
Computability 1

Computability

Wojciech Buszkowski

Faculty of Mathematics and Computer Science
Adam Mickiewicz University

Based on: N. Cutland, Computability. An introduction to recursive
function theory. Cambridge University Press, 1992.

Computability 2

2. The register machine

Abbreviation: RM

Other names: machine RAM, Minsky machine

R1 R2 R3 . . .

r1 r2 r3 . . .

Ri - the i−th register (i ≥ 1)

There are infinitely many registers.

Registers store natural numbers. 0 is stored in the ‘empty’ registers.

ri - the number stored in Ri

Computability 3

Instructions: (here m, n, q ≥ 1)

Name Symbol Meaning
Zeroing Z(n) rn := 0
Successor S (n) rn := rn + 1
Copying T (m, n) rn := rm

Conditional Jump J(m, n, q) if rm = rn then goto Iq

A program is a finite sequence of instructions P = (I1, . . . , Is); s is
the length of P. We admit s = 0.

A configuration is an infinite sequence (rn)n≥1 such that rn = 0 for all
but finitely many n; it shows the contents of registers.

Computability 4

Let P = (I1, . . . , Is), s > 0, be a program. The computation of P on a
configuration (r1

n)n≥1 can informally be described as follows.

The initial configuration is (r1
n)n≥1. We execute the instructions of P,

starting from I1; after I j we execute I j+1 except for three cases:

(1) I j = J(m, n, q), 1 ≤ q ≤ s and rm = rn for the current
configuration; then we execute Iq after I j,

(2) I j = J(m, n, q) , s < q and rm = rn for the current configuration;
then the computation ends,

(3) j = s and the conditions of (1), (2) do not hold; then the
computation ends.

A step of the computation is the execution of one instruction.

The computation of P on a configuration can be finite or infinite. The
result of a finite computation is r1 for the final configuration.

Computability 5

We omit a precise definition; it will be given later on in terms of
encoding. We write x for (x1, . . . , xn).

Let P be a program and x ∈ Nn.

We write P(x) ↓, if the computation of P on (x1, . . . , xn, 0, 0, . . .) is
finite, and P(x) ↑ otherwise.

We write P(x) ↓ y, if P(x) ↓ and y is the result of this computation.

We define f (n)
P - the n−ary function computed by P.

Dom(f (n)
P) = {x ∈ Nn : P(x) ↓}

For x ∈Dom(f (n)
P), f (n)

P (x) equals the unique y such that P(x) ↓ y.

We define COM(n)
RM as the set of all n−ary functions computed by

programs for RM and:

COMRM =
⋃

n≥1COM(n)
RM (the set of functions computable on RM).

Computability 6

E

(1) f (x, y) = x + y

the initial configuration: | x | y | 0 |
after k macro-steps: | x + k | y | k |
Program:

1. J(2, 3, 5) % r2 = r3? If YES, then STOP.
2. S (1) % r1 := r1 + 1
3. S (3) % r3 := r3 + 1
4. J(1, 1, 1) % GO TO 1

Computability 7

(2)

f (x, y) =

1 if x < y
∞ otherwise

the initial configuration: | x | y |
after k macro-steps: | x + k | y |
Program:

1. S (1) % r1 := r1 + 1
2. J(1, 2, 4) % r1 = r2? If YES, then GO TO 4
3. J(1, 1, 1) % GO TO 1
4. Z(1) % r1 := 0
5. S (1) % r1 := r1 + 1

Computability 8

(3) f (x, y) = c<(x, y)

the initial configuration: | x | y | 0 | 0 |
after k macro-steps: | x + k | y + k | x | y |

1. J(1, 2, 12)
2. T (1, 3) % r3 := r1

3. T (2, 4) % r4 := r2

4. S (1)
5. S (2)
6. J(1, 4, 9)
7. J(2, 3, 12)
8. J(1, 1, 4) % GO TO 4
9. Z(1)
10. S (1) % | 1 | . . . |
11. J(1, 1, 13) % STOP
12. Z(1) % | 0 | . . . |

Computability 9

Def. 1. A program (I1, . . . , Is) is said to be standard, if q ≤ s + 1 for
any instruction J(−,−, q) occurring in this program.

Def. 2. We say that programs P,Q are equivalent, if f (n)
P = f (n)

Q for all
n ≥ 1.

Proposition 1. Every program is equivalent to a standard program
(of the same length).

P. Replace every J(−,−, q) such that s < q by J(−,−, s + 1).

Def. 3. Let P,Q be standard programs, P = (IP
1 , . . . , I

P
s),

Q = (IQ
1 , . . . , I

Q
t). We define the composition P; Q as the program

(I1, . . . , Is+t) such that:

I j = IP
j for all 1 ≤ j ≤ s and I j = (IQ

j−s)
′ for all s < j ≤ s + t,

where (IQ
j)′ = IQ

j for IQ
j , J(−,−,−), (IQ

j)′ = J(−,−, s + q) for
IQ

j = J(−,−, q). Clearly P; Q is standard.

Computability 10

Proposition 2. (P; Q); R = P; (Q; R) for all standard programs
P,Q,R.

We write P1; P2; . . . ; Pn.

By ρ(P) we denote the greatest register number occurring in P.

Def. 4. Let k1, . . . , kn, k be positive integers such that ki > n for any
1 ≤ i ≤ n and ki , k j for i , j. Let P be a standard program. We
define a program P[k1, . . . , kn → k]. This program:

takes the input data from registers Rk1 , . . . ,Rkn ,

copies them in R1, . . . ,Rn, respectively,

cleans the remaining registers needed for program P,

runs P, and copies the result in Rk.

Computability 11

1. T (k1, 1)
...

n. T (kn, n)
n + 1. Z(n + 1)
...

ρ(P). Z(ρ(P));
P;
T (1, k)

The instructions from n + 1 to ρ(P) are absent, if ρ(P) ≤ n.

Clearly P[k1, . . . , kn → k] is standard.

Computability 12

Theorem 1. Every partial recursive function is computable on RM.

P. In order to prove REC⊆COMRM we show that COMRM

contains all basic recursive functions and is closed under
substitution, primitive recursion and minimum.

Z(x) = 0. P = (Z(1)).

S (x) = x + 1. P = (S (1)).

In
i (x) = xi. P = (T (i, 1)).

Substitution. Assume that f , g1, . . . , gk ∈COMRM and
h(x) ' f (g1(x), . . . , gk(x)).

Let P, P1, . . . , Pk be standard programs computing f , g1, . . . , gk,
respectively. We construct a standard program Q, computing h.

We denote m = max(n, k, ρ(P), ρ(P1), . . . , ρ(Pk)).

The input data x1, . . . , xn are stored in registers Rm+1, . . . ,Rm+n and
the values g1(x), . . . , gk(x) in Rm+n+1, . . . ,Rm+n+k.

Computability 13

| . . . | Rm+1x1 | . . . | Rm+nxn |
Rm+n+1

g1(x) | . . . |
Rm+n+k

gk(x) |

1. T (1,m + 1)
...

n. T (n,m + n);

P1[m + 1, . . . ,m + n→ m + n + 1];
...

Pk[m + 1, . . . ,m + n→ m + n + k];

P[m + n + 1, . . . ,m + n + k → 1]

Notice that Q(x) ↓ if and only if Pi(x) ↓ for all 1 ≤ i ≤ k and
P(g1(x), . . . , gk(x)) ↓.

Computability 14

Primitive recursion

h(x, 0) = f (x)

h(x, y + 1) = g(x, y, h(x, y))

Let P,Q be standard programs computing f , g, respectively. We
construct a standard program R, computing h.

Denote m = max(n + 2, ρ(P), ρ(Q)).

R stores the input data x1, . . . , xn, y in registers
Rm+1, . . . ,Rm+n,Rm+n+1, uses Rm+n+2 as a counter keeping a current
number 0 ≤ k ≤ y, and stores the value h(x, k) in Rm+n+3.

After k macro-steps:

| . . . | Rm+1x1 | . . . | Rm+nxn |
Rm+n+1y | Rm+n+2

k |
Rm+n+3

h(x, k) |

Computability 15

1. T (1,m + 1)
...

n. T (n,m + n)
n + 1. T (n + 1,m + n + 1);

P[m + 1, . . . ,m + n→ m + n + 3] computes f (x)

J(m + n + 1,m + n + 2, j); (instruction Ii)

Q[m + 1, . . . ,m + n,m + n + 2,m + n + 3→ m + n + 3] computes
h(x, k) and stores it in Rm+n+3

S (m + n + 2)

J(1, 1, i)

T (m + n + 3, 1) (instruction I j)

Computability 16

µ−operator

h(x) = µy(f (x, y) = 0), f : Nn+1 → N, h : Nn → N.

Let P be a program computing f . We construct a program Q,
computing h.

We define m = max(n + 1, ρ(P)).

Q stores the input data x1, . . . , xn in Rm+1, . . . ,Rm+n,

uses Rm+n+1 as a counter, keeping a current number k ≥ 0,

computes f (x, k) and stores the value in Rm+n+2,

verifies f (x, k) = 0 (Rm+n+3 keeps 0)

if YES, returns k as the result, else sets k := k + 1 and repeats the
loop.

Computability 17

after k macro-steps:

| . . . | Rm+1x1 | . . . | Rm+nxn |
Rm+n+1

k |
Rm+n+2

f (x, k) | Rm+n+3

0 |

1. T (1,m + 1)
...

n. T (n,m + n);

P[m + 1, . . . ,m + n,m + n + 1→ m + n + 2]

J(m + n + 2,m + n + 3, j)

S (m + n + 1)

J(1, 1, n + 1)

T (m + n + 1, 1) (instruction I j))

Computability 18

3. Encoding

We need some auxiliary primitive recursive functions.

the pairing function: π(x, y) = 2x(2y + 1) − 1 = 2x(2y + 1)−̇1

π : N2 7→ N is a bijection.

π(0, 0) = 0, π(1, 0) = 1, π(0, 1) = 2, π(2, 0) = 3, π(0, 2) = 4,
π(1, 1) = 5

We have: π(x, y) ≥ x, π(x, y) ≥ y.

The converse functions:

π1(z) = (µx < z + 1)(∃y≤z π(x, y) = z),
π2(z) = (µy < z + 1)(∃x≤z π(x, y) = z).

We have: π1(π(x, y)) = x, π2(π(x, y)) = y, π(π1(z), π2(z)) = z.

Define: τ(x, y, z) = π(π(x, y), z). τ : N3 7→ N is a bijection.

τ1(k) = π1(π1(k)), τ2(k) = π2(π1(k)), τ3(k) = π2(k)

Computability 19

W∗ - the set of all finite sequences of elements of W, including the
empty sequence ε.

We define a computable bijection 〈·〉 : N∗ 7→ N.

〈ε〉 = 0

〈x1, . . . , xn〉 = px1
1 · · · pxn−1

n−1 · pxn+1
n − 1

〈0〉 = 1, 〈0, 0〉 = 2, 〈1〉 = 3, 〈0, 0, 0〉 = 4, 〈1, 0〉 = 5

One easily shows: for any k ∈ N, there is exactly one α ∈ N∗ such
that 〈α〉 = k.

〈α〉 is called the (sequence) number of α.

lh(x) = the length of the sequence of number x

(x)i = the i−th term of this sequence, if 1 ≤ i ≤ lh(x); otherwise
(x)i = 0.

Computability 20

Exercise. Find α such that 〈α〉 = 50.

α = (k1, . . . , kn), if pk1
1 · · · pkn−1

n−1 · pkn+1
n = 51.

51 = 20315070110130171

So α = (0, 1, 0, 0, 0, 0, 0).

lh(50) = 7, (50)2 = 1, (50)i = 0 for any i , 2

exp(x, n) = the exponent αn in the factorization x =
∏∞

n=1 pαn
n , if

x , 0 and n , 0; otherwise exp(x, n) = 0.

Lemma 1. The following functions are (primitive) recursive:

f (x, n) = exp(x, n),

g(x) = lh(x),

h(x, i) = (x)i,

f n(x1, . . . , xn) = 〈x1, . . . , xn〉 for any fixed n ≥ 1.

Computability 21

INS - the set of all instructions

We define a computable bijection ν : INS 7→ N.

ν(Z(n)) = 4(n − 1)

ν(S (n)) = 4(n − 1) + 1

ν(T (m, n)) = 4π(m − 1, n − 1) + 2

ν(J(m, n, q)) = 4τ(m − 1, n − 1, q − 1) + 3

ν(I) is called the instruction number of I.

PRORM = INS∗ - the set of all programs for RM

Def. 5. Let P = (I1, . . . , Is) be a program. The Gödel number of P is
defined as follows.

pPq = 〈ν(I1), . . . , ν(Is)〉
Clearly p·q is a computable bijection from PRORM onto N.

Computability 22

Pe denotes the program of number e, i.e. a unique program P such
that pPq = e.

Clearly the function f (e) = Pe is computable. We have:

Pe = (ν−1((e)1), . . . , ν−1((e)lh(e))),

and ν−1 is computable.

We define: {e}(n) = f (n)
Pe

. In Cutland’s book: φ(n)
e .

The number e is called the index of the function {e}(n).

We write {e} for {e}(1).

Exercises. (1) Compute p(Z(1), S (1), S (1))q. We have ν(Z(1)) = 0,
ν(S (1)) = 1. So the number of this program equals
〈0, 1, 1〉 = 203152 − 1 = 74.

(2) Find P27. We have 28 = 22305071, hence 27 = 〈2, 0, 0, 0〉.
2 = ν(T (1, 1)), 0 = ν(Z(1)). So P27 = (T (1, 1),Z(1),Z(1),Z(1)).

Computability 23

Example A. We define a function, which is not recursive.

We consider the following total function.

f (x) =

{x}(x) + 1 if {x}(x) is defined
0 otherwise

We show f <COMRM. Assume the contrary. Then f = {e}, for some
e ∈ N.

{e}(e) is defined, since f is total. We obtain:

{e}(e) = f (e) = {e}(e) + 1,

which is impossible.

By Theorem 1, f <REC.

Computability 24

Proposition 3. Every function computable on RM has infinitely
many indices.

P. Let f ∈COMRM. There exists a standard program P,
computing f . Let P = (I1, . . . , Is).

P is equivalent to every program
(I1, . . . , Is,T (1, 1),T (1, 1), . . . , T (1, 1)), hence the Gödel numbers of
these programs are indices of f . q.e.d.

Def. 6. Let (rn)n≥1 be a configuration. The number

r =

∞∏

n=1

prn
n

is called the (code) number of (rn)n≥1.

Remark. Every natural number r ≥ 1 is the number of a unique
configuration.

Computability 25

For any n ≥ 1 we define two total functions.

cn(e, x, t) = the number of the configuration after t steps of the
computation of Pe for the entry x, if this computation has at least t
steps,

cn(e, x, t) = the number of the final configuration, otherwise.

jn(e, x, t) = the (ordinal) number k of the instruction Ik (in Pe)
executed after t steps of the computation of Pe for the entry x, if this
computation has more than t steps,

jn(e, x, t) = 0, otherwise.

Lemma 2. For any n ≥ 1, the functions cn, jn are (primitive)
recursive.

P.

Computability 26

We define two functions.

con(e, r, j) = the number of the configuration obtained by the
execution of I j in Pe on the configuration of number r, if
1 ≤ j ≤ lh(e); con(e, r, j) = r, otherwise

ins(e, r, j) = the (ordinal) number q of the instruction to be executed
after the execution of I j in Pe on the configuration of number r, if
1 ≤ j ≤ lh(e) and 1 ≤ q ≤ lh(e); ins(e, r, j) = 0, otherwise

Then, cn, jn can be defined by simultaneous recursion.

cn(e, x, 0) = px1
1 · · · pxn

n

jn(e, x, 0) = sg(e)

cn(e, x, t + 1) = con(e, cn(e, x, t), jn(e, x, t))
jn(e, x, t + 1) = ins(e, cn(e, x, t), jn(e, x, t))

Computability 27

It suffices to show that con and ins are (primitive) recursive.

We need functions rg1, rg2, jp such that:

rg1(ν(Z(n))) = n, rg1(ν(S (n))) = n,

rg1(ν(T (m, n))) = m, rg1(ν(J(m, n, q))) = m,

rg2(ν(T (m, n))) = n, rg2(ν(J(m, n, q))) = n,

jp(ν(J(m, n, q))) = q.

Recall that:

[x/y] = (µz < x + 1) (y = 0 ∨ x < (z + 1)y) .

jp(x) =

τ3([(x−̇3)/4]) + 1 if rm(x, 4) = 3
0 otherwise

Computability 28

rg2(x) =

π2([(x−̇2)/4]) + 1 if rm(x, 4) = 2
τ2([(x−̇3)/4]) + 1 if rm(x, 4) = 3
0 otherwise

rg1(x) =

[x/4] + 1 if rm(x, 4) = 0
[(x−̇1)/4] + 1 if rm(x, 4) = 1
π1([(x−̇2)/4]) + 1 if rm(x, 4) = 2
τ1([(x−̇3)/4]) + 1 otherwise

Accordingly rg1, rg2 and jp are primitive recursive.

We define a (primitive) recursive function:

f c(x, n) = pr(n)exp(x,n) .

Computability 29

con(e, r, j) =

[r/ f c(r, rg1((e) j))]
if r ≥ 1 ∧ 1 ≤ j ≤ lh(e) ∧ rm((e) j, 4) = 0

r · pr(rg1((e) j))
if r ≥ 1 ∧ 1 ≤ j ≤ lh(e) ∧ rm((e) j, 4) = 1

[r/ f c(r, rg2((e) j))] · pr(rg2((e) j))exp(r,rg1((e) j))

if r ≥ 1 ∧ 1 ≤ j ≤ lh(e) ∧ rm((e) j, 4) = 2
r otherwise

Computability 30

ins(e, r, j) =

j + 1 if r ≥ 1 ∧ 1 ≤ j < lh(e) ∧ rm((e) j, 4) < 3
j + 1 if r ≥ 1 ∧ 1 ≤ j < lh(e) ∧ rm((e) j, 4) = 3
∧ exp(r, rg1((e) j)) , exp(r, rg2((e) j))

jp((e) j) if r ≥ 1 ∧ 1 ≤ j ≤ lh(e) ∧ rm((e) j, 4) = 3
∧ exp(r, rg1((e) j)) = exp(r, rg2((e) j))
∧ 1 ≤ jp((e) j) ≤ lh(e)

0 otherwise

This finishes the proof of Lemma 2.

Computability 31

The fundamental equation

(FE) {e}(n)(x) ' exp(cn(e, x, µt (jn(e, x, t) = 0)), 1)

Theorem 2. Every function computable on RM is partial recursive.

P. Let f : Nn → N be computable on RM. Then f = {e}(n) for
some e ∈ N. By (FE), f ∈REC. q.e.d.

Corollary 1. COMRM = REC.

Def. 7. The function Un : Nn+1 → N, defined by:

Un(e, x) ' {e}(n)(x),

is called the universal function for n−ary partial recursive functions.

Corollary 2. For any n ≥ 1, the function Un is partial recursive.

Computability 32

Theorem 3. (Kleene normal form theorem) For any n ≥ 1, there
exists a primitive recursive relation Tn ⊆ Nn+2 and a primitive
recursive function δ : N 7→ N such that the equation:

{e}(n)(x) ' δ(µzTn(e, x, z)),

holds for all e ∈ N, x ∈ Nn.

P. We define a relation S n ⊆ Nn+3:

S n(e, x, y, t) iff Pe(x) ↓ y in at most t steps.

S n is primitive recursive, since we have:

S n(e, x, y, t)⇔ jn(e, x, t) = 0 ∧ exp(cn(e, x, t), 1) = y.

We define Tn as follows:

Tn(e, x, z) iff S n(e, x, π1(z), π2(z)).

Clearly {e}(n)(x) ' π1(µzT (e, x, z)). So δ = π1. q.e.d.

Computability 33

Effective µ−operator

Let f : Nn+1 7→ N (total) satisfy the effectiveness condition:

(EC) for any x ∈ Nn there exists y ∈ N such that f (x, y) = 0.

We define a function h : Nn 7→ N (total) by:

h(x) = µy(f (x, y) = 0) = min{y ∈ N : f (x, y) = 0}.
We say that h arises from f by the effective µ−operator.

By RECt we denote the family of total recursive functions.

Theorem 4. RECt is the smallest family of total numerical
functions, which contains all basic recursive functions and is closed
under substitution, primitive recursion and the effective µ−operator.

P. Let F denote the smallest family as above. F ⊆RECt, since
RECt satisfies these conditions. We show RECt ⊆ F . Let f ∈RECt,
and let e be an index of f . The µ−operator appearing in (FE) is
effective, and cn, jn , exp are in F , hence f ∈ F . q.e.d.

Computability 34

(R9) Let functions g1, . . . , gk : Nn → N be partial recursive. Let
relations R1, . . . ,Rk ⊆ Nn be recursive and satisfy the condition:

(∗) for any x ∈ Nn there is exactly one 1 ≤ i ≤ k such that Ri(x) holds.

Then, the function h : Nn → N defined by:

h(x) '

g1(x) if R1(x)
...

gk(x) if Rk(x)

is partial recursive.

We assume:

h(x) , ∞ iff for some 1 ≤ i ≤ k , Ri(x) ∧ gi(x) , ∞ .

Computability 35

P.

Let e1, . . . ek be indices of g1, . . . , gk, respectively.

This means: gi(x) ' {ei}(n)(x), for any 1 ≤ i ≤ k and any x ∈ Nn. We
define an auxiliary function:

g(x) =

e1 if R1(x)
...

ek if Rk(x)

By (R4), g is recursive. We have:

h(x) ' Un(g(x), x) for any x ∈ Nn.

Consequently, h ∈REC. q.e.d.

Computability 36

We define two relations.

HALT(2)(x, y) iff Px(y) ↓
HALT(x) iff Px(x) ↓
Theorem 5. The relations HALT(2) and HALT are not recursive.

P. Suppose that HALT is recursive. Consider the function f
from Example A. We know that f <REC. We can define f as
follows.

f (x) =

U1(x, x) + 1 if HALT(x)
0 if ¬HALT(x)

By (R9), f ∈REC. Contradiction. So HALT is not recursive.

We have: HALT(x)⇔HALT(2)(x, x). By (R1), HALT(2) is not
recursive, either. q.e.d.

Computability 37

4. Church’s thesis

Also: the Church thesis, the Church-Turing thesis

Abbreviation: (CT)

(CT) The class of partial numerical functions, computable in
a general sense, coincides exactly with the class of partial
recursive functions.

Let COM denote the class of partial numerical functions,
computable in a general sense.

(CT) COM = REC

We know that REC = COMRM. Obviously COMRM ⊆COM, since
programs for RM are certain algorithms. So REC⊆COM.

The converse COM⊆REC is a hypothesis. It cannot be proved,
since COM has not been precisely defined as a mathematical notion.

Computability 38

Arguments supporting (CT)

(1) Other models of computation were studied:

- Turing machines

- Markov algorithms

- Post systems

and others. For any model, it has been proved that the partial
numerical functions computable in this model coincide with partial
recursive functions. The latter also coincide with the functions
definable in lambda calculus and other logical formalisms.

The same can be proved (tediously) for all existing programming
languages.

(2) All results of recursion theory become intuitively sound (often
obvious), if one replaces ‘recursive’ with ‘computable’.

Computability 39

Applications of (CT)

I. Positive

If we know that f is computable (we know an arbitrary algorithm
computing f), then we infer f ∈REC.

These applications are not essential. Sometimes one argues in this
way just to shorten the proof. In all (known) cases, a complete proof
of f ∈REC can be provided.

II. Negative

If we know that f <REC, then we infer that f is not computable
(there exists no algorithm computing f).

These applications are essential. The only method of proving that a
function is not computable is to show that it is not recursive
(equivalently: not computable in an abstract model of computation,
which yields all recursive functions).

Computability 40

Recall that a relation R ⊆ Nn is computable (in a general sense) iff cR

is computable.

For a relation, one also says ‘solvable’ or ‘decidable’.

(CT) for relations: A numerical relation is computable iff it is
recursive.

This follows from (CT) for functions. R is computable iff cR is
computable iff cR ∈REC iff R is recursive.

So HALT(2) and HALT are not computable.

The halting problem for RM: Verify P(x) ↓, for arbitrary
P ∈ PROGRM, x ∈ N.

Claim. The halting problem for RM is unsolvable (undecidable).

This means: there exists no algorithm which, for any program P on
RM and any natural number x, verifies whether P(x) ↓ or not.

Computability 41

Computability on other domains

Now by a domain we mean a pair (D, α) such that:

- D is an infinite countable set (of finite objects),

- α is a computable bijection of D onto N,

- α−1 is computable.

Let (D, α), (E, β) be domains. We consider partial functions
f : Dn → E.

For any f , we define f c : Nn → N.

f c(x) = β(f (α−1
n (x))), where

α−1
n (x) = (α−1(x1), . . . , α−1(xn)).

Shortly: f c = β ◦ f ◦ α−1
n . Then f = β−1 ◦ f c ◦ αn.

Clearly: f is computable iff f c is computable.

Computability 42

Def. 8. A function f : Dn → E is said to be partial recursive, if
f c ∈REC.

(Gen-CT) For any domains (D, α), (E, β), the functions f : Dn → E,
n ≥ 1, computable in a general sense coincide with partial recursive
functions in the sense of Def. 8.

This immediately follows from (CT).

Example. Let (D, α) be a domain. Then, α : D 7→ N is recursive.
Now β : N 7→ N is the identity function I1

1 .

We have: αc = β ◦ α ◦ α−1 = β and β ∈REC. So αc ∈REC.

Consequently 〈·〉 is a total recursive function from N∗ to N, if it is
treated as a unary function on the domain (N∗, 〈·〉).

Computability 43

5. Three theorems on recursive functions

Theorem 6. (s-m-n theorem) Let m, n ≥ 1. There exists a total
recursive function s : Nm+1 7→ N such that for all e ∈ N, x ∈ Nn and
y1, . . . , ym ∈ N the following equation holds:

{s(e, y1, . . . , ym)}(n)(x) ' {e}(n+m)(x, y1, . . . , ym).

P. We transform Pe into a program Q such that
pQq = s(e, y1, . . . , ym).

The idea:

Entry |x1| . . . |xn|
Then |x1| . . . |xn|y1| . . . |ym| (put yi in Ri for n + 1 ≤ i ≤ n + m)

Run Pe

Computability 44

S (n + 1)
... y1 times

S (n + 1)
...

S (n + m)
... ym times

S (n + m);

Pe

Clearly Q depends on e, y1, . . . , ym. The function
s(e, y1, . . . , ym) = pQq is computable. Applying (CT) positively, one
may infer that s is recursive.

We provide a complete proof.

Computability 45

x ∗ y = µz

[lh(z) = lh(x)+ lh(y)∧∀i<lh(x)(z)i+1 = (x)i+1∧∀i<lh(y)(z)lh(x)+i+1 = (y)i+1]

We need f1(y) = p(S (n + 1), . . . , S (n + 1))q, where S (n + 1) occurs y
times. Recall that ν(S (n + 1)) = 4n + 1.

f1(0) = 0
f1(y + 1) = f1(y) ∗ 〈4n + 1〉

In a similar way we define fk(y) = p(S (n + k), . . . , S (n + k))q, where
S (n + k) occurs y times, for 1 < k ≤ m.

We also need: g(e, y) = the number of the program resulting from Pe

after one has replaced each J(−,−, q) with J(−,−, q + y).

We define:

s(e, y1, . . . , ym) = f1(y1) ∗ · · · ∗ fm(ym) ∗ g(e, y1 + · · · + ym).

Computability 46

g(e, y) = µz [lh(z) = lh(e)∧
∧∀i<lh(e)(jp((e)i+1) = 0⇒ (z)i+1 = (e)i+1)∧
∧∀i<lh(e)(jp((e)i+1) , 0⇒
⇒ (z)i+1 = 4τ(rg1((e)i+1), rg2((e)i+1), jp((e)i+1) + y) + 3)]

q.e.d.

Theorem 6’. Let f : Nn+m → N be partial recursive. There exists a
total recursive function s′ : Nm 7→ N such that for all x ∈ Nn and all
y1, . . . , ym ∈ N the following equation holds:

{s′(y1, . . . , ym)}(n)(x) ' f (x, y1, . . . , ym).

P. Let e be an index of f . Then s′(y1, . . . , ym) = s(e, y1, . . . , ym).
q.e.d.

Computability 47

Proposition 4. Let k, n ≥ 1. There exists a total recursive function
sb : Nk+1 7→ N such that for all e, e1, . . . , ek ∈ N and x ∈ Nn the
following equation holds:

{sb(e, e1, . . . , e(k))}(n)(x) ' {e}k({e1}(n)(x), . . . , {ek}(n)(x)).

P. We define:

f (x, e, e1, . . . , ek) ' {e}(k)({e1}(n)(x), . . . , {ek}(n)(x)) =

= Uk(e,Un(e1, x), . . . ,Un(ek, x)).

By Theorem 6’, there exists a total recursive function s′ such that:

{s′(e, e1, . . . , ek)}(n)(x) ' f (x, e, e1, . . . , ek).

We take sb = s′. q.e.d.

This shows that there is a program which from indices of any
functions f (k−ary) and g1, . . . , gk (n−ary) computes an index of the
function h which arises from f , g1, . . . , gk by substitution.

Computability 48

Unary relations R ⊆ N are subsets of N. We denote them by A, B,C.
We write x ∈ A for A(x).

Def. 9. For A, B ⊆ N, we define a relation ≤m as follows: A ≤m B iff
there exists a total recursive function f : N 7→ N such that

∀x∈N(x ∈ A⇔ f (x) ∈ B).

We read A ≤m B as: A is many-one-reducible to B.

The subscript m stems from ‘many-one’. One also considers a more
restricted relation A ≤1 B, where f is required to be one-one.

Proposition 5. If A ≤m B and B is recursive, then A is recursive.

P. We have cA(x) = cB(f (x)). q.e.d.

By REC(n) we denote the family of n−ary partial recursive functions.

Computability 49

A family F ⊆REC(1) is said to be non-trivial, if F is nonempty and
different from REC(1).

Theorem 7. (Rice’s theorem) Let F ⊆REC(1) be non-trivial. Then,
the set:

AF = {e ∈ N : {e} ∈ F }
is not recursive.

P. First, assume additionally ∅ < F .

We fix a function f ∈ F . Then, f (x) , ∞ for some x.

We define a function:

h(x, e) '

f (x) if HALT(e)
∞ otherwise

We have: h(x, e) ' f (x) + (U1(e, e)−̇U1(e, e)). So h ∈REC.

Computability 50

By Theorem 6’, there exists a total recursive function s : N 7→ N
such that

{s(e)}(x) ' h(x, e) for all e, x ∈ N .
The following implications are true.

HALT(e)⇒ ∀x(h(x, e) ' f (x))⇒ ∀x({s(e)}(x) ' f (x))⇒
⇒ {s(e)} = f ⇒ s(e) ∈ AF
¬HALT(e)⇒ ∀x(h(x, e) ' ∞)⇒ ∀x({s(e)}(x) ' ∞)⇒
⇒ {s(e)} = ∅ ⇒ s(e) < AF
Consequently, ∀x(e ∈HALT⇔ s(e) ∈ AF), which yields
HALT≤m AF .

By Theorem 5 and Proposition 5, AF is not recursive.

If ∅ ∈ F , we prove as above that N \ AF = {e ∈ N : {e} < F } is not
recursive, Then, AF is not recursive, by (R2). q.e.d.

Computability 51

Corollary 3. The following relations are not recursive:

(1) Rm,k(e)⇔ {e}(m) ' k, for fixed m, k,

(2) R(e, x, y)⇔ {e}(x) ' y,

(3) R(e)⇔ ∀x({e}(x) ; ∞) (i.e. {e} is total),

(4) R(e)⇔ ∀x({e}(x) ' ∞) (i.e. {e} is empty),

(5) R f (e)⇔ {e} = f for fixed f ∈REC(1),

(6) R(e1, e2)⇔ {e1} = {e2}.
By (CT), the following problems are unsolvable:

(1) P(m) ↓ k, for an arbitrary program P and fixed m, k, (2) P(x) ↓ y,
for arbitrary P, x, y, (3) fP is total, for an arbitrary P, (4) fP is empty,
for an arbitrary P, (5) fP = f , for an arbitrary P and a fixed
f ∈REC(1), (6) fP = fQ, for arbitrary P,Q.

Computability 52

Theorem 8. (the 2nd recursion theorem) For any f ∈REC(n+1) there
exists e ∈ N such that:

∀x (f (x, e) = {e}(n)(x)).

P. We fix f ∈REC(n). We define a function:
(1) g(x, y) ' {y}(n+1)(x, y) ' Un+1(y, x, y).
By Corollary 2 and (R1), g ∈REC. By Theorem 6’, there exists a
total recursive function s : N 7→ N such that:
(2) ∀x,y ({s(y)}(n)(x) ' g(x, y)).
We define a partial recursive function:
(3) h(x, y) ' f (x, s(y)).
Let a be an index of h. Then:
(4) ∀x,y (h(x, y) ' {a}(n+1)(x, y)).
We define e = s(a).

Computability 53

We have:

f (x, e) ' f (x, s(a))
(3)' h(x, a)

(4)' {a}(n+1)(x, a) '
(1)' g(x, a)

(2)' {s(a)}(n)(x) ' {e}(n)(x).

q.e.d.

Theorems 6, 6’, 8 are due to S.C. Kleene.

Example B. There exists e ∈ N such that:

∀x ({e}(x) = e).

We consider the function g(x, y) = y. By Theorem 8, there exists e
such that {e}(x) ' g(x, e) = e for all x. So {e}(x) = e for all x.

Computability 54

Proposition 6. Let n ≥ 1. There exists a total recursive function
rc ∈REC(2) such that the following equations hold for all x ∈ Nn,
y, e1, e2 ∈ N.

{rc(e1, e2)}(n+1)(x, 0) ' {e1}(n)(x)

{rc(e1, e2)}(n+1)(x, y + 1) ' {e2}(n+2)(x, y, {rc(e1, e2)}(n+1)(x, y))

P. We define a partial recursive function.

g(x, y, e1, e2, e) '

{e1}(n)(x) if y = 0
{e2}(n+2)(x, y−̇1, {e}(n+3)(. . .)) if y , 0

Here . . . stands for x, y−̇1, e1, e2. By Theorem 8, there exists a ∈ N
such that: g(x, y, e1, e2, a) ' {a}(n+3)(x, y, e1, e2) for all x, y, e1, e2.

By Theorem 6’, there exists a total function s ∈REC(3) such that:
g(x, y, e1, e2, e) ' {s(e1, e2, e)}(n+1)(x, y) for all x, y, e1, e2, e.

We define: rc(e1, e2) = s(e1, e2, a). q.e.d.

Computability 55

Example C. The Ackermann function

The Ackermann function A is defined by the following recursive
equations. A is not primitive recursive.

A(0, y) = y + 1

A(x + 1, 0) = A(x, 1)

A(x + 1, y + 1) = A(x, A(x + 1, y))

We consider the lexicographical ordering on N2.

(x, y) ≤l (x′, y′)⇔ x < x′ ∨ (x = x′ ∧ y ≤ y′)

This is a well-ordering: reflexive, antisymmetric, transitive, total,
and satisfying the condition

(WO) every nonempty subset of N2 has a minimal element (the least
element in this subset).

(0, 0) <l (0, 1) <l (0, 2) <l . . . <l (1, 0) <l (1, 1) <l (1, 2) <l . . .

Computability 56

The pairs on the right-hand side of the second and the third defining
equation are less than the pair on the left-hand side of this equation.
Therefore these equations correctly define a unique function by
induction on ≤l.

A(1, 1) = A(0, A(1, 0)) = A(0, A(0, 1)) = A(0, 2) = 3

A(2, 1) = A(1, A(2, 0)) = A(1, A(1, 1)) = A(1, 3) = A(0, A(1, 2)) =

A(0, A(0, A(1, 1))) = A(0, A(0, 3)) = A(0, 4) = 5

We show A ∈REC. We define a partial recursive function:

g(x, y, e) '

y + 1 if x = 0
{e}(2)(x−̇1, 1) if x , 0 ∧ y = 0
{e}(2)(x−̇1, {e}2(x, y−̇1)) if x , 0 ∧ y , 0

By Theorem 8, there exists e ∈ N such that {e}(2)(x, y) ' g(x, y, e) for
all x, y. Clearly A = {e}(2), hence A ∈REC.

Computability 57

6. Recursively enumerable relations

Def. 10. A relation R ⊆ Nn is said to be recursively enumerable, if
there exists a recursive relation S ⊆ Nn+1 such that:

∀x (R(x)⇔ ∃y S (x, y)).

One often writes r.e. for ‘recursively enumerable’.

Proposition 7. Every recursive relation is r.e.

P. Let R ⊆ Nn be recursive. We have:
∀x (R(x)⇔ ∃y (R(x) ∧ y = y)).

Example D. HALT and HALT(2) are r.e.

HALT(2)(x, y)⇔ ∃ t (j1(x, y, t) = 0)

HALT(x)⇔ ∃ t (j1(x, x, t) = 0)

Corollary 4. Not every r.e. relation is recursive.

Computability 58

(RE.1) Let R ⊆ Nk be r.e., and let g1, . . . , gk : Nn 7→ N be recursive
(and total). Then, the relation T ⊆ Nn, defined by:

T (x)⇔ R(g1(x), . . . , gk(x)),

is r.e.

P. There exists a recursive relation S such that:

R(x)⇔ ∃ y S (x, y).

Accordingly:

T (x)⇔ ∃ yS (g1(x), . . . , gk(x), y).

By (R1) and Def. 10, T is r.e.. q.e.d.

Computability 59

(RE.2) If relations R1,R2 are r.e., then the relations R1 ∨ R2, R1 ∧ R2

are r.e..

P. We have:

∃ yS 1(x, y) ∨ ∃ yS 2(x, y)⇔ ∃ y(S 1(x, y) ∨ S 2(x, y)),

∃ yS 1(x, y) ∧ ∃ yS 2(x, y)⇔ ∃ z(S 1(x, π1(z)) ∧ S 2(x, π2(z))). q.e.d.

(RE.3) If R ⊆ Nn+1 is r.e., then the relation T ⊆ Nn, defined by:

T (x)⇔ ∃ zR(x, z),

is r.e..

P. Let S be recursive and: R(x, z)⇔ ∃yS (x, z, y). We have:

∃ z∃ yS (x, z, y)⇔ ∃ zS (x, π1(z), π2(z)). q.e.d.

Computability 60

Theorem 9. For any R ⊆ Nn the following conditions are equivalent:

(i) R is r.e.,

(ii) there exists a partial recursive function f such that R = Dom(f).

P. We show (i)⇒ (ii). Let R be r.e. There exists a recursive
relation S such that: R(x)⇔ ∃ yS (x, y). We define:

f (x) = µy S (x, y).

Clearly f ∈REC, by (R3), and R = Dom(f).

We show (ii)⇒ (i). Let f ∈REC be n−ary, and let R = Dom(f). Let
e be an index of f . We have:

R(x)⇔ ∃ t (jn(e, x, t) = 0).

So R is r.e.. q.e.d.

Accordingly, the recursively enumerable relations are precisely the
domains of partial recursive functions.

Computability 61

Theorem 10. (the Post theorem) For any relation R ⊆ Nn the
following conditions are equivalent:

(i) R is recursive,

(ii) both R and ¬R are r.e..

P. (i)⇒ (ii). Let R be recursive. Then, ¬R is recursive, by (R2).
So R and ¬R are r.e., by Proposition 7.

We show (ii)⇒ (i). Assume that R and ¬R are r.e.. There exist
recursive relations S 1, S 2 such that:

R(x)⇔ ∃ yS 1(x, y), ¬R(x)⇔ ∃ yS 2(x, y).

We define: f (x) = µy(S 1(x, y) ∨ S 2(x, y)).

By (R2), (R3), f ∈REC. We have: ∀x∃ y(S 1(x, y) ∨ S 2(x, y)).

Consequently, f is total, and R(x)⇔ S 1(x, f (x)). So R is recursive,
by (R1). q.e.d.

Computability 62

Example E. The relations ¬HALT, ¬HALT(2) are not r.e..

We know that HALT and HALT(2) are r.e., but not recursive. By
Theorem 10, their negations cannot be r.e.. We have:

¬HALT(2)(x, y)⇔ ∀ t¬(j1(x, y, t) = 0).

It follows that the relation ∀ yR(x, y) need not be r.e. for a recursive
relation R.

Def. 11. Let f : Nn → N. The relation G f ⊆ Nn+1, defined by:

G f (x, y)⇔ f (x) ' y,

is called the graph of f .

Computability 63

Theorem 11. (the graph theorem) For any f : Nn → N the following
conditions are equivalent:

(i) f ∈REC,

(ii) G f is r.e..

P. (i)⇒ (ii). Assume (i). Let e be an index of f . We have:

G f (x, y)⇔ ∃ t S n(e, x, y, t).
(ii)⇒ (i). Assume (ii). There exists a recursive relation S such that:

G f (x, y)⇔ ∃ z S (x, y, z).

We define: g(x) ' µu S (x, π1(u), π2(u)).

g ∈REC, by (R3). We will show: f (x) ' π1(g(x)).

So f ∈REC.

Computability 64

We show f (x) ' π1(g(x)).

f (x) = ∞ ⇒ ¬∃ y G f (x, y)⇒ ¬∃ y ∃ z S (x, y, z)⇒
⇒ ¬∃ u S (x, π1(u), π2(u))⇒ g(x) = ∞
Now, assume f (x) , ∞. There exists a unique y such that G f (x, y);
clearly y = f (x). Consequently, there exists z such that S (x, y, z),
hence there exists u such that S (x, π1(u), π2(u)); take u = π(y, z).

So g(x) , ∞ and S (x, π1(g(x)), π2(g(x))). This yields
∃ z S (x, π1(g(x)), z), and consequently G f (x, π1(g(x))). By the
uniqueness of y, y = π1(g(x)).

Hence f (x) is defined iff g(x) is defined iff π1(g(x)) is defined, and
the desired equation holds. q.e.d.

Computability 65

(RE.4) If g1, . . . , gk : Nn → N are partial recursive and relations
R1, . . . ,Rk ⊆ Nn are r.e. and satisfy the condition:
(•) for any x ∈ Nn there is at most one 1 ≤ i ≤ k such that Ri(x),
then the function h, defined by:

h(x) '

g1(x) if R1(x)
...

gk(x) if Rk(x)
∞ otherwise

is partial recursive.
P. We have:
h(x) ' y⇔ (R1(x) ∧ g1(x) ' y) ∨ · · · ∨ (Rk(x) ∧ gk(x) ' y).
Gh is r.e., by Theorem 11 and (RE.2). So h ∈REC, by Theorem 11.
q.e.d.

Computability 66

Example. In the proof of Rice’s theorem we used the function:

h(x, e) '

f (x) if HALT(e)
∞ otherwise

We inferred h ∈REC from h(x, e) = f (x) + (U1(e, e)−̇U1(e, e)). Now,
this follows from (RE.4).

Proposition 8. Let A, B ⊆ N. If A ≤m B and B is r.e., then A is r.e.

P. Assume A ≤m B. Then: x ∈ A⇔ f (x) ∈ B, for all x. So
A(x)⇔ B(f (x)), for all x. So A is r.e., if B is r.e., by (RE.1). q.e.d.

Computability 67

Theorem 12. For any A ⊆ N, A , ∅, the following conditions are
equivalent:
(i) A is r.e.,
(ii) there exists a total recursive function f : N 7→ N such that
A = Rn(f) = { f (x) : x ∈ N}.
P. (ii)⇒ (i). Assume (ii). We have:
∀ y (y ∈ A⇔ ∃ x f (x) = y).
Consequently, A is r.e..
(i)⇒ (ii). Assume (i). There exists a recursive relation S such that:
y ∈ A⇔ ∃ xS (y, x), for all y.
We fix k ∈ A and define:

f (x) =

π1(x) if S (π1(x), π2(x))
k otherwise

Computability 68

f is a total recursive function, by (R4). We show A = Rn(f).

Let y ∈ A. Then S (y, x), for some x. Take z = π(y, x). We have
S (π1(z), π2(z)), hence f (z) = π1(z) = y. So y ∈Rn(f).

Let y ∈Rn(f). Then f (x) = y, for some x. We consider two cases.

1◦. y = k. Then y ∈ A.

2◦. y , k. Then, for some x ∈ N, y = π1(x) and S (π1(x), π2(x)). So
π1(x) ∈ A, hence y ∈ A. q.e.d.

A total recursive function f : N 7→ N is called a recursive sequence.

f (n) = an, for n ∈ N. f = (an)n∈N.

A nonempty set is r.e. iff it is the set of all terms of some recursive
sequence.

Computability 69

For a relation R ⊆ Nn, one defines a partial function c∼R : Nn → N as
follows:

c∼R(x) '

1 if R(x)
∞ otherwise

Proposition 9. R is r.e. iff c∼R ∈REC.

P. Assume that R is r.e.. Then c∼R ∈REC, by (RE.4).

Assume c∼R ∈REC. Then, R = Dom(c∼R) is r.e., by Theorem 9. q.e.d.

Every algorithm computing c∼R is called a positive algorithm for R.
A positive algorithm for R can be characterized by the following
conditions:

(P1) if R(x) holds, then the algorithm returns 1 (yes),

(P2) if R(x) fails, then the algorithm does not terminate,

for any entry x.

Computability 70

Sometimes it is convenient to replace the second condition with:

(P2’) if R(x) fails, then the algorithm returns 0 (no) or does not
terminate.

Proposition 10. R is r.e. iff there exists an algorithm, satisfying (P1),
(P2’).

P. (⇒) follows from Proposition 9. We prove (⇐). Let P be a
program for RM, satisfying (P1), (P2’). This program computes a
function f such that: R(x)⇔ f (x) ' 1, for all x. By Theorem 11, R
is r.e.. q.e.d.

For relations (sets), which are r.e. but not recursive, only positive
algorithms can be provided.

Computability 71

One defines:

W (n)
e = Dom({e}(n)).

One writes We for W (1)
e . e is called the index of W (n)

e .

R ⊆ Nn is r.e. iff there exists e ∈ N such that R = W (n)
e . This follows

from Theorem 9.

The arithmetical hierarchy (the Kleene-Mostowski hierarchy)

We define classes of numerical relations Σ0
k ,Π

0
k ,∆

0
k for k ∈ N.

Σ0
0 is the class of recursive relations.

Π0
k = {¬R : R ∈ Σ0

k}
∆0

k = Σ0
k ∩ Π0

k

Σ0
k+1 consists of all relations ∃ yR(x, y) with R ∈ Π0

k .

