (L1\S/2 detQ c /TIJ‘;) _which 1 proves

Theorem 1.1 (ii). If t < s/2. it is easy to see that any product occurring in det ¢’
has a factor 0. so that det@’ = 0 and det@ = 0. This completes the proof of
Theorem 1.1, |

Proof of Theorem 1.6. Suppose that A; vanishes on a subspace V of F, having
dimension d, when d = 5/2 (s even). d = (s + 1)/2 (s odd). Let u.x be in V.

Then
s s k
k k—h _h_ hk—h
0= E a;(ziu; + 20;)" = E a; s u T2 2 (4.1)
J=1 j=1 h=0 /
for any z1.z; in F,. Since p > k. the coefficient of @fzg " must be 0 for h =
0..... k. In particular
5
_ k=2 2
Qux) =) aut2?=0 (xeV) (4.2)
J=1

By Theorem 1.1. if s is even we may assert that
(=1)*%ar .. ag(uy .. ou)k 72 € (F)% (4.3)

for arbitrary u in V' with w;y .. . u, #£ 0.
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Let U be a matrix whose rows are a basis of V. There are two cases to
consider.

Case 1. U has zero columns, let us say columns 1,...,r.

In this case Q)u can be considered as a quadratic form in s — r variables,
which vanishes on a subspace having dimension d. Moreover, d > (s —r)/2. The
number of elements of V' having a zero coordinate in a given position j,j > r, is
p?~!, since these are the elements of a {d—1)-dimensional subspace of V. So there
are at least p? — (s — r)p?=! elements u of V with u,4, ... u, # 0. Now for each
such u,Qy has nonzero determinant, and since p > s, we obtain a contradiction
by comparing (4.2) with Theorem 1.1.

Case 2. U has no zero column. By the argument in the preceding paragraph,

there is u in U with u,...u, # 0. If s is odd, (4.2) contradicts Theorem 1.1.
This proves Theorem 1.6 (i).

Suppose now that s is even. If k is even, then (4.3) shows that (—1)*2a, ... a,

€ (]F;)Q, proving Theorem 1.6 (ii) in this case. Thus we may suppose that k is
odd; (4.3) now yields a conclusion for any element v of V:

(=1)*ay ... as(tuy + v1) ... (tus + v,) € (1F;)2

for every choice of t in F, except t = —v,/uy,....t = ~vs/Us. In terms of the
character /

@) = (L),
\p/
we have the inequality
Z X((-l)”‘/2 H a;(tu; + vj)) >p~s>p/2 (4.4)
teF, j=1
Now the character sum in (4.4) has modulus at most
(s —1)p'/?
unless the polynomial
Fty =12 as(tu; +vy)
j=1

is a perfect square [13, Theorem 2C’]. Since p/2 > (s — 1)p'/2, we conclude that
f(t) is a perfect square. The zeros of f occur in pairs, say
U1 U2 Vs—1 Usg

— - —==0,.... - — =10 (4.5)
Uy Uz Us—1 Us

Since v is an arbitrary point in V', and since p*/2 > slp*/2-1 it is clear that
one of the s/2-dimensional subspaces, defined by (4.5) or an analogous pairing,
coincides with V.
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Consider the point (u;,u2,0,...,0) of V. We have
alu]f + azu;“ = 0,

giving (1.9) for ¢ = 1; and clearly (1.9} holds for 2 < i < s/2 in the same way.
This establishes Theorem 1.6 (ii).

Part ('") of the theorem is now obvious. For i"xsta‘ice, if £ is Uuu choose
ay =...=as_1 and a, in a different coset, of (]F;‘;)’C from so that no numberm
could allow (1.9). [ |

Proof of Theorem 1.5 (i). We proceed by induction on s. The case s = 1
is obvious. In the induction step, let A be a form in F,(X;,..., X,) with s <
k+1,a1...as #0 and suppose that A, vanishes on a subspace V of F;, having
dimension d. Let U be a d x s matrix whose rows are a basis of V. If U has
zero columns, we form a block By consisting of the numbers of these columns
and get the desired result by applying the inductive hypothesis to the form in
the remaining variables. Thus we may exclude this case, and as in the proof of

Theorem 1.6 there are at most sp?~! elements u of V with ;... us = 0.

Fix uwin V with u;...u, # 0. We relabel the variables so th t the first d
columns of U are linearly independent, and let h;,..., hy be any d elements of
F, with

hi hd . .
y...,— distinct,
Uy Ud

Since the reduced echelon form of U has standard basis vectors as its first d
columns, we can find v in V of the form

vV = (h]_,...,h(j,’l)d+1,...,2}s).

We now apply (4.1) with v in place of x. Thus
i aju;“_hv;-’ =0 (h=0,1,...,k);
rewrite this in the form
> ajulrh =0 (A=0,1,....k) (4.6)

where r; = v, /u;.
Let Ry = ry,...,Ry = rq,..., Ry, be the distinct ones among r;,....rs.
We rewrite (4.6) in the form

m

> bRE=0 (h=0.1,... k) (4.7)

n=1
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where
= Z a, u;‘f:
JEB,
B, is the set of j in 11 ..... S} with ry = R, .
The ﬁI‘bt m equations (4.7). those with 0 < h < m — 1. form a system of
linear equations whose deternunant is the Vandermonde determinant det(R]) (1=
1..... m:g =0.1..... — 1) which is not zero. We conclude that b, = =b, =

0. that is.
Z a_,'uf =0 (n=1..... m).
J€B,

We may reduce the number of blocks B, to d by uniting blocks. and Theorem 1.5
(i) follows.

(ii) Choose a;..... a, from distinct cosets of (]F;j)" If A; vanishes on a
subspace of dimension d. and if u;..... s are chosen as in (1.8). then no B; can
have fewer than three elements. Thus 3d < s as required. [ |

5. Small fractional parts of additive forms

We assemble some lemmata needed for the proof of Theorem 1.8. We assume. as
we may. that e is sufficiently small and N > Cs(s.k.€): and write 5 = €2. L =
[NUTZ k'_€+n] . and
I\r
_ ek
Si(m) = 3 e(m;at)
r—=1

where e(6) = ¢2™? . Implied constants depend at most on s. A and .

Lemma 5.1. Suppose that for some A,. .. .. As with s > K. K =271 k >3 the
inequality
IAy] + -+ Ayf|| < N7t (5.1)
has no solution with
0 < max(|yi]..... lys|) < N. (5.2)
Then after relabelling A.. ... As. there is a set B of natural munbers, B C 1.L].

and there are positive numbers By > ... > B, such that, for m € B.
B, <[S,(m)]| <2B;, (i=1..... s). (5.3)

Moreover

VoL

By...Bg|Bl > N7, (5.4)
Proof. This may be shown by a slight variant of the argument on p. 184 of 2. m

Lemma 5.2. Suppose that for some j, 1 < j < n and some m, 1 < mn < L we
have
[Sj(m)] > B; > N1=t/ 4, (5.5)
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Then there is a natural number q; and an integer v; with

g, < N*TUBF (5.6)

ImA;q; — vl < N”Bj_k: (5.7)

and there is a natural munber r, and an integer b; with
, 247 -2
r; <N B (5.8)

At — b | < NIp R (5.9)

Proof. For the existence of ¢, and v, see the case M =1 of [1]. Theorem 1. We
now apply [3]. Lemma 8.6, noting that (5.5). (5.6) together yield

q; < (]V/B‘j)l“j\[’? < Nk K < N7
mA,q; — v;| < NTRHRE o 1=k,
B; > Nﬂ‘—l+2r;Bj—(f’v—1) > qJ(_i.-—i)/i.-Nn.

Thus the conditions (8.68), (8.69) in [3] are satisfied, and the existence of r; and

b_]- follows. [ ]

Lemma 5.3. Suppose that 8 is real and that there exist R distinct Integer pairs
x.z satisfying
|62 — 2} < ¢, (5.10)

0< 2] < X (5.11)

where R > 24CX > 0. Then all integer pairs x.z satisfying (5.10), (5.11) have
the same ratio z/x.

Proof. This is a lemma of Birch and Davenport [5]: see also [3], Lemma 5.2. m

Lemma 5.4. Under the hypotheses of Lemma 5.1, the set B has cardinality
k—1421) p—k —1ys/(s—k) pr3s
1Bl < LN* 121378 « (LN ~1)s/(=k) jdsn, (5.12)

Proof. From (5.4),

Bl ~ (NS-EHL—i)l/s ~ 17\71—1/}'('-9—717
since o5 < s/K. Thus Lemma 5.2 is applicable for j = 1 and each m in B. We
write q1 = q1(m).v; = v (m) for the integers satisfying (5.6), (5.7). The number

R of distinet products mgi(m) (m € B) for which m ~ M, g(m) ~ @ satisfies

R>[BINTT, (5.13)
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for some choice of M, 1 < M < L and Q,1 <Q < N’“f”Bl_k. This follows from
a simple divisor argument. Let

~r ~ I

Tow A 1 T oo~ 0 "l O\ [, PR Lir o1l TN AAS Y e
111 order vo pply Leinina J.0 Wiull U = Ap we lieed Lo verily uvilat n -~ 294 A . INOW

o

(XR ' <« LNk pr2kg|~!
< LNk+3'r)(iB|N—s+n)2k/s|B|—1
from (5.4). If 2k < s thisis <« LN~%+¢ and so R > 24¢X. If s < 2k, we obtain

instead the bound
& N7Frep2k/s o N=°

and again R > 24(X. We conclude that there are integers s > 1 and t such that

vy (m)

t
maq (1m) s

for all m in B.

We observe that, since each mgi(m) is a multiple of s,

Rs < MQ,
s < MQ|B|"'N" (5.14)
< LNk+2nBl—k|B|—l

from (5.13), (5.6). Moreover, for any m in B,

|[Ais —t| = mam) |[Armg(m) — vy (m)]
—— N"B;"
M@ '
from (5.7), so that
A s¥]f < " gk
! MQ !

< (M) I N+ g~k gk
- k{k—1)+2ks —k p—k?
& LF-INKE-D+2km =k B

from (5.14), (5.6).
Now by hypothesis, either
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or
[ArsFlf > L1, (5.16)

If (5.15) holds, then
LN*21B-k 1B~ 5 N,

which yields the first inequality of (5.12). If (5.16) holds, then
Lk~1Nk(k—1)+2kn|B’—kBl—k2 > L_l,

orpletes the proof of the first inequality
equallty, we insert the bound Bf|B| > N*~" which

|B| < LN*=1+2n|g|k/s y—k+bn/s,
1Bl < (LN-Y =T Nen,
where ¢ = (2s + k)/(s — k) < 3s. n

PrOOf Of Theorem 1 ,Si WQ Ql'lppr\sﬂ 1 on
and obtain a contradiction. We select an integer h for whic , in case k = 3,

2h(s —3) + 4h s—h+5)\
(h+1)(s —3)+4h’ 4 )

.
odd, 5 < h < s, andmink

attains its largest value over odd h in [5,s]. In case k > 3 we drop the restriction
to odd & and require that

min (2h~2)(s —k)+4h—4 s—h+ K +1
h(s —k)y+4h—-4 K

attains its largest value subject to K +1 < h < s,
We select any m in B. We need to verify that

By > NE-D/K+n, (5.17)
If (5.17) does not hold, then
N*"T <« B, ... BB

< Bh_IBS_h+1|B’
&« IRIPh LN K =11/ K +n)(s—h+1)

= |20
We now apply (5.12) to obtain

NE—1 < LNL’—1+27)B{L7k—1N((Kk1)/K+n)(s—h+1)

& LNh—2+20+((K—1)/K +n)(s—h+1)

b

I > N(S‘—h-l—K-l-l)/K—Sn‘
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contrary to the definition of L. This establishes (5.17)

For j = 1..... fi. let r,.b; be the integers provided by Lemma 5.2. We
now apply Theorem 1.4. if k = 3. or Theorem 1.2, if & > 3. to obtain integers
Ly.....1y. not all zero.

2| S NTEUBHm/ L)Y (1< j < h) (5.18)
such that
biat + byl =0 (mod m). (5.19)

For
h

H J\;flfriBf(nlL—l)l/k — (Bl o Bh)QANr—fl—fll)(Trszl)h//\'
J=1 > (IVS—:)|B1—l)ZZh/slvv—h—h?](rnL71)h/k (520)
> A*h—iZhUiBl—‘Zh/s (”?Lfl)h/k-
Using the bound (5.12). we arrive at the lower bound
> Nh_zf"f(LN”)*2}’/(37’.")N*W”I(mL_l)fl/i".
We have to show that the last expression is at least

(1) /2

in case & = 3. and at least
2 —_— T
Tllh {2k 2)17\/ 1

in case k > 4. so that we can apply Theorem 1.4 or Theoremn 1.2.
() k = 3.
A'h—ghr](LAN'—l)f2h/(s—3)(TnL—l)h/.‘i?n—(h+l)/2
~ ‘th—Shr](L[\vfl)—2h/(ﬁ1—3)L7(h+1)/2
>1

since m < L and
20/ (=D +(h+1)/2 o Afh+2h/(s=3)—c

(i) k > 4.
Nh_th:,(LN—1)—211/(3—@(mL—l)h//\-mwz/(znsz)

> Z\/rh—th,(L]V—l)ﬁiZh/(s—k)L—h'z/(ZZh—iZ) > 1

since m < L and
Lhz/(2hf‘2)+2h/(s—k) < Nh+2H/(s—K)—c

This establishes the solvability of (5.19) subject to (5.18).
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We now observe that y; = z,r; satisfies
0 <max(jyl,...,|yn]) N
from (5.8), (5.18). Moreover,

Myt - Ay

k k k k
x z byz{ + -+ bpx
:(m)\ﬂ“lf—bl);jl-f-'---f—(m)\hrﬁ—bh)%—F st hih
ks m m
In view of (5.19),
h
Ay + - Anynll <m Tt D7 M mayrt — by
j=1

h
—1 —k—knp2k 0 kin p—2k
<m”l Y NTRpEh - Nhep
j=1

< L7,

This contradicts our initial hypothesis. We conclude that there is a solution of
(5.1, (5.2).

For the final remark of the theorem, we first take £k = 3,5 = 5 and thus
h=15. Then

2h(s—3)+4h 40 5 s—h+5 s

(h+1)(s—3)+4h 32 4 4 4

Next, take k =4.9 < s <12 and h = 9. Then (s — h + 9)/8 = 5/8, while the
inequality

(2h—2)(s—4)+4h—-4 16532 s
h(s—4)+4h—4 = 95-4 — 8

is equivalent to
9s% — 1325 + 256 < 0,

which is easily verified; the left-hand side is increasing with s and negative for
$=12. [
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