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Abstract. Pratt [22] defines action algebras as Kleene algebras with
residuals. In [9] it is shown that the equational theory of *-continuous
action algebras (lattices) is Π0

1−complete. Here we show that the equa-
tional theory of relational action algebras (lattices) is Π0

1−hard, and
some its fragments are Π0

1−complete. We also show that the equational
theory of action algebras (lattices) of regular languages is Π0

1−complete.

1 Introduction

A Kleene algebra is an algebra A = (A,∨, ·,∗ , 0, 1) such that (A,∨, 0) is a join
semilattice with the least element 0, (A, ·, 1) is a monoid, product · distributes
over join ∨, 0 is an annihilator for product, and * is a unary operation on A,
fulfilling the conditions:

1 ∨ aa∗ ≤ a∗ , 1 ∨ a∗a ≤ a∗ , (1)

ab ≤ b⇒ a∗b ≤ b , ba ≤ b⇒ ba∗ ≤ b , (2)

for all a, b ∈ A. One defines: a ≤ b iff a ∨ b = b. The notion of a Kleene algebra
has been introduced by Kozen [15, 16] to provide an algebraic axiomatization
of the algebra of regular expressions. Regular expressions on an alphabet Σ
can be defined as terms of the first-order language of Kleene algebras whose
variables are replaced by symbols from Σ (treated as individual constants). Each
regular expression α on Σ denotes a regular language L(α) ⊆ Σ∗. The Kozen
completeness theorem states that L(α) = L(β) if and only if α = β is valid in
Kleene algebras.

The class of Kleene algebras is a quasi-variety, but not a variety. Redko [23]
shows that the equations true for regular expressions cannot be axiomatized
by any finite set of equations. Pratt [22] shows that the situation is different
for Kleene algebras with residuals, called action algebras. An action algebra
is a Kleene algebra A supplied with two binary operations /, \, fulfilling the
equivalences:

ab ≤ c⇔ a ≤ c/b⇔ b ≤ a\c , (3)



for all a, b, c ∈ A. Operations /, \ are called the left and right residual, respec-
tively, with respect to product. Pratt writes a → b for a\b and a ← b for a/b;
we use the slash notation of Lambek [18]. Pratt [22] proves that the class of
action algebras is a finitely based variety. Furthermore, in the language without
residuals, the equations true in all action algebras are the same as those true in
all Kleene algebras. Consequently, in the language with residuals, one obtains a
finite, equational axiomatization of the algebra of regular expressions.

On the other hand, the logic of action algebras differs in many essential
aspects from the logic of Kleene algebras. Although regular languages are (ef-
fectively) closed under residuals, the Kozen completeness theorem is not true
for terms with residuals. For instance, since L(a) = {a}, then L(a/a) = {ε},
while a/a = 1 is not true in action algebras (one only gets 1 ≤ a/a). It is known
that L(α) = L(β) iff α = β is valid in relational algebras (α, β do not con-
tain residuals). Consequently, the equational theory of Kleene algebras equals
the equational theory of relational Kleene algebras. This is not true for action
algebras (see below).

A Kleene algebra is said to be *-continuous, if xa∗y =sup{xany : n ∈ ω}, for
all elements x, a, y. Relational algebras with operations defined in the standard
way and algebras of (regular) languages are *-continuous. The equational theory
of Kleene algebras equals the equational theory of *-continuous Kleene algebras.
Again, it is not the case for action algebras. The equational theory of all action
algebras is recursively enumerable (it is not known if it is decidable), while
the equational theory of *-continuous action algebras is Π0

1−complete [9], and
consequently, it possesses no recursive axiomatization.

In this paper we study the complexity of relational action algebras and lat-
tices. An action lattice is an action algebra A supplied with meet ∧ such that
(A,∨,∧) is a lattice; Kleene lattices are defined in a similar way. If K is a class of
algebras, then Eq(K) denotes the equational theory of K, this means, the set of
all equations valid in K. KA, KL, ACTA, ACTL will denote the classes of Kleene
algebras, Kleene lattices, action algebras, and action lattices, respectively. KA*
denotes the class of *-continuous Kleene algebras, and similarly for the other
classes.

Let U be a set. P (U2) (the powerset of U2) is the set of all binary relations
on U . For R,S ⊆ U2, one defines: R∨ S = R∪ S, R∧ S = R∩ S, R · S = R ◦ S,
1 = IU = {(x, x) : x ∈ U}, 0 = ∅, R0 = IU , Rn+1 = Rn ◦ R, R∗ =

⋃
n∈ω Rn,

and:
R/S = {(x, y) ∈ U2 : {(x, y)} ◦ S ⊆ R} , (4)

R\S = {(x, y) ∈ U2 : R ◦ {(x, y)} ⊆ S} , (5)

.
P (U2) with so-defined operations and designated elements is an action lattice

(it is a complete lattice). Algebras of this form will be called relational action
lattices; without meet, they will be called relational action algebras. Omitting
residuals, one gets relational Kleene lattices and algebras, respectively. RKA,
RKL, RACTA, RACTL will denote the classes of relational Kleene algebras,



relational Kleene lattices, relational action algebras and relational action lattices,
respectively.

All relational algebras and lattices, mentioned above, are *-continuous. Con-
sequently, Eq(KA)⊆Eq(KA*)⊆Eq(RKA), and similar inclusions are true for
classes KL, KL*, RKL, classes ACTA, ACTA*, RACTA, and classes ACTL,
ACTL*, RACTL. It is known that Eq(KA)=Eq(KA*)=Eq(RKA) (this follows
from the Kozen completeness theorem and the fact mentioned in the third
paragraph of this section). We do not know if Eq(KL)=Eq(KL*). All rela-
tional Kleene lattices are distributive lattices, but there exist nondistributive *-
continuous Kleene lattices, which yields Eq(KL*) 6=Eq(RKL). Since Eq(ACTA)
is Σ0

1 , and Eq(ACTA*) is Π0
1−complete, then Eq(ACTA)6=Eq(ACTA*); also,

Eq(ACTL)6=Eq(ACTL*), for similar reasons [9].

It is easy to show that Eq(ACTA*) (resp. Eq(ACTL*)) is strictly contained
in Eq(RACTA) (resp. Eq(RACTL)); see section 2. Then, Π0

1−completeness of
the former theory does not directly provide any information on the complexity
of the latter. In section 3, we prove that Eq(RACTA) and Eq(RACTL) are
Π0

1−hard. The argument is similar to that in [9] which yields Π0
1−hardness

of Eq(ACTA*) and Eq(ACTL*): we show that the total language problem for
context-free grammars is reducible to Eq(RACTL) and Eq(RACTA).

We do not know whether Eq(RACTA) and Eq(RACTL) are Π0
1 . In [21], it

has been shown that Eq(ACTA*) and Eq(ACTL*) are Π0
1 , using an infinitary

logic for ACTL* [9], which satisfies the cut-elimination theorem and a theorem
on elimination of negative occurrences of *. The elimination procedure replaces
each negative occurrence of α∗ by the disjunction 1∨α∨ . . .∨αn, for some n ∈ ω.
As a result, one obtains expressions which contain 1. Unfortunately, the exact
complexity of Eq(RACTA), Eq(RACTL) is not known; without * they are Σ0

1 .
Andréka and Mikulás [1] prove a representation theorem for residuated meet
semilattices which implies that, in language with ∧, ·, /, \ only, order formulas
α ≤ β valid in RACTL possess a cut-free, finitary axiomatization (the Lambek
calculus admitting meet and empty antecedents of sequents), and consequently,
the validity problem for such formulas is decidable (other results and proofs
can be found in [10, 8]). We use this fact in section 3 (lemma 2) to prove the
results mentioned in the above paragraph and to prove Π0

1−completeness of
some fragments of Eq(RACTL).

In section 4, we consider analogous questions for the equational theory of
action algebras (lattices) of regular languages, and we show that this theory is
Π0

1−complete. We use the completeness of the product-free fragment L (with ∧)
with respect to algebras of regular languages; the proof is a modification of the
proof of finite model property for this system [5, 7].

Our results show that there exists no finitary dynamic logic (like PDL), com-
plete with respect to standard relational frames, which handles programs formed
by residuals and regular operations. Programs with residuals can express the
weakest prespecification and postspecification of a program and related condi-
tions; see Hoare and Jifeng [13].



2 Sequent systems

To provide a cut-free axiom system for the logic of *-continuous action algebras
(lattices) it is expedient to consider sequents of the form Γ ⇒ α such that Γ is
a finite sequence of terms (of the first-order language of these algebras), and α
is a term. (Terms are often called formulas.) Given an algebra A, an assignment
is a homomorphism f from the term algebra to A; one defines f(Γ ) by setting:
f(ε) = 1, f(α1, . . . , αn) = f(α1) · · · · · f(αn). One says that Γ ⇒ α is true in
A under f , if f(Γ ) ≤ f(α). Clearly, f(α) = f(β) iff both f(α) ≤ f(β) and
f(β) ≤ f(α). A sequent is said to be true in A, if it is true in A under any
assignment, and valid in a class K, if it is true in all algebras from K. Since
Eq(K) and the set of sequents valid in K are simply interpretable in each other,
then the complexity of one of these sets equals the complexity of the other.

The sequents valid in ACTL* can be axiomatized by the following system.
The axioms are:

(I) α⇒ α , (1) ⇒ 1 , (0) α, 0, β ⇒ γ , (6)

and the inference rules are:

Γ, α,∆⇒ γ; Γ, β,∆⇒ γ

Γ, α ∨ β, ∆⇒ γ

Γ ⇒ αi

Γ ⇒ α1 ∨ α2
, (7)

Γ, αi,∆⇒ γ

Γ, α1 ∧ α2,∆⇒ γ
,

Γ ⇒ α; Γ ⇒ β

Γ ⇒ α ∧ β
, (8)

Γ, α, β,∆⇒ γ

Γ, α · β, ∆⇒ γ
,

Γ ⇒ α; ∆⇒ β

Γ,∆⇒ α · β
, (9)

Γ, α,∆⇒ γ; Φ⇒ β

Γ, α/β, Φ, ∆⇒ γ
,

Γ, β ⇒ α

Γ ⇒ α/β
, (10)

Γ, β,∆⇒ γ; Φ⇒ α

Γ,Φ, α\β, ∆⇒ γ
,

α, Γ ⇒ β

Γ ⇒ α\β
, (11)

Γ,∆⇒ α

Γ, 1,∆⇒ α
, (12)

(Γ, αn,∆⇒ β)n∈ω

Γ, α∗,∆⇒ β
;

Γ1 ⇒ α; . . . ;Γn ⇒ α

Γ1, . . . , Γn ⇒ α∗
. (13)

These rules are typical left- and right-introduction rules for Gentzen-style
sequent systems. For each pair of rules, the left-hand rule will be denoted by
(operation-L), and the right-hand rule by (operation-R). For instance, rules (7)
will be denoted (∨−L) and (∨−R), respectively. Rule (12) will be denoted (1-
L). Rule (*-L) is an infinitary rule (a kind of ω−rule); here αn stands for the
sequence of n copies of α. (*-R) denotes an infinite set of finitary rules: one for
any fixed n ∈ ω. For n = 0, (*-R) has the empty set of premises, so it is, actually,
an axiom ⇒ α∗; this yields 1⇒ α∗, by (1-L).



Without * and rules (13), the system is known as Full Lambek Calculus (FL);
see Ono [19], Jipsen [14]. The rule (CUT):

Γ, α,∆⇒ β; Φ⇒ α

Γ,Φ, ∆⇒ β
(14)

is admissible in FL, this means: if both premises are provable in FL, then the
conclusion is provable in FL [19]. The (·, /, \)−fragment of FL is the Lambek
calculus L (admitting empty antecedents of sequents), introduced by Lambek [18]
(in a form not admitting empty antecedents) who has proved the cut-elimination
theorem for L.

A residuated lattice is an algebra A = (A,∨,∧, ·, /, \, 0, 1) such that (A,∨,∧)
is a lattice with the least element 0, (A, ·, 1) is a monoid, and /, \ are residuals
for product (they fulfill (3)). It is known that FL is complete with respect to
residuated lattices: a sequent is provable in FL iff it is valid in the class of
residuated lattices. A residuated monoid is a structure A = (A,≤, ·, /, \, 1) such
that (A,≤) is a poset, (A, ·, 1) is a monoid, and /, \ are residuals for product.
L is complete with respect to residuated monoids. These completeness theorems
can be proved in a standard way: soundness is obvious, and completeness can be
shown by the construction of a Lindenbaum algebra. Residuated monoids and
lattices are applied in different areas of logic and computer science; see e.g. [19,
20, 6].

The following monotonicity conditions are true in all residuated monoids: if
a ≤ c and b ≤ d, then ab ≤ cd, a/d ≤ c/b, d\a ≤ b\c (in lattices also: a∨b ≤ c∨d,
a ∧ b ≤ c ∧ d, in action algebras also: a∗ ≤ c∗).

FL with * and rules (13) has been introduced in [9] and denoted by ACTω.
The set of provable sequents can be defined in the following way. For a set X, of
sequents, C(X) is defined as the set of all sequents derivable from sequents from
X by a single application of some inference rule (axioms are treated as inference
rules with the empty set of premises). Then, C(∅) is the set of all axioms. One
defines a transfinite chain Cζ , for ordinals ζ, by setting: C0 = ∅, Cζ+1 = C(Cζ),
Cλ =

⋃
ζ<λ Cζ . Since C is a monotone operator and C0 ⊆ C1, then Cζ ⊆ Cζ+1,

for all ζ, and consequently, Cζ ⊆ Cη whenever ζ < η. The join of this chain
equals the set of sequents provable in ACTω. The rank of a provable sequent
equals the least ζ such that this sequent belongs to Cζ .

The cut-elimination theorem for ACTω is proved in [21] by a triple induction:
(1) on the complexity of formula α in (CUT), (2) on the rank of Γ, α,∆ ⇒ β,
(3) on the rank of Φ ⇒ α (following an analogous proof for L in [4]). Let us
show one case of induction (1): α = γ∗. Assume that Γ, α,∆ ⇒ β and Φ ⇒ α
are provable. We start induction (2). If the left premise is an axiom (I), then
the conclusion of (CUT) is the right premise. If the left premise is an axiom (0),
then the conclusion of (CUT) is also an axiom (0). Assume that the left premise
gets its rank on the basis of an inference rule R; then, each premise of R is of
a smaller rank. If R is any rule, not introducing the designated occurrence of
α, then we directly apply the hypothesis of induction (2). If R introduces the
designated occurrence of α, then R is (*-L) with premises Γ, γn,∆ ⇒ β, for all



n ∈ ω. We start induction (3). If Φ ⇒ α is an axiom (I), then the conclusion
of (CUT) is the left premise of (CUT). If Φ ⇒ α is an axiom (0), then the
conclusion of (CUT) is also an axiom (0). If Φ⇒ α is a conclusion of (*-R), then
the premises are Φ1 ⇒ γ, . . ., Φn ⇒ γ, for some n ∈ ω. For n = 0, we get Φ = ε,
and the conclusion of (CUT) is the premise of (*-L) for n = 0. For n > 0, one
of the premises of (*-L) is Γ, γn,∆ ⇒ β, and we use n times the hypothesis of
induction (1). If Φ ⇒ α is a conclusion of a rule different from (*-R), then we
directly apply the hypothesis of induction (3).

Since the rule (CUT) is admissible in ACTω, then a standard argument
yields the completeness of ACTω with respect to *-continuous action lattices
[21]. Soundness is obvious, and completeness can be shown by the construction
of a Lindenbaum algebra. Using (1-L),(*-L) and (*-R), one easily proves 1⇒ α∗,
α, α∗ ⇒ α∗ and, using (CUT), derives the following rules:

α, β ⇒ β

α∗, β ⇒ β
,

β, α⇒ β

β, α∗ ⇒ β
, (15)

and consequently, the Lindenbaum algebra is an action lattice. By (*-L), it is
*-continuous.

Since ACTω is cut-free, then it possesses the subformula property: every
provable sequent admits a proof in which all sequents consist of subformulas of
formulas appearing in this sequent. In particular, ACTω is a conservative exten-
sion of all its fragments, obtained by a restriction of the language, e.g. L, FL,
the ∨−free fragment, the ∧−free fragment, and so on. All *-free fragments are
finitary cut-free systems, admitting a standard proof-search decision procedure.
So, they are decidable.

Now, we show that Eq(ACTA*)6=Eq(RACTA). In relational algebras, for
R,S ⊆ IU , we have R ◦ S = R ∩ S. Fix a variable p. In L, from p ⇒ p, one
infers ⇒ p/p, by (/-R). Then, 1 ⇒ 1 yields 1/(p/p) ⇒ 1, by (/-L). So, the
sequent 1/(p/p) ⇒ (1/(p/p)) · (1/(p/p)) is valid in RACTA. It is not valid in
ACTA*, since it is not provable in L. (Use the proof-search procedure; notice
that ⇒ p, p/p ⇒ 1, ⇒ 1/(p/p) are not provable.) The same example shows
Eq(ACTL*)6=Eq(RACTL) (another proof: the distribution of ∧ over ∨ is not
valid in ACTL*, since it is not provable in FL).

We define positive and negative occurrences of subterms in terms: α is pos-
itive in α; if γ is positive (resp. negative) in α or β, then it is positive (resp.
negative ) in α ∨ β, α ∧ β, α · β, α∗; if γ is positive (resp. negative) in β, then
it is positive (resp. negative) in β/α, α\β; if γ is positive (resp. negative) in α,
then it is negative (resp. positive) in β/α, α\β.

For n ∈ ω, let α≤n denote α0 ∨ . . . ∨ αn; here αi stands for the product of
i copies of α and α0 is the constant 1. We define two term transformations Pn,
Nn, for any n ∈ ω [9]. Roughly, Pn(γ) (resp. Nn(γ)) arises from γ by replacing
any positive (resp. negative) subterm of the form α∗ by α≤n.

Pn(α) = Nn(α) = α , if α is a variable or a constant, (16)

Pn(α ◦ β) = Pn(α) ◦ Pn(β) , for ◦ = ∨,∧, · , (17)



Nn(α ◦ β) = Nn(α) ◦Nn(β) , for ◦ = ∨,∧, · , (18)

Pn(α/β) = Pn(α)/Nn(β) , Pn(α\β) = Nn(α)\Pn(β) , (19)

Nn(α/β) = Nn(α)/Pn(β) , Nn(α\β) = Pn(α)\Nn(β) , (20)

Pn(α∗) = (Pn(α))≤n , Nn(α∗) = (Nn(α))∗ . (21)

For a sequent Γ ⇒ α, we set Nn(Γ ⇒ α) = Pn(Γ )⇒ Nn(α), where:

Pn(ε) = ε , Pn(α1, . . . , αk) = Pn(α1), . . . , Pn(αk) . (22)

A term occurs positively (resp. negatively) in Γ ⇒ α if it occurs positively (resp.
negatively) in α or negatively (resp. positively ) in Γ .

Palka [21] proves the following theorem on elimination of negative occurrences
of *: for any sequent Γ ⇒ α, this sequent is provable in ACTω iff, for all n ∈ ω,
the sequent Nn(Γ ⇒ α) is provable in ACTω.

As a consequence of this theorem, the set of sequents provable in ACTω is
Π0

1 . Indeed, the condition

Nn(Γ ⇒ α) is provable in ACTω (23)

is recursive, since Nn(Γ ⇒ α) contains no negative occurrences of *, whence it
is provable in ACTω iff it is provable in ACTω−, i.e. ACTω without rule (*-L),
and the latter system is finitary and admits an effective proof-search procedure.
Actually, no result of the present paper relies upon Palka’s theorem except for
some remark at the end of section 3.

3 Eq(RACTL) and Eq(RACTA) are Π0
1−hard

A context-free grammar is a quadruple G = (Σ,N, s, P ) such that Σ, N are
disjoint, finite alphabets, s ∈ N , and P is a finite set of production rules of the
form p 7→ x such that p ∈ N , x ∈ (Σ ∪ N)∗. Symbols in Σ are called terminal
symbols and symbols in N are called nonterminal symbols. The relation ⇒G

is defined as follows: x ⇒G y iff, for some z, u, v ∈ (Σ ∪ N)∗, p ∈ N , we have
x = upv, y = uxv and (p 7→ x) ∈ P . The relation ⇒∗

g is the reflexive and
transitive closure of ⇒G. The language of G is the set:

L(G) = {x ∈ Σ∗ : s⇒G x} . (24)

A context-free grammar G is said to be ε−free, if x 6= ε, for any rule p 7→ x in
P . If G is ε−free, then ε 6∈ L(G). The following problem is Π0

1−complete [12]: for
any context-free grammar G, decide if L(G) = Σ∗. Since the problem if ε ∈ L(G)
is decidable, and every grammar G can be effectively transformed into an ε−free
grammar G′ such that L(G′) = L(G) − {ε}, then also the following problem is
Π0

1−complete: for any ε−free context-free grammar G, decide if L(G) = Σ+ [9].
Types will be identified with (/)−terms of the language of ACTω, this means,

terms formed out of variables by means of / only. A Lambek categorial grammar



is a tuple G = (Σ, I, s) such that Σ is a finite alphabet, I is a finite relation
between symbols from Σ and types, and s is a designated variable. For a ∈ Σ,
I(a) denotes the set of all types α such that aIα. (The relation I is called the
initial type assignment of G.) For a string a1 . . . an ∈ Σ+, ai ∈ Σ, and a type
α, we write a1 . . . an →G α if there are α1 ∈ I(a1), . . ., αn ∈ I(an) such that
α1, . . . , αn ⇒ α is provable in L. We define the language of G as the set of all
x ∈ Σ+ such that x →G s. (Notice that we omit commas between symbols in
strings on Σ, but we write them in sequences of terms appearing in sequents.) In
general, Lambek categorial grammars admit types containing ·, \ and, possibly,
other operations [6], but we do not employ such grammars in this paper.

It is well-known that, for any ε−free context-free grammar G, one can ef-
fectively construct a Lambek categorial grammar G′ with the same alphabet Σ
and such that L(G) = L(G′); furthermore, the relation I of G′ employs very
restricted types only: of the form p, p/q, (p/q)/r, where p, q, r are variables.
This fact has been proved in [2] for classical categorial grammars and extended
to Lambek categorial grammars by several authors; see e.g. [4, 9]. One uses the
fact that, for sequents Γ ⇒ s such that Γ is a finite sequence of types of the
above form and s is a variable, Γ reduces to s in the sense of classical categorial
grammars iff Γ ⇒ s is provable in L.

Consequently, the problem if L(G) = Σ+, for Lambek categorial grammars
G, is Π0

1−complete. In [9] it is shown that this problem is reducible to the
decision problem for ACTω. Then, Eq(ACTL*) is Π0

1−hard, and the same holds
for Eq(ACTA*). Below we show that this reduction also yields the Π0

1−hardness
of Eq(RACTL) and Eq(RACTA).

Let G = (Σ, I, s) be a Lambek categorial grammar. We can assume IG(a) 6=
∅, for any a ∈ Σ; otherwise L(G) 6= Σ+ immediately. We can also assume that
all types involved in I are of one of the forms: p, p/q, (p/q)/r, where p, q, r are
variables. Fix Σ = {a1, . . . , ak}, where ai 6= aj for i 6= j. Let αi

1, . . . , α
i
ni

be all
distinct types α ∈ I(ai). For any i = 1, . . . , k, we form a term βi = αi

1∧ . . .∧αi
ni

.
We also define a term γ(G) = β1∨ . . .∨βk. The following lemma has been proved
in [9].

Lemma 1. L(G) = Σ+ iff (γ(G))∗, γ(G)⇒ s is provable in ACTω.

Proof. For the sake of completeness, we sketch the proof. L(G) = Σ+ iff, for
all n ≥ 1 and all sequences (i1, . . . , in) of integers from the set [k] = {1, . . . , k},
ai1 . . . ain

→G s. The latter condition is equivalent to the following: for any
j = 1, . . . , n, there exists α

ij

lj
∈ I(aij

) such that αi1
l1

, . . . , αin

ln
⇒ s is provable in

L. The latter condition is equivalent to the following: βi1 , . . . , βin ⇒ s is provable
in FL. One uses the following fact: if Γ ⇒ α is a (∧, /)−sequent in which all
occurrences of ∧ are negative, and γ1∧γ2 occurs in this sequent (as a subterm of a
term), then Γ ⇒ α is provable in FL iff both Γ ′ ⇒ α′ and Γ ′′ ⇒ α′′ are provable
in FL, where Γ ′ ⇒ α′ (resp. Γ ′′ ⇒ α′′) arises from Γ ⇒ α by replacing the
designated occurrence of γ1∧γ2 by γ1 (resp. γ2). Now, for n ≥ 1, βi1 , . . . , βin

⇒ s
is provable in FL, for all sequents (i1, . . . , in) ∈ [k]n, iff (γ(G))n ⇒ s is provable
in FL (here we use the distribution of product over join). By (*-L), (*-R), the



latter condition is equivalent to the following: (γ(G))∗, γ(G) ⇒ s is provable in
ACTω. ut

Andréka and Mikulás [1] prove that every residuated meet semilattice is
embeddable into a relational algebra. The embedding h does not preserve 1; one
only gets: 1 ≤ a iff IU ⊆ h(a). It follows that the (∧, ·, /, \)−fragment of FL is
(even strongly) complete with respect to relational algebras, which is precisely
stated by the following lemma (from [1]; also see [10, 8] for different proofs).

Lemma 2. Let Γ ⇒ α be a (∧, ·, /, \)−sequent of the language of FL. Then,
Γ ⇒ α is provable in FL iff it is valid in RACTL.

We use lemmas 1 and 2 to prove the following theorem.

Theorem 1. Eq(RACTL) is Π0
1−hard.

Proof. We show that (γ(G))∗, γ(G) ⇒ s is provable in ACTω iff the sequent is
valid in RACTL. The implication (⇒) is obvious. Assume that (γ(G))∗, γ(G)⇒
s is not provable in ACTω. Then, for some n ∈ ω, (γ(G))n, γ(G) ⇒ s is not
provable in ACTω, whence it is not provable in FL (it is *-free). By (CUT) and (·-
R), (γ(G))n ·γ(G)⇒ s is not provable in FL The term (γ(G))n ·γ(G) is equivalent
in FL to the disjunction of all terms βi1 · · · · · βin+1 such that (i1, . . . , in+1) ∈
[k]n+1. By (∨−L), (∨−R) and (CUT), a sequent γ1 ∨ . . . ∨ γm ⇒ γ is provable
in FL iff all sequents γi ⇒ γ, for i = 1, . . . ,m, are provable in FL. Consequently,
there exists a sequence (i1, . . . , in+1) ∈ [k]n+1 such that βi1 · · · · · βin+1 ⇒ s
is not provable in FL. The latter sequent does not contain operation symbols
other than ∧, ·, /, \, so it is not valid in RACTL, by lemma 2. Consequently,
(γ(G))n, γ(G)⇒ s is not valid in RACTL. Then, (γ(G))∗, γ(G)⇒ s is not valid
in RACTL (we use the fact that f(αn) ⊆ f(α∗), for any assigment f and any
formula α). Using lemma 1, we obtain: L(G) = Σ+ iff (γ(G))∗, γ(G) ⇒ s is
valid in RACTL. ut

For RACTA, we need a modified reduction. We use a lemma, first proved in
[4].

Lemma 3. Let α1, . . . , αn be types, and let s be a variable. Then, α1, . . . , αn ⇒
s is provable in L iff s/(s/α1), . . . , s/(s/αn)⇒ s is provable in L.

Proof. We outline the proof. A type α/Γ is defined by induction on the length
of Γ : α/ε = α, α/(Γβ) = (α/β)/Γ . So, p/(qr) = (p/r)/q. We consider the
(/)−fragment of L. One shows: if (s/β1 . . . βk),∆⇒ s is provable in this system,
then there exist ∆1, . . . ,∆k such that ∆ = ∆1 . . .∆k and, for each i = 1, . . . , k,
∆i ⇒ αi is provable (use induction on cut-free proofs; the converse implication
also holds, by (I), (/−L)).

The ‘only if’ part of the lemma holds, by applying (/−R), (I), (/−L) n times.
Now, assume that the right-hand sequent is provable. Denote βi = s/(s/αi).
By the above paragraph, β2, . . . , βn ⇒ s/α1 is provable, so β2, . . . , β1, α1 ⇒ s
is provable (the rule (/−R) is reversible, by (CUT) and the provable sequent
α/β, β ⇒ α). Repeat this step n− 1 times. ut



Let G = (Σ, I, s) be a Lambek categorial grammar. We construct a Lambek
categorial grammars G′ = (Σ, I ′, s) such that I ′ assigns s/(s/α) to ai ∈ Σ iff G
assigns α to ai. By lemma 3, L(G′) = L(G). For G′, we construct terms (αi

j)
′,

(βi)′ and γ(G′) in a way fully analogous to the construction of αi
j , βi and γ(G).

Now, the term (βi)′ is of the form:

(s/(s/αi
1)) ∧ . . . ∧ (s/(s/αi

ni
)) . (25)

Using the equation (a/b)∧ (a/c) = a/(b∨ c), valid in residuated lattices, we can
transform the above term into an equivalent (in FL) ∧−free term:

s/[(s/αi
1) ∨ . . . ∨ (s/αi

ni
)]. (26)

Let δ(G′) be the term arising from γ(G′) by transforming each constituent
(βi)′ as above. Then, f(δ(G′)) = f(γ(G′)), for any assignment f .

Theorem 2. Eq(RACTA) is Π0
1−hard.

Proof. L(G) = Σ+ iff L(G′) = Σ+. As in the proofs of lemma 1 and theorem
1, one shows that the second condition is equivalent to: (γ(G′))∗, γ(G′) ⇒ s is
valid in RACTL. The latter condition is equivalent to: (δ(G′))∗, δ(G′) ⇒ s is
valid in RACTL. But the latter sequent is ∧−free, whence it is valid in RACTL
iff it is valid in RACTA. ut

We can also eliminate ∨ (preserving ∧). Using the equation (a ∨ b)∗ =
(a∗b)∗a∗, valid in all Kleene algebras, we can transform (γ(G))∗ into an equiv-
alent (in ACTω) term φ(G), containing ∗,∧, ·, / only. Then, (γ(G))∗, γ(G) ⇒ s
is valid in RACTL iff φ(G), γ(G) ⇒ s is valid in RACTL iff φ(G) ⇒ s/γ(G) is
valid in RACTL, and s/γ(G) is equivalent to a ∨−free term (see the equation
between (25) and (26)). Since a ≤ b iff a∧b = a, then we can reduce L(G) = Σ+

to a ∨−free equation.

Corollary 1. The ∨−free fragment of Eq(RACTL) is Π0
1−hard.

We have found a lower bound for the complexity of Eq(RACTL): it is at
least Π0

1 . We did not succeed in determining the upper bound. Both 1 and ∨
cause troubles. In section 2, we have shown a sequent with 1 which is valid in
RACTL, but not valid in ACTL*. According to the author’s knowledge, the pre-
cise complexity of the equational theory of relational residuated lattices (upper
semilattices) is not known; it must be Σ0

1 , since valid equations can be faithfully
interpreted as valid formulas of first-order logic.

We can show some Π0
1−complete fragments of Eq(RACTL). For instance, the

set of all sequents of the form α, γ∗, β ⇒ p, with α, β, γ being finite disjunctions
of (/, \,∧)−terms, valid in RACTL is Π0

1−complete. This sequent is valid iff,
for all n ∈ ω, α, γn, β ⇒ δ is valid, and the latter sequents are valid iff they are
provable in FL (see the proof of theorem 1). Consequently, this set of sequents is
Π0

1 . It is Π
0)
1 −hard, again by the proof of theorem 1. This set can be extended

as follows.



A term is said to be good if it is formed out of (∧, /, \)−terms by · and *
only. A sequent Γ ⇒ α is said to be nice if it is a (∧, ·,∗ , /, \)−sequent, and any
negatively occurring term of the form β∗ occurs in this sequent within a good
term γ, which appears either as an element of Γ , or in a context δ/γ or γ\δ.
Using the *-elimination theorem [21], one can prove that the set of nice sequents
valid in RACTL is Π0

1−complete.

4 Algebras of regular languages

A language on Σ is a set L ⊆ Σ∗. P (Σ∗) is the set of all languages on Σ; it
is a complete action lattice with operations and designated elements, defined as
follows: L1 ∨ L2 = L1 ∪ L2, L1 ∧ L2 = L1 ∩ L2, L1 · L2 = {xy : x ∈ L1, y ∈ L2},
1 = {ε}, 0 = ∅, L0 = {ε}, Ln+1 = Ln · L, L∗ =

⋃
n∈ω Ln, and:

L1/L2 = {x ∈ Σ∗ : {x} · L2 ⊆ L1} , (27)

L1\L2 = {x ∈ Σ∗ : L1 · {x} ⊆ L2} . (28)

By LAN we denote the class of all action lattices of the form P (Σ∗), for
finite alphabets Σ. We add symbols from Σ to the language of ACTω as new
individual constants. Regular expressions on Σ can be defined as variable-free
terms without meet and residuals. An assignment L(a) = {a}, for a ∈ Σ, is
uniquely extended to all regular expressions; it is a homomorphism from the
term algebra to P (Σ∗). Languages of the form L(α), α is a regular expression
on Σ, are called regular languages on Σ. By REGL(Σ) we denote the set of all
regular languages on Σ. It is well-known that REGL(Σ) is a subalgebra of the
action lattice P (Σ∗), whence it is a *-continuous action lattice. By REGLAN
we denote the class of all action lattices REGL(Σ), for finite alphabets Σ.

We will show that Eq(REGLAN) is Π0
1−complete. It is quite easy to show

that Eq(REGLAN) is Π0
1 . Since regular languages are effectively closed un-

der meet and residuals, L(α) can be computed for all variable-free terms α
with individual constants from Σ. An equation α = β is valid in REGLAN iff
L(σ(α))) = L(σ(β)), for all finite alphabets Σ and all substitutions σ assigning
regular expressions on Σ to variables.

We note that Eq(RACTL) is different from Eq(REGLAN) and Eq(LAN).
The sequent p, 1/p ⇒ 1 is valid in LAN, and consequently, in REGLAN. Let
f be an assignment of terms in P (Σ∗). If f(p) = ∅, then f(p, 1/p) = ∅. If
f(p) = {ε}, then f(1/p) = {ε} and f(p, 1/p) = {ε} = f(1). Otherwise f(1/p) =
∅ and f(p, 1/p) = ∅. This sequent is not valid in RACTL. Let U = {a, b},
a 6= b, and f(p) = {(a, b)}. Then, f(1/p) = {(a, b), (b, a), (b, b)}, so f(p, 1/p) =
{(a, a), (a, b)} is not contained in IU .

In [5], it has been shown that the (∧, /, \)−fragment of FL possesses finite
model property. The proof yields, actually, the completeness of this fragment
with respect to so-called co-finite models (P (Σ∗), f) such that f(p) is a co-finite
subset of Σ∗, for any variable p. Then, f(p) is a regular language on Σ. We
obtain the following lemma. The proof is a modification of the proof of finite
model property of this fragment, given in [7].



Lemma 4. Let Γ ⇒ α be a (∧, /, \)−sequent. Then, Γ ⇒ α is provable in FL
iff it is valid in REGLAN.

Proof. The ‘only if’ part is obvious. For the ‘if’ part, assume that Γ ⇒ α is
not provable. Let T be the set of all subterms appearing in this sequent. We
consider languages on the alphabet T . An assignment fn, n ∈ ω, is defined as
follows: for any variable p, fn(p) equals the set of all ∆ ∈ T ∗ such that either
v(∆) > n, or ∆⇒ p is provable (v(∆) denotes the total number of occurrences
of variables in ∆). As usual, fn is extended to a homomorphism from the term
algebra to P (T ∗). Since all languages fn(p) are co-finite, then all languages fn(β)
are regular. If ∆ ∈ T ∗, v(∆) > n, then ∆ ∈ fn(β), for all terms β (easy induction
on β).

By induction on β ∈ T , we prove: (i) if v(∆) ≤ n−v(β) and ∆ ∈ fn(β), then
∆⇒ β is provable, (ii) if v(β) ≤ v(∆) and ∆⇒ β is provable, then ∆ ∈ fn(β).
For β = p, (i) and (ii) follow from the definition of fn.

Let β = γ/δ. Assume v(∆) ≤ n − v(β) and ∆ ∈ fn(β). Since v(δ) ≤ v(δ),
then δ ∈ fn(δ), by (I) and the induction hypothesis (use (ii)). So, (∆δ) ∈ fn(γ),
by the definition of residuals in P (T ∗). Since v(∆δ) ≤ n − v(γ), then ∆, δ ⇒ γ
is provable (use (i)). By (/−R), ∆ ⇒ β is provable. Assume that v(β) ≤ v(∆)
and ∆⇒ β is provable. By the reversibility of (/−R), ∆, δ ⇒ γ is provable. Let
Φ ∈ fn(δ). Case 1: v(Φ) > n − v(δ). Then, v(∆Φ) > n, whence (∆Φ) ∈ fn(γ).
Case 2: v(Φ) ≤ n − v(δ). Then, Φ ⇒ δ is provable, by the induction hypothesis
(use (i)), and consequently, ∆, Φ⇒ γ is provable, by (CUT). Since v(γ) ≤ v(∆Φ),
then (∆Φ) ∈ fn(γ), by the induction hypothesis (use (ii)). So, ∆ ∈ fn(β). The
case β = δ\γ is dual.

Let β = γ ∧ δ. Assume v(∆) ≤ n − v(β) and ∆ ∈ fn(β). Then, v(∆) ≤
n− v(γ) and ∆ ∈ fn(γ). Also v(∆) ≤ n− v(δ) and ∆ ∈ fn(δ). By the induction
hypothesis, ∆ ⇒ γ and ∆ ⇒ δ are provable, and consequently, ∆ ⇒ β is
provable, by (∧−R). Assume that v(β) ≤ v(∆) and ∆ ⇒ β is provable. Since
β ⇒ γ and β ⇒ δ are provable, by (I) and (∧−L), then ∆ ⇒ γ and ∆ ⇒ δ are
provable, by (CUT). We have v(γ) ≤ v(∆) and v(δ) ≤ v(∆), and consequently,
∆ ∈ fn(γ) and ∆ ∈ fn(δ), by the induction hypothesis, which yields ∆ ∈ fn(β).

Take n = v(Γ ⇒ α). Let Γ = α1 . . . αk. Since v(αi) ≤ v(αi), then αi ∈
fn(αi), by (I) and (ii). Consequently, Γ ∈ fn(Γ ). Since v(Γ ) = n − v(α), then
Γ 6∈ fn(α), by the assumption and (i) (this also holds for Γ = ε). Consequently,
Γ ⇒ α is not valid in REGLAN. ut

Theorem 3. Eq(REGLAN) is Π0
1−complete.

Proof. We know that this set is Π0
1 . We show that it is Π0

1−hard. We return to
lemma 1 in section 3. We show that (γ(G))∗, γ(G) ⇒ s is provable in ACTω
iff this sequent is valid in REGLAN. The implication (⇒) is obvious. To prove
(⇐) assume that (γ(G))∗, γ(G) ⇒ s is not provable in ACTω. As in the proof
of theorem 1, we show that there exists a sequence (i1, . . . , in) ∈ [k]n, n ≥ 1,
such that βi1 · · · · · βin

⇒ s is not provable in FL. By (·−L), βi1 , . . . , βin
⇒ s is

not provable in FL. By lemma 4, the latter sequent is not valid in REGLAN.



As in the proof of theorem 1, we show that (γ(G))∗, γ(G) ⇒ s is not valid in
REGLAN. So, L(G) = Σ+ iff (γ(G))∗, γ(G)⇒ s is valid in REGLAN. ut

We note that Eq(LAN) belongs to a higher complexity class. The Horn for-
mulas valid in LAN can be expressed by equations valid in LAN. Notice that
α ≤ β is true iff 1 ≤ β/α is true. Also the conjunction of formulas 1 ≤ αi,
i = 1, . . . , n, is true iff 1 ≤ α1 ∧ · · · ∧αn is true. Finally, the implication ‘if 1 ≤ α
then 1 ≤ β’ is true iff 1 ∧ α ≤ β is true.

The Horn theory of LAN, restricted to (/, \)−terms, is Σ0
1−complete [3].

The proof of theorem 3 yields the Π0
1−hardness of Eq(LAN); so, it is not Σ0

1 .
If it were Π0

1 , then this restricted Horn theory of LAN would be recursive. So,
Eq(LAN) is neither Π0

1 , nor Σ0
1 .

In [17, 11] the Horn theory of KA* and the Horn theory of RKA are shown to
be Π1

1−complete. This yields a lower bound for the complexity of Horn theories
of ACTA* and RACTA (every *-continuous Kleene algebra is embeddable into
a complete, whence *-continuous, action lattice [9]).
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