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SOME PROPERTIES OF THE GENERALIZED
FAVARD-DURRMEYER OPERATORS

GRZEGORZ NOowAK & PAULINA PycH-TABERSKA

Abstract: The Durrmeyer modification ﬁn f of the generalized Favard operators in some weigh-

ted function spaces are considered. The rate of convergence of Fy, f(z) at the Lebesgue points z
of f is estimated. In particular, a corresponding estimate in the class of functions f of bounded
p-th power variation is deduced.
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1. Preliminaries

Let X,(R) be the space of all measurable real-valued functions f on the real line
R := (—00,00), with the norm

I/ llo == sup | f(z) exp(—0z®)| < o0,
z€R

where o > 0. For functions f € X,(R) consider first the generalized Favard
operators defined by

Faf(zy =Y f(k/n)pnk(z;7),
where x € R,n€ N,

@1 = (-5 (i o))
z;v7) = ————=—exp|l—s5 |- —=z

and v = ()2, is a positive sequence convergent to 0 (see [4]). In the special
case where 42 = k/2n with a positive constant «, F,, become the known discrete
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Favard operators introduced in [3]. Some properties of operators F,, f for continu-
ous functions on R can be found e.g. in [4] and [5]. In this paper we deal with the
Durrmeyer type modification of the operators Fj,, defined by

Faf@=n Y ) [ f@pnsttin)is (1)

k=—00

We will examine the rate of convergence of ﬁnf(z), mainly, at those points z € R
at which

h
im = [ (1@ +0 - st =o.

The general estimate will be expressed in terms of the quantity

h
we(sif) = sup 2 [ S+ - f@at], 6>0)

0<|h|<s

Some analogous results for the generalized Favard-Kantorovich operators are pre-
sented in [6].

Throughout the paper, the symbols K(---), K;(---) (j = 1,2,...) will mean
some positive constants depending only on the parameters indicated in parenthe-

e,

2. Main result

As is known (2], pp. 126, 204; [4], p. 388), for all n€ N,z € R,

D Pak(@) = 1+ Sn(a), (2.1)
k=—00
where -
Sn(z) := QZGXP(—QﬂsznZ'}’;’;) cos(2mnjz) (2.2)
j=1
and
|Sa(@)| < (7ny) 72 (2.3)

It is easy to see that for all n€ N,v e N,k € Z := {0,+1,+2,.. },
T 1
[ pnsttsmac= =, (24)
—o0

o’? « D
/ (i - t)wpn,k(t;v)dt B C At
—o0

n
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and, by the Schwarz inequality,

/_
l_._t
oon'

In view of Lemma 2.1 in [5], if v € N and ny2 > ¢ for all n € N, with a positive
absolute constant ¢, then

V@ = e,

v
Pnk (¢ v)dt <

(2.5)

[o 0] k v
| > (— —m) pn,k(fv;v)’ S T5A(2/e) ity
n
k=—o0
where A. = max{1,(2cn?)~'}. Further, from (2.1) and (2.3) it follows that
3 Par(®;7) <34c forall neN,zeR, (2.6)

k==—00

and consequently,

o0 k v
. 2
D 1= = 3 palmin) < 154:(2/€) /@A, (2.7)
k=—00

Let f € Xo(R) with some o > 0. Then the operators (1.1) are well defined
forall z € R and n € N such that 16072 < 1. Indeed, using the obvious inequality

(a+b)* < 2(a® + b?) and denoting by v/2v the sequence (V270)2, we easily
observe that

Pn k(L) exp(ot?) < m exp(20k?/n?) exp(— (—i- - 20) (E - t) 2)

< V2exp(20k® [0 )pn i (t; vE7)
and
Pk (8;7) exp(20k® /n?) < \/iexp(éicrzz)pn,k(m; V27).
Hence, in view of (2.1) — (2.4)

Bt @] < 20 floexp(d05?) 3 pan(iVE) [ puslti VEn)at

< 21+ (mnyn) ") f |l o exp(doa?).

Theorem 2.1. Let f € X,(R),0 > 0 and let v = (7,)22, be a positive Sequence
convergent to 0 and satisfying the condition ny2 > c, where ¢ is a positive
absolute constant. Then, given any numbers ¢ € N, o > 0, we have

wz((r + 1)vm; f) |f ()|

r+1)%exp(or?y2) = (mny,)?

|F f(z) — f(z)| < K(qg,¢) Z (

for all z € R and n € N such that 16072 < 1, 80y2 < 1.
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Proof. In view of (2.1) and (2.4)

. f(z) m)—nzpnk(wv)/m 1) = 1(@)pmi ()t + [(@)Sn(2).

R=—00

Clearly, if f € X,(R) and t € R, then

[ (¢ = @)du] <t - s 1 (2expoa®) + explot®)

and, under the assumption 16042 < 1,
1 /k k2 3 /k 2
2 [ — < — e —
exp(a't 2~ 2 ( t) ) = exp(?a(n) 87n ( t) )

Hence, from the definition of p, x(z;v) it follows at once that for any k € Z,

ot
Jm pak(t7) / (f(u) = f(2))du =0
Consequently, integration by parts gives

nf(z) = flz)
=-n Z Pnk(T57) / / f(w))dU)p’n,k(t;v)dt + f(z)Sn ().

k=-—co
Observing that p, , (t;7) = pn k(t;7) (k —¢) /2, applying (2.3) and the definition
of wg(6; f) we get

S |/ ()]

oo
n k
< 3 Pnk(T;7) /‘; - tIPn,k(t;v)lt—wlwz(it — z|)dt + ()2

7 ‘

OO

Z,(\) + | ()] (rnya) 2, (2.8)

§m| 3
Fod
i Mg |||

where A is an arbitrary positive number,

o, ¢]
= > poxl(z;)
k= —o00 JIr. . f

k
— =t Pk (Bt — z|we (|t — z])dt,

)
AT AN

Laz)={te RirA < |t —z| < (r+1)A} and wz(8) = w(9; f).
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Using (2.6) and (2.5) with v = 1 we obtain Zp(A\) < 34 w,(A\)n~1y,.
Given any 02> 0,¢ € N we have for r > 1

< wo((r+ 1)) o=

Z, (M) 0 Priel57)

rIMexp(or?A?) £~

o0

/ IE —tlp (A — 219 exnl o(t — 2D\ dt

—eolT
Clearly, . a ik "

q q
e (o4 )
n n

and

sl ) )ome(’ )

TN

exp(o(t — 2)%) < exp

Moreover, if 80y2 < 1, then

n

fnn'cfx N\exp{2g(ﬁ_z\2\: 1 exp(_(i_2g\(£_m\2\
prr@y)exp(2e(T —2) )= omm e\ ~(22 ~2)\ 572 )
1 1 rk 2
= /n—exP(_A,.,z (:—m) )
nyV2r N i\ /S

= V2, k(2;V2Y).

From the above inequalities and the estimates (2.5), (2.6), (2.7) it follows that

oo )

k
> peatein) [ |5t
k=—00 —co! Tt

20 S sl Vo) (VE TR + £ o

k=—o0

P (t; 7)1t — |7 exp(o(t ~ z)?)dt

<

a4+
\1-

1 \/E'Yn\)

< 34 T DIV + 15403207 2)12/e) T 7%),

Hence
we((r+ DA G40
Zr(A) £ Ki(q,¢) rIAT exp(or?\2) YaTen for r>0.
Choosing A = 7, and using (2.8) we get the desired result immediately. [ |

It is easy to see that under the assumptions f € X,(R) and 6 > 0 we have

wy(6; f) < (exp(0z?) + exp(202°)) exp(206°) || fl»

(see e.g. [6]). Consequently,

wa((r + Lyms f) < exp(202%) (1 + exp(dor?yy)) exp(doyy )l fllo-
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From this inequality it follows at once that the right-hand side of the estimate
given in Theorem 2.1 (with ¢ > 2,0 > 40) converges to 0 as n — 00, at every
Lebesgue point z of f.

3. Corollaries

Let f € X,(R) be continuous on R and let (0; f)o be its weighted modulus of
continuity defined by

s f)o = o IF(-+R) = F()lle (8>0).

Then, given any z € R and r € N we have
we(rd; f) < rexp(20z® + 20 (r — 1)26%)Q(8; f)

(see [6], p. 149). This inequality and Theorem 2.1 with g = 3, 0 = 20 lead to

Corollary 3.1. If the sequence v = (v,)%, satisfies the conditions of Theorem
2.1 and if f € X,(R) is continuous on R, then

1t = fllze < K () (203 o + 11l

for all n € N such that 16072 < 1.

For some m € Ny let C,,,(R) be the space of all continuous functions f on
R such that

IF15 = sup [£(z)(1 + 2*™)7?] < o0.
TER

Clearly, Cm(R) C X,(R) for arbitrary m € No, ¢ > 0. Moreover, for any z € R
and r € Np there holds the inequality

wa((r+1)8; f) < (1 + (22)*™ + (2r6)>™)(r + 1)w(8; fm,

(see [6]), where
W(8; f)m = sup |If(-+h) = f()m-
[h|<8

Consequently, from Theorem 2.1 (with ¢ =0, ¢ = 2m + 3) it follows

Corollary 3.2. If the sequence v = (7,)%, satisfies the conditions of Theorem
2.1 and if f € Cp,(R), then

1Faf = £l < K (e,m) (00303 o + = 1£150)

forall ne N.
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Finally, let us suppose that f € X,(R) with some ¢ > 0 and that at a fixed
point z € R the one-sided limits f(z+), f(z—) exist. Introduce the functions

(F(t)— f(z+) ift>z, (1 ift>az,
g=(t) =4 0 ift =, sgn, () =40 ift=u,
f(t)— flz=) ift<az, -1 ift<uz.

Then, it is easy to verify that

16 = U@ + F@) + g26) + 3 at) — f(z-) sem, (1
+(7@) = S foh) - 37(2-))5u(0),
where 6;(z) =1 and 6,(t) =0 if ¢ # z. Hence
Faf(@) = 5(7@4) + Fz-D( + 5n(2)) + Faga(a)
+3(/(@+) = [(@=)Fa sem, (@),

where Sy, (z) is defined by (2.2) and estimated in (2.3). As is shown in [1] (p. 104),

- o0 o) X 4
|Fr sgn, (z)] = n‘ > pnrlzv) (/ ~/ )pn,k(t;v)dt) < —
k=—00 z —oo n

¢ =0 and ¢ > 2). Consequently, by a simple calculation (cf. e.g. [6], p. 150) we
obtain that under the assumptions of Theorem 2.1,

Fot(e) = 514 + £(z-)

1/7n
< K(q, 0yt / 1920, (1/t; g2 dt

F 3 @)+ @) () + 20 (4) = (@) (nym)

for all n € N such that 16092 <1.

In particular, let us consider the class BV,(R) of all functions f of bounded
p-th power variation on R and let us denote by Vi(f;I) or Vy(f;a,b) the total
p-th variation of f on the interval I = [a,b] (defined as in [6]). The obvious
inequality

we (0, f) S Vp(fiz— 6,2+ 6) (6>0)

and some easy computations lead to
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Corollary 3.3. If the sequence v = (v,)2, satisfies the conditions of Theorem
21andif f€ BVp(R), p>1, thenforallz € R and ne N,

|Fuf @) %(f(:vﬂ + 1))

m
< Ka(g, o3 1Y kT, (g4 Ik)
k=0

+ 3@ + fE-lne)™ + 2 (@) - fle-)l(mn)

where ¢ 2 2, p=1/y], o =R, Ix =[xz — 1/k,z+ 1/k] if k=1,...,p.

Clearly, in view of the continuity of g, at x, the right-hand side of the
inequality given in Corollary 3.3 converges to 0 as n — oo. Moreover, in some
classes of functions this inequality cannot be essentially improved. To see this, let
us first mention some properties of the functions

3 [~
Hup(z)=n ) Pn.k(f;v)j (z = )" pn,k(t; 7)dt,
— — 00
wnere r € No,n € N,z € R. It is easy to verify that with S,(z) as defined by
(2.2) we have the recursion formula

Hn,O(m) =1+ Sﬂ(m)a Hn,l = 735;;(37)’
Hypya(x) = ’Yler’L,-r (z) - 2T’Y£Hn,r—1($)-

From this formula, by the method of induction, it follows the representation

o ()
“im,2r W)
r—1

=7 (dor (L4 Su(@)) + 3 die (S (@) + SP(@)) + 42 S (@),
) =1

where di» (I = 0,...,7 — 1) are real numbers independent of n and . More-

over, under the assumption ny2 > ¢ for all n € N, the functions S (z) (v =
0,1,...,2r — 1) are bounded uniformly in z € R and ne N. Consequently,

Hpor(z) < Ka(e,r)y2" forall z€e R, ne N (3.1)
and
nl}-»ngo ’Y;L-ern,Zr (:1:) = dO,r (32)
uniformly in z € R.

Now, let us fix a point zp and a positive number o and let us denote by
U(a, z0) the class of all functions f € BV,(R), continuous at o and such that
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Vo (f; ®o— 6,20+ 6) < 6% for 6 € (0,1]. From Corollary 3.3 with ¢ > max(2,a+1)
it follows that for f € U(a,20) and n € N,

|Fnf(z0) — f(20)] < Ks(a,c)(1+ Vp(f; RIS +

(o)l (3.3)
nc

On the other hand, the function fu(t) := L[t — zo|* if |t — zo| < 1, fa(t) = 1/2
otherwise on R, belongs to U(a, zp) and

oo

To+d
n Y pn(zo7) / |t — 2o|pn,k(t; 7)dt
Zg—ts

k=—0c

ana(l'o) - fa(xo)

er—‘

for any é € (0,1]. Let 7 be a positive number such that 7+ a = 2r, where r € N.
Then

F fol(zo) — fa(%)
1 zo+4
> 5né Z Pn,k(70;7) / (t — 20)* pm,k(t; 7)dt

k=—o00 go—$

1 a~—2r 2r

= 36 ( n, 21'(:1:0) -n Z Dnk x077) (t - ‘770) pﬂ,k(t;7)dt)
= k= —00 J|t—zg|>d /
1
25a " (Hp,2r(70) = 62 Hp 2r12(20)).

From (3.2) it follows that

1
H, 2 (z0) > ﬁdo,r’)’f‘f

for sufficiently large m. Applying inequality (3.1} for H, ort2(%o)} and putting
6=27v2\/Kas(c,7+ 1) / \/do,» we obtain that

fo(mg) — falzo) > 2972 3K y(

a

er+ 1) T2 dy )T B (34

=

for sufficiently large n. Inequalities (3.3) and (3.4) ensure that in the classes
I m,\\ “nfh 0 < o ( ') or ’f(rv ) = {f c Ula zn): f(m,\\ = nl with ar-
A U yEUp W~ Y AUy JAv

bitrary a > 0, the estlmate given in Corollary 3.3 is the t concerning the
order.
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