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CONVERGENCE IN BV,, BY NONLINEAR MELLIN-TYPE
CONVOLUTION OPERATORS

CARLO BARDARO, SARAH SCIAMANNINI & GIANLUCA VINTI

Abstract: In this paper we establish convergence results for a family T of nonlinear integral
operators of the form:

+ oo +00
Ku(t, f(st))dt = j Lw(t)Huw(f(st))dt, seRY,
Q

where f € DomT, DomT being the class of all the measurable functions f: R — R such that
Tw/f is well defined as Lebesgue integral for every s € RZ. For the above family of nonlinear
Mellin type operators, under suitable singularity assumptions on the kernels K = {Kw} we
state a convergence result of type limy— 00 Vio[p(Twf — f)] =0, for some constant g > 0 and
for every f belonging to a suitable subspace of B Vi -functions.

Keywords: Musielak-Orlicz ¢-variation, Vip-convergence, locally ¢, 7n-absolutely continuous
functions, nonlinear Mellin type convolution operators.
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1. Introduction

In [16] there is considered convergence with respect to -variation and rate of
approximation for a class of linear integral operators of the form:

@) = [ Kuls.0) 10 a )

defined for every f € X for which (T}, f)(s) is well-defined for every s € R* and
for every w > 0, being K, : R x Rt — R{ a family of kernel functions satisfy-
ing a general homogeneity condition with respect to a measurable function 77, and
where X denotes the space of all Lebesgue measurable functions R - R. Re
sults concerning estimates for operators of the form (I) with respect to p-variation
in one-dimensional and in multidimensional frame can be found in (3], [4], [17].
The concept of p-variation, has been introduced by L.C. Young in (18] and
in [14] this concept was developed by J. Musielak and W. Orlicz in the direction
of function spaces; it represents a generalization of the classical Jordan variation.
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Given a p-function ¢ : Rf — R}, for every f € X, the Musielak-Orlicz
p-variation of f is defined as

Vol fl = Vol f; R = sup D (1 £(t:) — f(ti=1)])

i=1

where the supremum is taken over all finite increasing sequences I1 in R (see
(14], [12] in case of a bounded interval). By means of this functional it is possible
to define the space of functions with bounded -variation on R{ in the sense of
Musielak-Orlicz, as

BV,(Ry)={feX: }E%th[/\f] =0}

It is possible to observe that the functional p: X — [0, +00], defined by

p(f) = Volf1+1f(all,

for some a > 0, f € X, is a convex modular on X; therefore the space BV, (RY)
on
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convergence in -variation is connected with the modular convergence (see [15],
[12], [10]). Namely we will say that

a family (fuw)wer+ € BV,(RJ) s said to be convergent in p-variation to

f € BV,(RY) ifthere exisisa A > 0 such that V,[M(fu—f)] =0 as w — +o0.

The problem of convergence in -variation for a family of nonlinear integral
operators is very delicate. Indeed, the modular p above introduced, does not satisfy
the assumptions which are generally used in modular convergence problems of
various families of this kind of operators (see e.g. [13], [1], [5]). In this paper, using
a different approach, we will study properties of convergence in BV,,(RZ) for the

family of nonlinear integral operators of Mellin-type:

+o0 +oco
(Twf)(s) = Kw(t,f(st))dt=J[) Lo()Hu(f(st))dt s €RE,  (II)

JO

where f € DomT, being DomT the class of all measurable functions f : Ry —
3 s ¢ BY  The

R such that 7, f is well defined as Lebesgue integral for every s € Ry. The
above operators represent a nonlinear version of linear convolution Mellin-type
operators, which are considered in the classical theory of Mellin Transform (see
), [7).

For estimates with respect to ¢-variation (also in the generalized sense) for
operators of type (II), see [11].

The main result of the paper is a convergence theorem (Theorem 2) which
states that for f € ACY_(Rt) N BV,4y(RY), and under singularity assumptions
on the kernels K = {K,,}, there is a constant p > 0 sufficiently small that
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that is the family of nonlinear integral operators converges with respect to -va-
riation towards f. Here ¢ and 5 are two -functions satisfying suitable assump-
tions. In order to formulate the convergence theorem (Theorem 2) there are of
fundamental importance the convergence in ¢-variation for the dilation operator
T, calculated over (Hy o f), as z — 1 (Theorem 1) and an equiboundedness in
- variation for the family {H, 0 f} (Lemma 3) together with the result (Lemma
3) that for every € > 0 there exists a step function v : R} — R such that

VoM Hyo f—v),[0,b] <€

for a suitable A > 0, uniformly with respect w > @ > 0 and for every interval
[0,8], and being f € ACY (R{) N BV,(RY).

2. Preliminaries

Let X be the space of all Lebesgue measurable functions f : RY — R where
R = [0,+400).
Let ® be the class of all nondecreasing functions ¢ : RY — R} satisfying the
following assumptions:
1) (0) =0, p(u) >0 for u>
ii) ¢ is a convex function on R
i) ulp(u) > 0 as u — 0t.
From now on we will always suppose that ¢ € ® and we will say that ¢ is a
w-function.
Now, for every f € X, we define the Musielak-Orlicz p-variation of f as follows

0.

)
+.
0

n
Volf) = Vl£i ] = sup D (78 = F(ti-))
I i=
where IT denotes an increasing finite sequence in R] (see [14], [12]).
It is easy to see that the functional p : X — [0, +o0], defined by
p(f) = Volfl +1f(a),

for some a > 0, f € X, is a convex modular on X (see [12]).

In the following we will identify functions which differ from a constant.

By means of the above modular p, we define the space of functions with bounded
-variation on R{ in the sense of Musielak-Orlicz, as

BV, (Rf)={fe X: )l‘in%)p(/\f) =0}={feX: }l‘in%)VLp[/\f] = 0}.
It is possible to observe that by monotonicity and convexity of ¢, we have

BV,(RY)={fe X :3)>0:V,[Af] < 400},
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and there results that if f € BV,,(R}), then f is bounded in R{. In the following
we will denote BV, (R}) simply by BV,

We will say that a family of functions {fy,}w>o is of equibounded p-variation if
it is of bounded -variation uniformly with respect to w > 0.

Now we recall the following result about ¢-variation, which we will use in
the following (see [14], [2]):

J) if flsf?a"'af'n € X’ then

D A1 =Y Volnfi
=1 i=1

Let @, : Rf — R be two ¢ — functions. We will say that a function
[ RE — R is locally (p,n)-absolutely continuous if there is a A > 0 such
that the following property holds: for every € > 0 and every bounded interval
J C R{, thereis a 6§ > 0 such that for any finite collection of non-overlapping

intervals [a;,b;) C J, i=1,2,...,N, with 337 o(b: — as) <& there results

N
Zn(w(bi) — fla)]) <e. (1)

If 7 = ¢ in the above property, we will say that f is locally - absolutely conti-
nuous (see [14], [12], [16]), and we will denote by ACY _(RY) the class of all these
functions.

We will say that a family of functions {fu }w>o is locally equi (i, ) -absolutely
continuous if there is A > 0 such that for every € > 0 and every bounded interval
J C R}, we can choose a § > 0 for which the local absolute -continuity of
fw holds uniformly with respect to w > 0. For n = ¢ we will speak of local equi
p-absolute continuity.

D =7 N viic

:RY X R — R of the form

K(t,u) = L(t)H(u), t € R{,
where L € L}(Rf), L > 0 and H : R — R is a function satisfying a Lipschitz
condition of type

|H(u) — H(v)| < ¢(ju—v]), v,v€ER, (2)

where ¢ : Rt — R{ is a function with the following properties:
1. ¥(0) =0, ¥(u) > 0 for u > 0;

2. 1) is continuous and nondecreasin

o
= COILINROWS allQ ! sLclicasiiis-

We will denote with ¥ the class of all functions 9 satisfying the above
conditions.
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Let K = {Ku}w>o0 be a set of functions from K, K, (t,u) = Ly (t)Hy(u),
w >0, t € R, ue R We will say that K is singular in BV, (RT), if the
following assumptions hold:

(K.1) there exists A > 0, such that 0 < ||L,||; = Ay < A for every w > 0;
(K.2) for every 6 € (0,1), we have

w—400

lim f Ly (t)dt = 0;
[1~£|>8

(K.3) putting Gy(u) = Hy(u) — u, for every u € R, w > 0, there exists
A > 0 such that
V,[AGu, J] = 0, as w — o0,

for every bounded interval J C RY.

Example 1. For every n € N, let
Kn(t,u) = L, (t)Hn(u), t€R}, ueR,

where
o (o) — [ nlog(l+u/n), 0<u<l
2ip U = lnulog(1+1/n), uZl,

where we extend in odd-way the definition of H, for u < 0; moreover {Lpn}nen is
a classical kernel with the mass concentrated at 1, i.e.

/ L,(t)dt = 1, for every n € N,
0

with the property (K.2). It is easy to show that

|Hn(u) — Hp(v)] < |u—v|, forevery u,v € R, and ne N

and, for every u > 0, we have

. _Ju—nlog(l+ u/n), 0<u<l1
(G ()] = [Hn(u) - u = {u[l —nlgog(l +1/n)], u>1

Then |Gn(u)| is increasing on Ry. If ¢: Rf — RY is a convex function, using
Proposition 1.03 in [14], we have, for every interval J = [0, M],

Vo Gn, J) = o(|Gn(M) — G(0)]) - 0, as n — +00.

Analogously, by the definition of H, for u < 0, we have V,[G,, [-M,0]] — 0,
as n — +00.



22  Carlo Bardaro, Sarah Sciamannini & Gianluca Vinti
3. Preliminary lemmas

Before to formulate the following lemmas, we recall the concept of convergence in
- variation (see [14], [12], [2], [16]).

We say that a sequence (fuw)wer+ € BV, is convergent in p-variation to
f € BV, if there exists a A >0 such that V,[A(fu, — f)] = 0 as w— +o0.
Moreover we will use the following relation between the functions ¢, and 7,

being ¢,n two -functions, with % not necessarily convex and 1 € .

We say that the triple {¢,n, 9} is properly directed, if the following condition
holds (for similar assumptions see [11]): for every A > 0, there exists a constant
C, such that

w(Cap(u)) < n(Mu), for every u > 0. (3)

Now we start to formulate the following lemma.

Lemma 1. Let f : R — R be a locally (p,n)-absolutely continuous function.
Let {Hy}w>o be a class of functions satisfying (2) for a fixed 1 € ¥ and let us
assume that the triple {¢,n,¥} Is properly directed.

Then the family {H,, o f}wso is locally equi p-absolutely continuous.

Proof. Let A > 0 be a constant for which the definition of the (i, n)-absolute
continuity of f holds andlet 0 < u < Cy, being C, the constant in (3). Since f is
locally (i, n7)-absolutely continuous, for a fixed interval J C R} and £ > 0 there
isa 6 >0 such that (1) holds for any finite collection of intervals I; = [a;,b;], i =
1,2,...N, with Zfil p(b; — a;) < 6. For such a family {I;}, we have

N
> ¢ll(Hu o £)(bi) = (Hu 0 £)(e:)])

=]

< iw(cw(lf(bi) — #as))

<) n(If(b) ~ flas)]) <e. m
=1

Lemma 2. Let f be a locally ¢-absolutely continuous function such that f €
BV,(RJ). Let {Hy}wso be a family of functions H, : R — R such that (K.3)
holds. Then there is A > 0 such that the following property holds: for every
€ > 0 and every interval [0,b] C R, there are a W > 0 and a step function
v: R — R such that

VolMHw o f —v),[0,0]) <

uniformly with respect w > w > 0.

Proof. Let [0,b) C Ry be a fixed bounded interval. From Lemma 1 in [16], (see
also Theorem 2.21 of [14]), there is a A > 0 such that, for a fixed € > 0 there
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exists a division D = {79 = 0,7,...,7, = b} of the interval [0, b], such that the
step function v : R} — R, defined by

_J f(ria1), o <t<m, i=1,...m
”(t)_{.f(bL t>b

satisfies
V,[2M(f — v),[0,8]] < e/2.
Now, let D = {to,t1,...,ta} be an arbitrary partition of [0,b], with to < t; <
< t,. We have

Z (M Hu(f(8:)) = v(t:) — {Huw(f(ti-1)) — v(tim1) })

PRAHw(f () = f(&) = {Huw(f(ti-1)) ~ f(tim1)})

IA
o
i

1

i

P (t) — v(t) — {£(ti-1) — v(ti-1) })

l\Dlr-*
F’J=
[un

0

[l
b

. e
+ 3
N(

Since f € V¢(R+), f 1s bounded, ie. there is M > 0 such that |f(¢)| <
M. Putti

,1ng == M v ] we ]’lavn

I ciula

1
I < 5 V,[23Gy, J).

Thus using (K.3) we can take A > 0 such that J; < &/2 for sufficiently large
w > 0. The assertion follows being I < 3 V,,[2A(f — v), [0,b]] < /2. [

Lemma 3. Let f € BV, (R{) and {H,} be a family of functions H,, : R —
R satisfying (2). Let us suppose that the triple {¢,7,%} is properly directed. Then
the family {H,, o f} Is of equibounded -variation on every interval I* C RY.

Proof. Let D = {to,t1,...tn} C I* be fixed and let A > 0. For 0 < u <
C», C, being the constant in (3), we have

S Gl (Hu 0 £)(t) = (Hu o £)(ties))
=1

< Z (Cxp(1f(2:) — F(ti-1)]).

i=1

Now, by (3) we have

> elul(Hw o f)(t:) ~ (Hy o f)(t:-1)])

i=1

< DonAf(E) = fti)]) < VolAf 17,
i=1
and so the assertion follows. [ ]
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4. An approximation result by means of the dilation operator

For any z € RT, we will put:
Tzf(s) = df(sz)?

forevery f: R — R and s € R}. Using the above lemmas, we show the following
theorem

Theorem 1. Let ¢,n be fixed and let f : Rf — R be a locally p-absolutely
continuous function, such that f € BV, ,(R{). Let {H,} be a family of functions
Hy : R — R satisfying (K.3) and (2) for a fixed 9 € ¥. Let us assume that the
triple {¢,m, v} is properly directed.Then for every A > 0 there exist a constant
¢ >0 and @ > 0 such that

lim Vi (7= (Hiy o f) — (Hu 0 ))] = 0

uniformly with respect to w > .

Proof. Let gw = Hy, o f, for w > 0. Since f € BV,(RJ), from Lemma 1 of [16],
given € > 0 there is ¢ > 0 and Ay > 0 such that V,[)f, [¢, +00)] < ¢, for every
0 <A < Ap. From Lemma 3, there exists a constant p > 0 so small that

Vo [41gw, [c, +00)] < V’q[’\fa [c, +oo)] < &

uniformly with respect to w > 0. Let us choose constants d,b with d > b > ¢ and
let v be a step function on [0, d] given in Lemma 2. Let now z be such that ¢/b <
z < min{d/b,b/c}. By convexity of ¢, and property j), for every z sufficiently
near to 1, we have now, for sufficiently small ux > 0,

th[l‘("'zgw - Guw)|

< VL2070 — 90, 0,81] + Vo 2u(rega — gu), b, o))

1 1
< 5Vol2u(Tegw — guw), [0,b]] + —{V, [4p(T2gw), [b, +00)] + Vi [41{gw), [b, +00)]}
2 4
117 ([3) f A A 111 117 Ty = N A1
< 5 Vel¢\Tz29w — Gw ), (U, 0] + 5 Vy|AJT, [C, +0O0)]
2 2
1
< SVo2u(T2gw — gw), [0,b]] + €.
2

The first inequality comes from a classical property of (-variation (see [14], Pro-
position 1.17).
Now we consider the interval I* = [0, b]. We have, for sufficiently small u > 0,

Vo 2672 9w — guw), I*]
1
< g{Vw[GNTz(gw - V)sI*] + Vnp[ﬁl‘(l/ - Guw), I*] + Vw[ﬁl‘(TzV - V)) I‘]}
{2V, l6ulgw — ), 10,dl] + Vilbplraw - ), [0,])
1+ Ia.

IA
W -

f
-
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Now from Lemma 2, I; <¢/2, while as in Theorem 1 in [2], we have I <¢/2.
Thus the assertion follows. ]

5. An approximation theorem for nonlinear Mellin-type convolution
operators

Let K = {Kw(t,u)}w>o be a singular kernel in BV,(R}), where, as before,
Kuy(t,u) = Ly (t)Hy(u) for t € Ry, u € R and w > 0.

We will study approx1mat1on properties of the family of nonlinear integral
operators T = {T,,} defined by

+o0

+00
(Tun)o) = [ Kalt, fstat = [ Lo(Ofu(rlst)de s € &,

where f € DomT. Let us remark here that if the function f issuch that (H,of) €
L 3‘), orif fe L°°(R+), then f € DomT. Soin particular if f is of bounded

A_trariatinn rhe ia an anbitrone, [N By

Y-variailon, wicre ¢ 1s ah aroirary - uuu,uuu, J € DomT.
Let now ¢, 7 be two ¢-functions, with 7 not necessarily convex, such that
the triple {¢,7n,%} is properly directed Then in [11] it is proved that if f ¢

ey

BV,(R{) then T, f is of bounded ¢-variation, for every w > 0.
We have the following

Theorem 2. Let f € ACY (R{) N BV,,1,(R) and let us assume that the tri-

ple {p,n, ¥} is properly directed. Let K = {K,} C K be a singular kernel in
BV,(RZ). Then there exists a constant u > 0 such that

Jm Vola(Tus - 1] =
Proof. First of all we remark that T,,f — f € BV,(R{). We can assume that
Ay =1, for every w > 0, where 4,, are the constants given in (K.1). Let A >
0 such that Vy[Af] < +o0, and let g > 0 so small that 4 < C, and
lim Vi, [20(72 (Haw 0 1) = (Hu o )] = 0,
uniformly with respect to sufficiently large w > 0 (Theorem 1).

Let D = {sp,51,...,58} C R{ be a finite increasing sequence and let p
sufficiently small. We have:

N

Z elel(Twf)(s:) = (Twf)(si—1) — f(si) + f(si-1)]]
+00

S [

w(f(s,-)) — f(8i) = Huw(f(si-1t)) + Huw(f(si-1)) = Hu(f(si-1) + f(si—1)]dt]

Lu()[Huw(f(sit)) — Huw(f(s1))
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N )
<3 [ rtoetu )
= Hy(f()) = (Hu(f{si-18)) = HlF(si-1))) e

L1 N o
Z/ w ()20 (Huw (f(5:)) — f(8:)) — (Huw(f(8i-1)) — f(si-1))]dt
=1 + I».
Now given ¢ € (0, 1), we write

N

1
IL <5 / +/
2 ;{ l1—t|<é |1—t|>6}

L () 2p|(Hw (f (s:t)) — Hy (f(5:))) — (Huw(f(5:-12)) — Huw(f(s:-1)))l]dt
=1l + 17

Next,
148
Ly (£)Vp [2u[me(Hu © f) — (Hy o f)]]dt

bolr—*

J1-6

and so, for sufficiently small § € (0,1) we have I] < e, uniformly with respect
to w > 0.

Now, by property j),

—
Lol V]
IA

/ Ly (t)Vy [dp(Hy o f)ldt
[1— tl>5

|

ValAS] L., (t)dt,

[1—t[>é

rhlr-—t

and so, from (K.2), I? - 0, as w — +00.
Finally, we estimate I5. We have:

1

+c0 1
I, < 2 /0 Lu(t)Vp[2uGy] = 2 Vo [2uGu).

But since f is bounded, there is M > 0, such that |f(¢)] < M for every t €
R}. Putting J = [~M, M], we apply the singularity assumption (K.3) and we
obtain I — 0 as w — 4+00. The proof is now complete. [ |

Acknowledgment. The authors wish to thank Prof. J. Musielak for the intere-
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Convergence in BV, by nonlinear Mellin-type convolution operators 27

References

[1]

2]

3]

[4]

9]

C. Bardaro, J. Musielak and G. Vinti, Approzimation by nonlinear inte-
gral operators in some modular function spaces, Annales Polonici Math. 63
(1996), 173-182.

C. Bardaro and G. Vinti, On convergence of moment operators with respect
to p-variation, A_pp]inab]e Analvsis 41 (1] 001), 247-256.

able Allalysls &L (19792

C. Bardaro and G. Vinti, Modular estimates of integral operators with homo-
geneous kernels in Orlicz type spaces, Results in Mathematics, 19 (1991),
46-53.

C. Bardaro and G. Vinti, Some estimates of integral operators with respect
to the multidimensional Vitali p-variation and applications in fractional cal-
culus, Rendiconti di Matematica, Serie VII, 11, Roma (1991), 405-416.

C. Bardaro and G. Vinti, Nonlinear weighted Mellin-type convolution opera-
tors: approxzimation properties in modular spaces preprint, Rapporto Tecnico
6/2000, Dipartimento di Matematica e Informatica, Universit4 di Perugia.

h A Airont nnad F
P.L. Butzer and S. Jansche, A direct approach t

J. Fourier Anal. Appl. 3, (1997), 325-376.

P.L. Butzer and S. Jansche, The exponential sampling theorem of signal
analysis, Atti sem. Mat. Fis. Univ. Modena, Suppl. Vol. 46, a special isue
dedicated to Professor Calogero Vinti, (1998), 99-122.

P.L. Butzer and S. Jansche, Mellin-Fourier series and the classical Mellin
transform, 1n print in Computers and Mathematics with Applications.

Pt Frnr
tib LTUTLSJOTIIL,

P.L. Butzer and R.J. Nessel, Fourier Analysis and Approzimation, I, Aca-
demic Press, New York-London, 1971.

W.M. Kozlowski, Modular Function Spaces, Pure Appl. Math., Marcel Dek-
ker, New York and Basel, 1688.

[. Mantellini and G. Vinti, ®-variation and nonlinear integral operators, Atti
Sem. Mat. Fis. Univ. Modena, Suppl. Vol 46 (1998), 847-862, a special issue
dedicated to Professor Calogero Vinti.

J. Musielak, Orlicz Spaces and Modular Spaces, Springer-Verlag, Lecture
Notes in Math., 1034 (1983).

J. Musielak, Nonlinear approximation in some modular function spaces
I, Math. Japonica, 38 (1993), 83-90.

J. Musielak and W. Orlicz, On generalized variation I, Studia Math. 18
(1959), 11-41.

J. Musielak and W. Orlicz, On modular spaces, Studia Math 28 (1959),
49-65.

[ el M P JR—

S. Sciamannini and G. Vinti, Convergence and rate of approrimation in
BV, for a class of integral operators, to appear in Approximation The-
ory and its Applications.



28  Carlo Bardaro, Sarah Sciamannini & Gianluca Vinti

(17] G. Vinti, Generalized @-variation in the sense of Vitali: estimates for integral
operators and applications in fractional calculus, Commentationes Math. 34
(1994), 199-213.

(18] L.C. Young, General inequalities for Stieltjes integrals and the convergence

of Fourier series, Math. Annalen 115 (1938), 581-612.

Address: Carlo Bardaro, Sarah Sciamannini, Gianluca Vinti
Dipartimento di Matematica e Informatica Universita degli Studi di Perugia Via Vanvi-
telli,1 06123 PERUGIA ITALY
Phone:(075) 5855034; (075) 5853823; (075) 5855032

Fax:(075) 5855024; (075) 5855024; (075) 5855024
E-mail: bardaro@dipmat.unipg.it; sciamannini@yahoo.com; mategianQunipg.it
Received: 7 May 2001



