Functiones et Approximatio XXIX (2001), 17-28

CONVERGENCE IN BV_{φ} BY NONLINEAR MELLIN-TYPE CONVOLUTION OPERATORS

Carlo Bardaro, Sarah Sciamannini & Gianluca Vinti

Abstract: In this paper we establish convergence results for a family \mathbb{T} of nonlinear integral operators of the form:

$$(T_w f)(s) = \int_0^{+\infty} K_w(t, f(st))dt = \int_0^{+\infty} L_w(t) H_w(f(st))dt, \quad s \in \mathbb{R}_0^+,$$

where $f \in Dom\mathbb{T}$, $Dom\mathbb{T}$ being the class of all the measurable functions $f \colon \mathbb{R}_0^+ \to \mathbb{R}$ such that $T_w f$ is well defined as Lebesgue integral for every $s \in \mathbb{R}_0^+$. For the above family of nonlinear Mellin type operators, under suitable singularity assumptions on the kernels $\mathbb{K} = \{K_w\}$, we state a convergence result of type $\lim_{w \to +\infty} V_{\varphi}[\mu(T_w f - f)] = 0$, for some constant $\mu > 0$ and for every f belonging to a suitable subspace of BV_{φ} -functions.

Keywords: Musielak-Orlicz φ -variation, V_{φ} -convergence, locally φ , η -absolutely continuous functions, nonlinear Mellin type convolution operators.

1. Introduction

In [16] there is considered convergence with respect to φ -variation and rate of approximation for a class of linear integral operators of the form:

$$(T_w f)(s) = \int_{\mathbb{R}^+} K_w(s,t) f(t) dt, \qquad (I)$$

defined for every $f \in X$ for which $(T_w f)(s)$ is well-defined for every $s \in \mathbb{R}^+$ and for every w > 0, being $K_w : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}_0^+$ a family of kernel functions satisfying a general homogeneity condition with respect to a measurable function η , and where X denotes the space of all Lebesgue measurable functions $f : \mathbb{R}_0^+ \to \mathbb{R}$. Results concerning estimates for operators of the form (I) with respect to φ -variation in one-dimensional and in multidimensional frame can be found in [3], [4], [17].

The concept of φ -variation, has been introduced by L.C. Young in [18] and in [14] this concept was developed by J. Musielak and W. Orlicz in the direction of function spaces; it represents a generalization of the classical Jordan variation.

Given a φ -function $\varphi: \mathbb{R}_0^+ \to \mathbb{R}_0^+$, for every $f \in X$, the Musielak-Orlicz φ -variation of f is defined as

$$V_{arphi}[f] = V_{arphi}[f; \mathbb{R}^+] = \sup_{\Pi} \sum_{i=1}^n arphi(|f(t_i) - f(t_{i-1})|)$$

where the supremum is taken over all finite increasing sequences Π in \mathbb{R}_0^+ (see [14], [12] in case of a bounded interval). By means of this functional it is possible to define the space of functions with bounded φ -variation on \mathbb{R}_0^+ in the sense of Musielak-Orlicz, as

$$BV_{\varphi}(\mathbb{R}_0^+) = \{ f \in X : \lim_{\lambda \to 0} V_{\varphi}[\lambda f] = 0 \}.$$

It is possible to observe that the functional $\rho: X \to [0, +\infty]$, defined by

$$\rho(f) = V_{\omega}[f] + |f(a)|,$$

for some $a \geq 0$, $f \in X$, is a convex modular on X; therefore the space $BV_{\varphi}(\mathbb{R}_{0}^{+})$ is connected with the theory of modular space and hence also the formulation of convergence in φ -variation is connected with the modular convergence (see [15], [12], [10]). Namely we will say that

a family $(f_w)_{w \in \mathbb{R}^+} \in BV_{\varphi}(\mathbb{R}_0^+)$ is said to be convergent in φ -variation to $f \in BV_{\varphi}(\mathbb{R}_0^+)$ if there exists a $\lambda > 0$ such that $V_{\varphi}[\lambda(f_w - f)] \to 0$ as $w \to +\infty$.

The problem of convergence in φ -variation for a family of nonlinear integral operators is very delicate. Indeed, the modular ρ above introduced, does not satisfy the assumptions which are generally used in modular convergence problems of various families of this kind of operators (see e.g. [13], [1], [5]). In this paper, using a different approach, we will study properties of convergence in $BV_{\varphi}(\mathbb{R}_0^+)$ for the family of nonlinear integral operators of Mellin-type:

$$(T_w f)(s) = \int_0^{+\infty} K_w(t, f(st)) dt = \int_0^{+\infty} L_w(t) H_w(f(st)) dt \quad s \in \mathbb{R}_0^+, \qquad (II)$$

where $f \in Dom\mathbb{T}$, being $Dom\mathbb{T}$ the class of all measurable functions $f : \mathbb{R}_0^+ \to \mathbb{R}$ such that $T_w f$ is well defined as Lebesgue integral for every $s \in \mathbb{R}_0^+$. The above operators represent a nonlinear version of *linear* convolution Mellin-type operators, which are considered in the classical theory of Mellin Transform (see [6], [7]).

For estimates with respect to φ -variation (also in the generalized sense) for operators of type (II), see [11].

The main result of the paper is a convergence theorem (Theorem 2) which states that for $f \in AC_{loc}^{\varphi}(\mathbb{R}^+) \cap BV_{\varphi+\eta}(\mathbb{R}_0^+)$, and under singularity assumptions on the kernels $\mathbb{K} = \{K_w\}$, there is a constant $\mu > 0$ sufficiently small that

$$\lim_{w\to +\infty} V_{\varphi}[\mu(T_w f - f)] = 0,$$

that is the family of nonlinear integral operators converges with respect to φ -variation towards f. Here φ and η are two φ -functions satisfying suitable assumptions. In order to formulate the convergence theorem (Theorem 2) there are of fundamental importance the convergence in φ -variation for the dilation operator τ_z calculated over $(H_w \circ f)$, as $z \to 1$ (Theorem 1) and an equiboundedness in φ -variation for the family $\{H_w \circ f\}$ (Lemma 3) together with the result (Lemma 3) that for every $\varepsilon > 0$ there exists a step function $\nu : \mathbb{R}_0^+ \to \mathbb{R}$ such that

$$V_{\varphi}[\lambda(H_{w} \circ f - \nu), [0, b]] < \varepsilon$$

for a suitable $\lambda > 0$, uniformly with respect $w \geq \overline{w} > 0$ and for every interval [0, b], and being $f \in AC^{\varphi}_{loc}(\mathbb{R}^+_0) \cap BV_{\varphi}(\mathbb{R}^+_0)$.

2. Preliminaries

Let X be the space of all Lebesgue measurable functions $f: \mathbb{R}_0^+ \to \mathbb{R}$ where $\mathbb{R}_0^+ = [0, +\infty)$.

Let Φ be the class of all nondecreasing functions $\varphi : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ satisfying the following assumptions:

- i) $\varphi(0) = 0$, $\varphi(u) > 0$ for u > 0;
- ii) φ is a convex function on \mathbb{R}_0^+ ;
- iii) $u^{-1}\varphi(u) \to 0$ as $u \to 0^+$.

From now on we will always suppose that $\varphi \in \Phi$ and we will say that φ is a φ -function.

Now, for every $f \in X$, we define the Musielak-Orlicz φ -variation of f as follows

$$V_{arphi}[f] = V_{arphi}[f; \mathbb{R}^+] = \sup_{\Pi} \sum_{i=1}^n arphi(|f(t_i) - f(t_{i-1})|)$$

where II denotes an increasing finite sequence in \mathbb{R}_0^+ (see [14], [12]). It is easy to see that the functional $\rho: X \to [0, +\infty]$, defined by

$$\rho(f) = V_{\varphi}[f] + |f(a)|,$$

for some $a \geq 0$, $f \in X$, is a convex modular on X (see [12]).

In the following we will identify functions which differ from a constant.

By means of the above modular ρ , we define the space of functions with bounded φ -variation on \mathbb{R}^+_0 in the sense of Musielak-Orlicz, as

$$BV_{\varphi}(\mathbb{R}_0^+)=\{f\in X: \lim_{\lambda\to 0}\rho(\lambda f)=0\}=\{f\in X: \lim_{\lambda\to 0}V_{\varphi}[\lambda f]=0\}.$$

It is possible to observe that by monotonicity and convexity of φ , we have

$$BV_{\omega}(\mathbb{R}_0^+) = \{ f \in X : \exists \lambda > 0 : V_{\omega}[\lambda f] < +\infty \},$$

and there results that if $f \in BV_{\varphi}(\mathbb{R}_0^+)$, then f is bounded in \mathbb{R}_0^+ . In the following we will denote $BV_{\varphi}(\mathbb{R}_0^+)$ simply by BV_{φ} .

We will say that a family of functions $\{f_w\}_{w>0}$ is of equibounded φ -variation if it is of bounded φ -variation uniformly with respect to w>0.

Now we recall the following result about φ -variation, which we will use in the following (see [14], [2]):

j) if $f_1, f_2, \ldots, f_n \in X$, then

$$V_{\varphi}[\sum_{i=1}^n f_i] \leq \frac{1}{n} \sum_{i=1}^n V_{\varphi}[nf_i].$$

Let $\varphi, \eta: \mathbb{R}_0^+ \to \mathbb{R}_0^+$ be two $\varphi-functions$. We will say that a function $f: \mathbb{R}_0^+ \to \mathbb{R}$ is locally (φ, η) -absolutely continuous if there is a $\lambda > 0$ such that the following property holds: for every $\varepsilon > 0$ and every bounded interval $J \subset \mathbb{R}_0^+$, there is a $\delta > 0$ such that for any finite collection of non-overlapping intervals $[a_i, b_i] \subset J$, $i = 1, 2, \ldots, N$, with $\sum_{i=1}^N \varphi(b_i - a_i) < \delta$ there results

$$\sum_{i=1}^{N} \eta(\lambda |f(b_i) - f(a_i)|) < \varepsilon. \tag{1}$$

If $\eta = \varphi$ in the above property, we will say that f is locally φ - absolutely continuous (see [14], [12], [16]), and we will denote by $AC_{loc}^{\varphi}(\mathbb{R}_0^+)$ the class of all these functions.

We will say that a family of functions $\{f_w\}_{w>0}$ is locally equi (φ, η) -absolutely continuous if there is $\lambda > 0$ such that for every $\varepsilon > 0$ and every bounded interval $J \subset \mathbb{R}_0^+$, we can choose a $\delta > 0$ for which the local absolute φ -continuity of f_w holds uniformly with respect to w > 0. For $\eta = \varphi$ we will speak of local equi φ -absolute continuity.

Let now \mathcal{K} be the class of all the functions $K: \mathbb{R}_0^+ \times \mathbb{R} \to \mathbb{R}$ of the form

$$K(t,u) = L(t)H(u), \quad t \in \mathbb{R}_0^+, \ u \in \mathbb{R},$$

where $L \in L^1(\mathbb{R}_0^+)$, $L \geq 0$ and $H : \mathbb{R} \to \mathbb{R}$ is a function satisfying a Lipschitz condition of type

$$|H(u) - H(v)| \le \psi(|u - v|), \quad u, v \in \mathbb{R},\tag{2}$$

where $\psi: \mathbb{R}_0^+ \to \mathbb{R}_0^+$ is a function with the following properties:

- 1. $\psi(0) = 0$, $\psi(u) > 0$ for u > 0;
- 2. ψ is continuous and nondecreasing.

We will denote with Ψ the class of all functions ψ satisfying the above conditions.

Let $\mathbb{K} = \{K_w\}_{w>0}$ be a set of functions from \mathcal{K} , $K_w(t,u) = L_w(t)H_w(u)$, w > 0, $t \in \mathbb{R}_0^+$, $u \in \mathbb{R}$. We will say that \mathbb{K} is *singular* in $BV_{\varphi}(\mathbb{R}_0^+)$, if the following assumptions hold:

(K.1) there exists A > 0, such that $0 < ||L_w||_1 = A_w \le A$ for every w > 0;

(K.2) for every $\delta \in (0,1)$, we have

$$\lim_{w\to+\infty}\int_{|1-t|>\delta}L_w(t)dt=0;$$

(K.3) putting $G_w(u) = H_w(u) - u$, for every $u \in \mathbb{R}$, w > 0, there exists $\lambda > 0$ such that

$$V_{\varphi}[\lambda G_w, J] \to 0$$
, as $w \to +\infty$,

for every bounded interval $J \subset \mathbb{R}_0^+$.

Example 1. For every $n \in \mathbb{N}$, let

$$K_n(t,u) = L_n(t)H_n(u), \quad t \in \mathbb{R}_0^+, \ u \in \mathbb{R},$$

where

$$H_n(u) = \begin{cases} n \log(1 + u/n), & 0 \le u < 1 \\ n u \log(1 + 1/n), & u \ge 1, \end{cases}$$

where we extend in odd-way the definition of H_n for u < 0; moreover $\{L_n\}_{n \in \mathbb{N}}$ is a classical kernel with the mass concentrated at 1, i.e.

$$\int_0^\infty L_n(t)dt = 1, \text{ for every } n \in \mathbb{N},$$

with the property (K.2). It is easy to show that

$$|H_n(u) - H_n(v)| \le |u - v|$$
, for every $u, v \in \mathbb{R}$, and $n \in \mathbb{N}$

and, for every $u \geq 0$, we have

$$|G_n(u)| = |H_n(u) - u| = \begin{cases} u - n \log(1 + u/n), & 0 \le u < 1 \\ u[1 - n \log(1 + 1/n)], & u \ge 1. \end{cases}$$

Then $|G_n(u)|$ is increasing on \mathbb{R}_0^+ . If $\varphi \colon \mathbb{R}_0^+ \to \mathbb{R}_0^+$ is a convex function, using Proposition 1.03 in [14], we have, for every interval J = [0, M],

$$V_{\varphi}[G_n, J] = \varphi(|G_n(M) - G_n(0)|) \to 0$$
, as $n \to +\infty$.

Analogously, by the definition of H_n for u < 0, we have $V_{\varphi}[G_n, [-M, 0]] \to 0$, as $n \to +\infty$.

3. Preliminary lemmas

Before to formulate the following lemmas, we recall the concept of convergence in φ -variation (see [14], [12], [2], [16]).

We say that a sequence $(f_w)_{w\in\mathbb{R}^+}\in BV_{\varphi}$ is convergent in φ -variation to $f \in BV_{\varphi}$ if there exists a $\lambda > 0$ such that $V_{\varphi}[\lambda(f_w - f)] \to 0$ as $w \to +\infty$. Moreover we will use the following relation between the functions φ, ψ and η , being φ, η two φ -functions, with η not necessarily convex and $\psi \in \Psi$.

We say that the triple $\{\varphi, \eta, \psi\}$ is properly directed, if the following condition holds (for similar assumptions see [11]): for every $\lambda > 0$, there exists a constant C_{λ} such that

$$\varphi(C_{\lambda}\psi(u)) \le \eta(\lambda u), \text{ for every } u \ge 0.$$
 (3)

Now we start to formulate the following lemma.

Lemma 1. Let $f: \mathbb{R}_0^+ \to \mathbb{R}$ be a locally (φ, η) -absolutely continuous function. Let $\{H_w\}_{w>0}$ be a class of functions satisfying (2) for a fixed $\psi \in \Psi$ and let us assume that the triple $\{\varphi, \eta, \psi\}$ is properly directed.

Then the family $\{H_w \circ f\}_{w>0}$ is locally equi φ -absolutely continuous.

Proof. Let $\lambda > 0$ be a constant for which the definition of the (φ, η) -absolute continuity of f holds and let $0 < \mu \le C_{\lambda}$, being C_{λ} the constant in (3). Since f is locally (φ, η) -absolutely continuous, for a fixed interval $J \subset \mathbb{R}_0^+$ and $\varepsilon > 0$ there is a $\delta > 0$ such that (1) holds for any finite collection of intervals $I_i = [a_i, b_i], i = 1, 2, ... N$, with $\sum_{i=1}^{N} \varphi(b_i - a_i) < \delta$. For such a family $\{I_i\}$, we have

$$\sum_{i=1}^{N} \varphi(\mu|(H_{w} \circ f)(b_{i}) - (H_{w} \circ f)(a_{i})|)$$

$$\leq \sum_{i=1}^{N} \varphi(C_{\lambda}\psi(|f(b_{i}) - f(a_{i})|))$$

$$\leq \sum_{i=1}^{N} \eta(\lambda|f(b_{i}) - f(a_{i})|) < \varepsilon.$$

Lemma 2. Let f be a locally φ -absolutely continuous function such that $f \in$ $BV_{\varphi}(\mathbb{R}_0^+)$. Let $\{H_w\}_{w>0}$ be a family of functions $H_w:\mathbb{R}\to\mathbb{R}$ such that (K.3)holds. Then there is $\lambda > 0$ such that the following property holds: for every $\varepsilon>0$ and every interval $[0,b]\subset\mathbb{R}^+_0$, there are a $\overline{w}>0$ and a step function $\nu: \mathbb{R}_0^+ \to \mathbb{R}$ such that

$$V_{\varphi}[\lambda(H_{w} \circ f - \nu), [0, b]] < \varepsilon$$

uniformly with respect $w \ge \overline{w} > 0$.

Proof. Let $[0,b] \subset \mathbb{R}_0^+$ be a fixed bounded interval. From Lemma 1 in [16], (see also Theorem 2.21 of [14]), there is a $\lambda > 0$ such that, for a fixed $\varepsilon > 0$ there

exists a division $D = \{\tau_0 = 0, \tau_1, \dots, \tau_n = b\}$ of the interval [0, b], such that the step function $\nu : \mathbb{R}_0^+ \to \mathbb{R}$, defined by

$$u(t) = \begin{cases} f(\tau_{i-1}), & \tau_{i-1} \leq t < \tau_i, \\ f(b), & t \geq b \end{cases} \quad i = 1, \dots m$$

satisfies

$$V_{\omega}[2\lambda(f-\nu),[0,b]]<\varepsilon/2.$$

Now, let $D = \{t_0, t_1, \ldots, t_n\}$ be an arbitrary partition of [0, b], with $t_0 < t_1 < \ldots < t_n$. We have

$$\sum_{i=1}^{n} \varphi(\lambda | H_{w}(f(t_{i})) - \nu(t_{i}) - \{H_{w}(f(t_{i-1})) - \nu(t_{i-1})\}|)$$

$$\leq \frac{1}{2} \sum_{i=1}^{n} \varphi(2\lambda | H_{w}(f(t_{i})) - f(t_{i}) - \{H_{w}(f(t_{i-1})) - f(t_{i-1})\}|)$$

$$+ \frac{1}{2} \sum_{i=1}^{n} \varphi(2\lambda | f(t_{i}) - \nu(t_{i}) - \{f(t_{i-1}) - \nu(t_{i-1})\}|)$$

$$= I_{1} + I_{2}.$$

Since $f \in BV_{\varphi}(\mathbb{R}_0^+)$, f is bounded, i.e. there is M > 0 such that $|f(t)| \leq M$. Putting J = [-M, M], we have

$$I_1 \le \frac{1}{2} V_{\varphi}[2\lambda G_w, J].$$

Thus using (K.3) we can take $\lambda > 0$ such that $I_1 \leq \varepsilon/2$ for sufficiently large w > 0. The assertion follows being $I_2 \leq \frac{1}{2} V_{\varphi}[2\lambda(f - \nu), [0, b]] < \varepsilon/2$.

Lemma 3. Let $f \in BV_{\eta}(\mathbb{R}_0^+)$ and $\{H_w\}$ be a family of functions $H_w : \mathbb{R} \to \mathbb{R}$ satisfying (2). Let us suppose that the triple $\{\varphi, \eta, \psi\}$ is properly directed. Then the family $\{H_w \circ f\}$ is of equibounded φ -variation on every interval $I^* \subset \mathbb{R}_0^+$.

Proof. Let $D = \{t_0, t_1, \dots t_n\} \subset I^*$ be fixed and let $\lambda > 0$. For $0 < \mu \le C_{\lambda}$, C_{λ} being the constant in (3), we have

$$\sum_{i=1}^{n} \varphi(\mu|(H_{w} \circ f)(t_{i}) - (H_{w} \circ f)(t_{i-1})|)$$

$$\leq \sum_{i=1}^{n} \varphi(C_{\lambda}\psi(|f(t_{i}) - f(t_{i-1})|).$$

Now, by (3) we have

$$\sum_{i=1}^{n} \varphi(\mu | (H_{w} \circ f)(t_{i}) - (H_{w} \circ f)(t_{i-1})|)$$

$$\leq \sum_{i=1}^{n} \eta(\lambda | f(t_{i}) - f(t_{i-1})|) \leq V_{\eta}[\lambda f, I^{*}],$$

and so the assertion follows.

4. An approximation result by means of the dilation operator

For any $z \in \mathbb{R}^+$, we will put:

$$\tau_z f(s) = f(sz),$$

for every $f: \mathbb{R}_0^+ \to \mathbb{R}$ and $s \in \mathbb{R}_0^+$. Using the above lemmas, we show the following theorem

Theorem 1. Let φ, η be fixed and let $f: \mathbb{R}_0^+ \to \mathbb{R}$ be a locally φ -absolutely continuous function, such that $f \in BV_{\varphi+\eta}(\mathbb{R}_0^+)$. Let $\{H_w\}$ be a family of functions $H_w: \mathbb{R} \to \mathbb{R}$ satisfying (K.3) and (2) for a fixed $\psi \in \Psi$. Let us assume that the triple $\{\varphi, \eta, \psi\}$ is properly directed. Then for every $\lambda > 0$ there exist a constant $\mu > 0$ and $\overline{w} > 0$ such that

$$\lim_{z\to 1} V_{\varphi}[\mu(\tau_z(H_w\circ f)-(H_w\circ f))]=0$$

uniformly with respect to $w \geq \overline{w}$.

Proof. Let $g_w = H_w \circ f$, for w > 0. Since $f \in BV_\eta(\mathbb{R}_0^+)$, from Lemma 1 of [16], given $\varepsilon > 0$ there is c > 0 and $\lambda_0 > 0$ such that $V_\eta[\lambda f, [c, +\infty)] < \varepsilon$, for every $0 < \lambda \le \lambda_0$. From Lemma 3, there exists a constant $\mu > 0$ so small that

$$V_{\varphi}[4\mu g_{w}, [c, +\infty)] \leq V_{\eta}[\lambda f, [c, +\infty)] < \varepsilon$$

uniformly with respect to w > 0. Let us choose constants d, b with d > b > c and let ν be a step function on [0, d] given in Lemma 2. Let now z be such that $c/b < z < \min\{d/b, b/c\}$. By convexity of φ , and property j), for every z sufficiently near to 1, we have now, for sufficiently small $\mu > 0$,

$$\begin{split} &V_{\varphi}[\mu(\tau_{z}g_{w}-g_{w})]\\ &\leq \frac{1}{2}\{V_{\varphi}[2\mu(\tau_{z}g_{w}-g_{w}),[0,b]]+V_{\varphi}[2\mu(\tau_{z}g_{w}-g_{w}),[b,+\infty)]\}\\ &\leq \frac{1}{2}V_{\varphi}[2\mu(\tau_{z}g_{w}-g_{w}),[0,b]]+\frac{1}{4}\{V_{\varphi}[4\mu(\tau_{z}g_{w}),[b,+\infty)]+V_{\varphi}[4\mu(g_{w}),[b,+\infty)]\}\\ &\leq \frac{1}{2}V_{\varphi}[2\mu(\tau_{z}g_{w}-g_{w}),[0,b]]+\frac{1}{2}V_{\eta}[\lambda f,[c,+\infty)]\\ &\leq \frac{1}{2}V_{\varphi}[2\mu(\tau_{z}g_{w}-g_{w}),[0,b]]+\varepsilon. \end{split}$$

The first inequality comes from a classical property of φ -variation (see [14], Proposition 1.17).

Now we consider the interval $I^* = [0, b]$. We have, for sufficiently small $\mu > 0$,

$$\begin{split} &V_{\varphi}[2\mu(\tau_{z}g_{w}-g_{w}),I^{*}]\\ &\leq \frac{1}{3}\{V_{\varphi}[6\mu\tau_{z}(g_{w}-\nu),I^{*}]+V_{\varphi}[6\mu(\nu-g_{w}),I^{*}]+V_{\varphi}[6\mu(\tau_{z}\nu-\nu),I^{*}]\}\\ &\leq \frac{1}{3}\{2V_{\varphi}[6\mu(g_{w}-\nu),[0,d]]+V_{\varphi}[6\mu(\tau_{z}\nu-\nu),[0,d]]\}\\ &=I_{1}+I_{2}. \end{split}$$

Now from Lemma 2, $I_1 \le \varepsilon/2$, while as in Theorem 1 in [2], we have $I_2 \le \varepsilon/2$. Thus the assertion follows.

5. An approximation theorem for nonlinear Mellin-type convolution operators

Let $\mathbb{K} = \{K_w(t,u)\}_{w>0}$ be a singular kernel in $BV_{\varphi}(\mathbb{R}_0^+)$, where, as before, $K_w(t,u) = L_w(t)H_w(u)$ for $t \in \mathbb{R}_0^+, u \in \mathbb{R}$ and w > 0.

We will study approximation properties of the family of nonlinear integral operators $\mathbb{T} = \{T_w\}$ defined by

$$(T_{\boldsymbol{w}}f)(s) = \int_0^{+\infty} K_{\boldsymbol{w}}(t,f(st))dt = \int_0^{+\infty} L_{\boldsymbol{w}}(t)H_{\boldsymbol{w}}(f(st))dt \ \ s \in \mathbb{R}_0^+,$$

where $f \in Dom\mathbb{T}$. Let us remark here that if the function f is such that $(H_w \circ f) \in L^1(\mathbb{R}_0^+)$, or if $f \in L^\infty(\mathbb{R}_0^+)$, then $f \in Dom\mathbb{T}$. So in particular, if f is of bounded φ -variation, where φ is an arbitrary φ -function, $f \in Dom\mathbb{T}$.

Let now φ, η be two φ -functions, with η not necessarily convex, such that the triple $\{\varphi, \eta, \psi\}$ is properly directed. Then in [11] it is proved that if $f \in BV_{\eta}(\mathbb{R}_0^+)$ then $T_w f$ is of bounded φ -variation, for every w > 0.

We have the following

Theorem 2. Let $f \in AC^{\varphi}_{loc}(\mathbb{R}^+_0) \cap BV_{\varphi+\eta}(\mathbb{R}^+_0)$ and let us assume that the triple $\{\varphi, \eta, \psi\}$ is properly directed. Let $\mathbb{K} = \{K_w\} \subset \mathcal{K}$ be a singular kernel in $BV_{\varphi}(\mathbb{R}^+_0)$. Then there exists a constant $\mu > 0$ such that

$$\lim_{w\to+\infty}V_{\varphi}[\mu(T_wf-f)]=0.$$

Proof. First of all we remark that $T_w f - f \in BV_{\varphi}(\mathbb{R}_0^+)$. We can assume that $A_w = 1$, for every w > 0, where A_w are the constants given in (K.1). Let $\lambda > 0$ such that $V_{\eta}[\lambda f] < +\infty$, and let $\mu > 0$ so small that $4\mu \leq C_{\lambda}$ and

$$\lim_{z \to 1} V_{\varphi}[2\mu(\tau_z(H_w \circ f) - (H_w \circ f))] = 0,$$

uniformly with respect to sufficiently large w > 0 (Theorem 1).

Let $D = \{s_0, s_1, \dots, s_N\} \subset \mathbb{R}_0^+$ be a finite increasing sequence and let μ sufficiently small. We have:

$$\begin{split} &\sum_{i=1}^{N} \varphi[\mu|(T_{w}f)(s_{i}) - (T_{w}f)(s_{i-1}) - f(s_{i}) + f(s_{i-1})|] \\ &= \sum_{i=1}^{N} \varphi[\mu| \int_{0}^{+\infty} L_{w}(t)[H_{w}(f(s_{i}t)) - H_{w}(f(s_{i})) \\ &+ H_{w}(f(s_{i})) - f(s_{i}) - H_{w}(f(s_{i-1}t)) + H_{w}(f(s_{i-1})) - H_{w}(f(s_{i-1}) + f(s_{i-1})]dt|] \end{split}$$

$$\leq \frac{1}{2} \sum_{i=1}^{N} \int_{0}^{+\infty} L_{w}(t) \varphi[2\mu|(H_{w}(f(s_{i}t))) - H_{w}(f(s_{i}))) - (H_{w}(f(s_{i-1}t)) - H_{w}(f(s_{i-1})))|]dt + \frac{1}{2} \sum_{i=1}^{N} \int_{0}^{+\infty} L_{w}(t) \varphi[2\mu|(H_{w}(f(s_{i})) - f(s_{i})) - (H_{w}(f(s_{i-1})) - f(s_{i-1}))|]dt = I_{1} + I_{2}.$$

Now given $\delta \in (0,1)$, we write

$$egin{aligned} I_1 &\leq rac{1}{2} \, \sum_{i=1}^N \left\{ \int_{|1-t| < \delta} + \int_{|1-t| > \delta}
ight\} \ L_w(t) arphi[2\mu|(H_w(f(s_it)) - H_w(f(s_i))) - (H_w(f(s_{i-1}t)) - H_w(f(s_{i-1})))|] dt \ &= I_1^1 + I_1^2. \end{aligned}$$

Next,

$$I_1^1 \le \frac{1}{2} \int_{1-\delta}^{1+\delta} L_w(t) V_{\varphi}[2\mu[\tau_t(H_w \circ f) - (H_w \circ f)]] dt$$

and so, for sufficiently small $\delta \in (0,1)$ we have $I_1^1 \leq \varepsilon$, uniformly with respect to w > 0.

Now, by property j),

$$I_1^2 \le \frac{1}{4} \int_{|1-t| > \delta} L_w(t) V_{\varphi} [4\mu(H_w \circ f)] dt$$

$$\le \frac{1}{4} V_{\eta}[\lambda f] \int_{|1-t| > \delta} L_w(t) dt,$$

and so, from (K.2), $I_1^2 \to 0$, as $w \to +\infty$.

Finally, we estimate I_2 . We have:

$$I_2 \leq \frac{1}{2} \int_0^{+\infty} L_w(t) V_{\varphi}[2\mu G_w] = \frac{1}{2} V_{\varphi}[2\mu G_w].$$

But since f is bounded, there is M > 0, such that $|f(t)| \leq M$ for every $t \in \mathbb{R}_0^+$. Putting J = [-M, M], we apply the singularity assumption (K.3) and we obtain $I_2 \to 0$ as $w \to +\infty$. The proof is now complete.

Acknowledgment. The authors wish to thank Prof. J. Musielak for the interesting and helpful discussions in the matter.

References

- [1] C. Bardaro, J. Musielak and G. Vinti, Approximation by nonlinear integral operators in some modular function spaces, Annales Polonici Math. 63 (1996), 173-182.
- [2] C. Bardaro and G. Vinti, On convergence of moment operators with respect to φ -variation, Applicable Analysis 41 (1991), 247–256.
- [3] C. Bardaro and G. Vinti, Modular estimates of integral operators with homogeneous kernels in Orlicz type spaces, Results in Mathematics, 19 (1991), 46-53.
- [4] C. Bardaro and G. Vinti, Some estimates of integral operators with respect to the multidimensional Vitali φ -variation and applications in fractional calculus, Rendiconti di Matematica, Serie VII, 11, Roma (1991), 405–416.
- [5] C. Bardaro and G. Vinti, Nonlinear weighted Mellin-type convolution operators: approximation properties in modular spaces preprint, Rapporto Tecnico 6/2000, Dipartimento di Matematica e Informatica, Universitá di Perugia.
- [6] P.L. Butzer and S. Jansche, A direct approach to the Mellin Transform, J. Fourier Anal. Appl. 3, (1997), 325-376.
- [7] P.L. Butzer and S. Jansche, *The exponential sampling theorem of signal analysis*, Atti sem. Mat. Fis. Univ. Modena, Suppl. Vol. **46**, a special isue dedicated to Professor Calogero Vinti, (1998), 99–122.
- [8] P.L. Butzer and S. Jansche, Mellin-Fourier series and the classical Mellin transform, in print in Computers and Mathematics with Applications.
- [9] P.L. Butzer and R.J. Nessel, Fourier Analysis and Approximation, I, Academic Press, New York-London, 1971.
- [10] W.M. Kozlowski, Modular Function Spaces, Pure Appl. Math., Marcel Dekker, New York and Basel, 1988.
- [11] I. Mantellini and G. Vinti, Φ-variation and nonlinear integral operators, Atti Sem. Mat. Fis. Univ. Modena, Suppl. Vol 46 (1998), 847–862, a special issue dedicated to Professor Calogero Vinti.
- [12] J. Musielak, Orlicz Spaces and Modular Spaces, Springer-Verlag, Lecture Notes in Math., 1034 (1983).
- [13] J. Musielak, Nonlinear approximation in some modular function spaces I, Math. Japonica, 38 (1993), 83-90.
- [14] J. Musielak and W. Orlicz, On generalized variation I, Studia Math. 18 (1959), 11-41.
- [15] J. Musielak and W. Orlicz, On modular spaces, Studia Math 28 (1959), 49-65.
- [16] S. Sciamannini and G. Vinti, Convergence and rate of approximation in BV_{φ} for a class of integral operators, to appear in Approximation Theory and its Applications.

- [17] G. Vinti, Generalized φ -variation in the sense of Vitali: estimates for integral operators and applications in fractional calculus, Commentationes Math. 34 (1994), 199-213.
- [18] L.C. Young, General inequalities for Stieltjes integrals and the convergence of Fourier series, Math. Annalen 115 (1938), 581-612.

Address: Carlo Bardaro, Sarah Sciamannini, Gianluca Vinti

Dipartimento di Matematica e Informatica Universitá degli Studi di Perugia Via Vanvitelli,1 06123 PERUGIA ITALY

Phone: (075) 5855034; (075) 5853823; (075) 5855032 Fax: (075) 5855024; (075) 5855024; (075) 5855024

E-mail: bardaro@dipmat.unipg.it; sciamannini@yahoo.com; mategian@unipg.it

Received: 7 May 2001