W. BUSZKOWSKI Type Logics in Grammar

Introduction

Type logics are logics whose formulas are interpreted as types. For instance,
A — B is a type of functions (procedures) which send inputs of type A to
outputs of type B, and A® B is a type of pairs (f, g) such that f is of type
A and g is of type B. The scope of possible realizations is huge: from con-
structivism in mathematics to logics of computation, from combinators and
lambda calculus to linear logics, from type theories of Russell and Church to
theories of syntax, proposed by Lesniewski, Ajdukiewicz, Chomsky, Curry
and Lambek.

In this paper I try to illuminate the current state of the latter theories,
often characterized as logical grammar or, more generally, formal grammar.
Not every logician would be inclined to attach this region to logic proper.
Fortunately, numerous contributions of last thirty years have lifted up the
logic of grammar to a vivid research branch with a well-defined conceptual
framework and promising connections with linguistics and computer science
(also philosophy, cognitive science, semantics). From the standpoint of logic,
formal systems appearing in this discipline belong to substructural logics,
since their sequential formats abandon structural rules (Weakening, Con-
traction, Exchange); see [69].

Hiz [34] dubbed the term grammar logicism for the thesis: grammar
reduces to logic. Not discussing all subtleties of this standpoint, I believe
Hiz soundly characterizes the real content of so-called formal linguistics with
its standard syntactic devices (automata, grammars, trees, transformations)
which are conceptually and methodologically akin to logical entities (rou-
tines of computation, theories, proofs, deductive systems). It seems to be
important that grammatical structures influence the creation and evolution
of new logical formalisms, as e.g. the Lambek calculus and noncommutative
linear logics.

Reduction of grammar to logic need not be restricted to the dimension of

V. F. Hendricks and J. Malinowski (eds.),
Trends in Logic: 50 Years of Studia Logica

Trends in Logic 21: 321-366, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.



322 W. Buszkowski

syntax. Since Montague [57], semantics of natural language has extensively
been studied within philosophical logic. Semantical problems seem to be
more sophisticated and solutions less definitive. I am inclined to remove any
strict borderline between syntax and semantics; the former is a representa-
tion of the latter, the latter must be anchored in the former. Type grammars
are especially close to the description of syntax according to general seman-
tic paradigms. Connections of type grammars with Montague semantics are
based on the Curry-Howard isomorphism between proofs in Natural Deduc-
tion format and lambda terms. For Lambek logics, main results are due
to van Benthem [76, 78], Moortgat [58, 59] and their collaborators. In this
survey, semantical aspects are briefly mentioned at the beginning of section
3.

Grammars based on logics of types are traditionally called categorial
grammars (after Bar-Hillel et al. [5]). From the modern perspective, the
term type grammars seems to be more adequate: all formal grammars clas-
sify language expressions into categories, but a characteristic feature of type
grammars is the usage of (logical) types as carriers of grammatical informa-
tion. The present paper mainly focuses on type grammars and their logics,
which evidently reflects the author’s predilection and experience. Hopingly,
it shows a more general significance of some central ideas.

We begin with the simplest formalization of type grammar: Classi-
cal Categorial Grammar (CCG) of Ajdukiewicz [3] and Bar-Hillel [5]. Aj-
dukiewicz was strongly influenced by logical syntax, designed by Lesniewski
[54], and the idea of universal grammar, due to Husserl [36]. The logic of
CCG is a purely implicational propositional logic with modus ponens and
no axioms; in the bidirectional format, stemming from Lambek [49] and
Bar-Hillel [5], it admits two conditionals A — B and B « A and two
MP-schemes. We discuss three major topics concerning CCG: (i) syntac-
tic unambiguity (related to Polish notation), (ii) connections with Chomsky
grammars and tree automata, (iii) learnability. The latter exhibits a new,
promising direction of formal learning theory, employing logical unification
to design successful algorithms for language acquisition.

Next, we consider full-fledged type logics, originating in Syntactic Calcu-
lus of Lambek [49]. They are closely connected with other logical formalisms,
as e.g. linear logics, lambda calculus and combinators, labelled deductive
systems. First, we present different versions of type logics and discuss their
proof-theoretic and computational aspects. Second, we sketch a landscape
of models of these logics. We also regard central problems related to type
grammars based on these logics.

This survey is complementary to the author’s [14]. Certain topics, largely



Type Logics in Grammar 323

discussed there, e.g. algebra of syntactic structures and modelling type
logics in the lambda calculus, are almost completely omitted here. On the
other hand, we present in more detail some special matters, characteristic
of current research, as e.g. learning theory and computational complexity.
In section 3, we mix algebraic models and computational problems, because
they are mutually dependent. Algebraic structures influence the shape of
formal systems and are useful for illuminating proof-theoretic properties,
i.e. the subformula property.

We report results of many people, including the author, who apologizes
for the great number of self-citations in comparing with others. The rea-
son is obvious: the author focuses on problems he has been involved in and
informs the reader where she may find proofs abandoned here. In compen-
sation, let me emphasize a particular role of two persons. Joachim Lambek
has originated some central ideas, and Johan van Benthem has shown their
broader significance for logic.

Classical Categorial Grammar

Pr denotes a set of primitive types (propositional variables). Types (formulas)
are formed out of two conditionals — (right arrow) and < (left arrow). We
denote types by A, B,C,D. T', A denote finite sequences (strings) of types,
and I'A denotes the concatenation of I' and A. Sequents are expressions of
the form I' - A. The empty string is denoted by e.

The logic AB (after Ajdukiewicz and Bar-Hillel) can be presented as
a structured consequence relation (in the sense of Gabbay [28]), which is
determined by MP-schemes:

(MP-R) A(A— B)+ B, (MP-L) (B« A)AF B,
and the following structural rules:
(Id) A+ A,

TAT' - B; AF A
TAT'F B

Equivalently, AB can be presented as a rewriting system, based on re-
duction rules:

(CUT)

AA— B=Band B+« A A= B.

Then, I' F4p A iff I' reduces to A by a finite number of applications
of reduction rules. We write I' F4p A for: I' - A is provable in AB, and
similarly for other systems. Clearly, if ' 45 A then ' # .



324 W. Buszkowski

Ajdukiewicz [3] introduced the («)—fragment of this logic; precisely, he
regarded multiple-argument types B «— A1, ..., A, with reduction rules:

(B<—A1,...,An),A1,...,An:>B.

In Natural Deduction (ND) format, AB is axiomatized by (Id) and two
conditional elimination rules:

I'-A, AFA— B

( ITFB— A AFA
TAF B ’

I'A+B

(—E) ~E)

Proofs in the ND-format determine the so-called functor-argument struc-
tures (fa-structures) on antecedents of provable sequents. Types are atomic
fa-structures. If X,Y are fa-structures, then (XY); and (XY)y are fa-
structures. X is the functor, and Y is the argument of (XY');, and the
converse holds for (XY'),. The logic ABs (i.e. AB in structure form) arises
from AB (in ND-format) by replacing I'with X, A with Y in premises of
rules, and T'A with (XY)s (resp. (XY)1) in the conclusion of (—E) (resp.
(«E)). Every proof of I' - A in AB determines a unique fa-structure X on
I" such that X F4ps A. The same could be done for the original version of
AB.

Syntactic unambiguity

It is well known that the Polish notation is unambigous, that means, the
structure of a formula is uniquely determined by the string of symbols. This
property is actually a property of the logic AB, restricted to one conditional.
Since this a rather untypical property of a logical system, and it is in focus
of Ajdukiewicz [3], we have decided to discuss the problem in some detail.

For any structure X, there is at most one type A such that X F,p, A.
One computes this type by a successive replacement of every substructure
of X of the form (A(A — B))s or ((B « A)A); with type B. This property
will be referred to as type unambiguity of ABs. Also, every provable sequent
X F A has a unique proof tree in the ND-format of ABs (proof unambiguity).

AB is both type and proof ambiguous. (A «— A)A(A — A) F A has
two proofs in AB which determine structures (C(AD)2)1 and ((CA)1D)s,
forC=A«— A D=A— A ForT' = (A« D) «— A)AD, with D as
above, we have both ' F4p A« D and I"' F5 A.

One-directional fragments of AB are both type and proof unambigous,
which is a nonstandard proof-theoretic property, clearly related to (gener-
alized) Polish notation: a string of symbols supplied with one-directional
types admits a unique syntactic analysis (see [13] for a discussion and the



Type Logics in Grammar 325

proof for the general case of multiple-argument types). We sketch the proof
for the («)—fragment of AB.

In types B «— Ay « --- «— A, parentheses are grouped to the left. If D
is of the above form, with B primitive, then C' < D means that C' equals
B« A « --- — A;, for some 0 < i < n. The relation < is irreflexive,
transitive and quasi-linear: if A < C' and B < C, then A < Bor A= B or
B < A. The following lemmas are crucial.

(L1) If AT F4p B and I" # € then B < A.
(L2) If B < A then AI' 45 B, for some I' # e.

(L3) I I' Fap A then there is no A # € such that TA 45 A.

We prove (L3). We use the following property of the restricted AB: if
I'4p A and T has a length greater than 1, then I' = (Ag «— A;)I'1T'9 with
I'1 Fap Ay and Asl's Fap A. The proof of (L3) proceeds by induction on
the length of T

Let I' be of length 1. Assume I' 45 A and 'A F4p A, for A # €. Then,
I' = A, and consequently, A < A, by (L1). Contradiction.

Let I" be of length greater than 1. Assume the same as above. Using
the property, mentioned above, we get types A;, A2 and nonempty strings
Iy, A, for i = 1,2, such that:

1. T'=(Ag «— A1) Ty,

2. TA = (Ay «+ A1) A1 A,

3. Ty Fap A1, A1 Fap Ay,

4 ATy bap A, AyAy b ap Al

Clearly, the length of I'; is less than the length of I', and similarly for I's.
By the induction hypothesis, neither I'; is a proper initial segment of Ay,
nor A is a proper initial segment of I';. Consequently, I'y = A;. Then, I'y
is a proper initial segment of Ao, hence AsI's is a proper initial segment of
As Ao, and its length is less than that of I'. This contradicts the induction
hypothesis.

We prove type unambiguity. Assume I' F4p A and I' 45 B, with
A # B. Let C be the first type in I'. Since A # B, then T" is of length
greater than 1. By (L1), A < C and B < C. Consequently, A < B or
B < A. If A < B then there exists A # e such that BA Fap A, by (L2),



326 W. Buszkowski

which yields TA F4p A, by (CUT). This contradicts (L3). The case B < A
is symmetrical.

We prove proof unambiguity. Precisely, we show that every provable
sequent admits a unique ND proof tree in the restricted AB. Let dy,ds be
proofs of I' = A. We prove d; = ds, by induction on the length of I'.

Assume I' is of length 1. Then, I' = A, and dj, ds consist of the only
application of (Id). Assume I is of length greater than 1. Then, both d; and
dy use («—E). We consider the last application of this rule in either proof.
For dy, let the premises be I'y H A «— C, Ay F C, and for ds, let them be
I'oF A« D, Ao+ D. We show C = D. Assume C # D. Then, I'y or I'y is
of length greater than 1, hence A «— C < A« Dor A« D < A« C, by
(L1) and properties of <. This is impossible, by the definition of <. Now,
I'; is an initial segment of I's or conversely. Neither of them can be a proper
initial segment of the other, by (L3), which yields I';y = I's, and consequently,
A1 = As. By the induction hypothesis, subproofs of di, ds leading to the
left premise are equal, and similarly for the right premise. Consequently,
dy = ds.

Ajdukiewicz [3] has designed a simple parsing procedure. Given a string
I, find the left-most occurrence of (B « A)A and replace it with B. Then,
I' Fap C iff T reduces to C' by finitely many applications of left-most re-
duction. As shown in [13], this is not true for multiple-argument types
(considered by Ajdukiewicz) but is true for one-argument types, considered
here. The Ajdukiewicz procedure is fully deterministic and shows, in fact,
that languages generated by rigid type grammars based on this fragment of
AB are deterministic context-free languages, i.e. they can be recognized by
deterministic push-down automata (rigid grammars are defined below).

CCG versus other formal grammars

A CCG can formally be defined as a triple G = (Vig,Ig, Sg) such that
Vi is a nonempty finite lexicon (alphabet), I is a finite relation between
elements of Vi and types, and Sg €Pr; Vg, Ig, Sg are called the lexicon,
the initial type assignment and the principal type, respectively, of G. We
write G : v — A for (v, A) € Ig. We say that G assigns type A to string
a = vi...vn, v; € Vg, if there are types A; such that G : v; — A;, for
i =1,...,n, satisfying Ay ... A, Fap A; we write a —g A. The language
of G (L(Q)) is the set of all strings a such that a —¢g Sg. Other type
grammars, considered later on, are defined in a similar way; only AB is to
be replaced by a different type logic.

The fa-structures on Vg are defined as fa-structures of types except that



Type Logics in Grammar 327

atomic fa-structures are elements of Viz. By F (Vi) we denote the set of
fa-structures on Vi;. We say that G assigns type A to structure X € F (V)
if there is an fa-structure X’ of types which arises from X by replacing each
atom v by a type B such that G : v — B, satisfying X’ Fap, A; we again
write X g A. The f-language of G (L/(Q)) is the set of all X € F(Vg)
such that X —¢g Sq.

For instance, let G admit the following assignment:

Joan — A, works — B, hardly — C,

where A =PN (proper noun), B = A —S, C = B — B, and Sg =S
(sentence). Then, L/ (G) contains structures:

1. (Joan works)a,
2. (Joan (works hardly)s)s,
3. (Joan ((works hardly)s hardly)s)a,

and so on. L(G) contains the strings resulting from the above structures
after one has dropped all structure markers.

The above grammar is a rigid CCG, i.e. it assigns at most one type
to any lexical atom. Rigidness is characteristic of grammars designed for
formal languages of logic and mathematics, while natural language usually
requires several types to be assigned to one lexical atom. The negation
‘not’ is assigned type S<S, as in the sentence ‘not every man works’ with
structure (not ((every man) works)), but also type C' « C (C defined as
above), as in ‘John works not hardly’.

We have used a structure without functor markers; such structures are
called phrase structures (p-structures). For X € F(Vg), by p(X) we denote
the p-structure resulting from X after one has dropped all functor markers.
The phrase language of G (LP(G)) consists of all p(X), for X € LI (G).

Now, let us turn to some basic notions of Chomsky linguistics. A context-
free grammar (CF-grammar) is a quadruple G = (V, Ng, Ra, Si) such that
Vg, Ng are disjoint finite alphabets, Sg € Ng, and Rg is a finite subset of
Ng x (Vg U Ng)* (W* denotes the set of all finite strings of elements of
set W). Elements of Vi, Ng, Rg are called terminal symbols, nonterminal
symbols and production rules, respectively, of G, and Sg is called the initial
symbol of G. Production rules are written A — a instead of (A, a). We say
that string b is directly derivable from string a in G (write a =¢ b) if there
exist strings ¢,d, e and rule A — e in Rg such that a = cAd, b = ced. We
say that string b is derivable from string a in G (write a =7 b) if there exists



328 W. Buszkowski

a sequence (ag, ..., ay) such that n > 0, ap = a, a, = b and a;—1 =¢ a;, for
alli=1,...,n. The language of G (L(G)) is the set of all a € V% such that
Sa :>6 a.

Grammars G, G’ are said to be (weakly) equivalent if L(G) = L(G"). It is
well-known (see e.g. [72]) that every CF-grammar G such that € ¢ L(G) can
be transformed into an equivalent CF-grammar G’ in the Chomsky normal
form: all production rules of G’ are of the form A — v or A — BC, where
A,B,C € Ngr, v € V.

The CCG exemplified above can be replaced with a CF-grammar (in the
Chomsky normal form) whose production rules are as follows:

S— AB, B+— BC,

A — Joan, B — works, C' — hardly,

with Sg =S, Ng = {S, A, B,C}, and Vg consisting of lexical atoms ‘Joan’,
‘works’ and ‘hardly’. A derivation of ‘Joan works hardly’ is:

S= AB = ABC = --- = Joan works hardly.

Every CF-derivation determines a unique p-structure on the derived
string; the above derivation leads to structure (Joan (works hardly)). The
phrase language of CF-grammar G (LP(G)) consists of all p-structures on
strings from L(G) which are determined by possible derivations of these
strings.

A principal difference between CCG and CF-grammar is that the former
is lexical, that means: all particular linguistic information is put in the initial
assignment of types to lexical atoms, and the derivation procedure is based
on universal rules, common for all languages, whereas the latter puts the
linguistic information in the production rules which underly the derivation
procedure. Lexicality is characteristic of all basic kinds of type grammar:
the universal rules for derivation procedures are provable sequents of some
logics, being independent of the particular language. In section 3, we shall
show that lexicality is, actually, a restriction: larger classes of languages can
only be described by type grammars avoiding lexicality.

The Gaifman theorem [5] establishes the (weak) equivalence of CCG’s
and CF-grammars (for e—free languages). It is easy to show that every CCG
is equivalent to some CF-grammar. Let G be a CCG, and let Tz denote the
set of all types appearing in I. By T(G) we denote the set of all subtypes
of types from Tg. Clearly, T(G) is finite and contains all types assigned by



Type Logics in Grammar 329

G to any strings. A CF-grammar G’ is defined by: Vv = Vi, Nov = T(G),
Scr = Sa, and R¢ consists of all rules:

B~ A(A— B), B— (B+ A)A,

for (A — B),(B «— A) € T(G), and all lexical rules A — v, for (v, A) € Ig.
One easily proves:

Al...Anl—ABAiffA:yé/ Al...An,

for all A;, A € T(G), and consequently, L(G) = L(G").

The converse direction is more sophisticated. It is easier if one assumes
that the CF-grammar G is in the Greibach normal form, that means: all
production rules are of the form A — v, A+— vB or A— vBC, for A, B,C €
Ng, v € Vg (every CF-grammar G such that e € L(G) is equivalent to a
CF-grammar in the Greibach normal form [72]). We identify nonterminal
symbols of G with primitive types. A CCG G’ is defined by: Vg = Vg,
Sar = Sa, and I consists of:

1. all pairs (v, A) such that (A — v) € Rg,
2. all pairs (v, A < B) such that (A~ vB) € Rg,
3. all pairs (v, A < C « B) such that (A — vBC) € Rg.
By induction on n, one proves:
A=Fv.o iff v oo, 2o A,

for all A € Ng, v; € Vg, which yields L(G) = L(G").

Actually, the Gaifman theorem has been proven earlier than the Greibach
normal form theorem. Since the CCG, constructed by Gaifman, is precisely
of the above form, then his proof can be treated as the first proof of the
Greibach normal form theorem for CF-grammars (see an analysis of this
proof in [10]).

CCG’s are not equivalent to CF-grammars on the level of p-structures.
Let P(V') denote the set of all p-structures on alphabet V. Let L C P(V).
We say that X € P(V) is equivalent to Y € P(V') with respect to L (write
X ~p Y)if forall Z € P(V), Z[X] € L iff Z]Y] € L (as usual in logic,
Z[X] denotes Z with a distinguished occurrence of substructure X, and Z[Y]
denotes the result of replacing X with Y in Z). By the classical theorem
of Thatcher, L = LP(G), for some CF-grammar G, iff the relation ~ is of
finite index. By the external degree of X € P(V) (think of X as a tree)



330 W. Buszkowski

we mean the length of the shortest branch of X, and the degree of X is the
maximal external degree of substructures of X. For instance, v is of degree
0, (vw) is of degree 1, and ((vw)(v'w’)) is of degree 2. It has been shown
in [9] that L = LP(G), for some CCG G, iff both ~, is of finite index and
all structures in L are of bounded degree. Accordingly, phrase languages of
CCG’s are a narrower class than those of CF-grammars. For instance, the
CF-grammar given by rules S—SS, S— v produces all possible p-structures
on {v}, hence its phrase language is of unbounded degree, and consequently,
it cannot be generated by any CCG.

Phrase languages generated by CCG’s are regular tree languages in the
sense of tree automata (see [30]); this follows from the above characterization
of them as languages of finite index. Tiede [74] obtains analogous results
for ND proof trees associated with CCG’s and other kinds of categorial
grammars. For grammars based on the nonassociative Lambek calculus,
some related results have been proven by Kandulski [43].

A similar characterization can be given for functor languages generated
by CCG’s: for L C F(V), there is a CCG G such that L = L/ (G) iff both the
relation ~y, is of finite index and all structures in L are of bounded functor
degree (one counts the length of functor branches only; see [14]). Con-
sequently, functor languages of CCGs are regular tree languages. Standard
techniques of tree automata [30] yield the decidability of the emptiness prob-
lem, the inclusion problem and the equality problem for these languages; for
a discussion, see [14]. In particular, the problem of whether L (G) C Lf(G")
is decidable, which is crucial for some learnability results in the next sub-
section.

Learnability

Formal learning theory, stemming from Gold [31], is a theory of language
acquisition, based on formal grammars and recursion theory. It has evident
links with logical theories of inductive inference and knowledge discovery.
Technical results are mainly due to people working in theoretical computer
science; see the survey [64].

In [20], the logical method of unification has been applied to design
learning procedures for CCG’s. Kanazawa [38, 39] uses these procedures to
construct convergent learning functions for several classes of CCG’s. Neg-
ative postulates are considered in [20, 56, 18, 26, 27]. Unification in type
grammar has also been studied in e.g. [77, 75].

Due to lexicality (and the functional structure of types), type grammars
seem to be especially suitable to experiment learning algorithms employing



Type Logics in Grammar 331

unification. Hopingly, similar techniques can be developed for dependency
grammars and minimalist grammars (C. Retore, E. Stabler).

We shall describe fundamental lines of this approach for CCG’s. First,
we recall some basic notions of formal learning theory.

A grammar system is a triple (2, E/, L) such that 2 and E are countably
infinite sets, and L is a function from ) into the powerset of E. Elements
of Q are called grammars, elements of E are called expressions, and L(G),
for G € Q, is called the language of G.

W denotes the set of all nonempty strings of elements of W. A learning
function for the grammar system is a partial function from ET into .
Intuitively, the learning function assigns grammars to finite samples of a
language. Let (s;)icw be an infinite sequence of expressions. One says that
a learning function ¢ converges on this sequence to G € Q if p((8;)i<n) is
defined and equals G, for all but finitely many n € w.

Let G C Q. We denote L(G) = {L(G) : G € G}. A sequence (8;)iey is
called a text for a language L C F if L = {s; : i € w}. One says that a
learning function ¢ learns G if, for every L € L(G) and every text for L, there
is G € G such that L = L(G) and ¢ converges to G on this text. A class
G is said to be (effectively) learnable if there exists a computable learning
function ¢ that learns G.

Informally, G is learnable iff there exists an algorithmic procedure which
hypothesizes a grammar on the basis of a finite language sample (it need
not be defined on all samples); if the inputs are successive initial segments
of any text for any language generated by a grammar from this class, then,
after a finite number of steps, the outputs provide a fixed grammar from G
which generates this language.

Let £ be a class of subsets of F (languages on F). One says that £ admits
a limit point if there exists a stricly ascending chain (L, )ne, of languages
from £ such that the join of this chain belongs to £. It is known that if
L(G) admits a limit point then G is not (even uneffectively) learnable. As
a consequence, if G generates all finite languages and at least one infinite
language, then G is not learnable. This holds for all standard classes of
formal grammars, e.g. regular grammars, CF-grammars, CCG’s and so on.

Accordingly, learnability can be gained for some restricted classes only,
as e.g. context-sensitive grammars with at most k production rules [71].
Kanazawa [38, 39] shows that rigid CCG’s and k—valued CCG’s are learn-
able.

Wright [81] has defined the following property of a class £ of languages:
L has finite elasticity if there exists no pair ((8;)icw, (Li)icw), $i € E, L; € L,
such that s; € L; but sg,...,s; € Liy1, for all i € w. Kapur [44] has proven



332 W. Buszkowski

that finite elasticity entails the following condition:

(D) for every L € L, there exists a finite set Dy, C L such that L is the
smallest language L’ € L, satisfying Dy, C L'.

We prove that finite elasticity is equivalent to a strengthening of (D):

(D’) for every L C E, there exists a finite set Dy, C L such that, for every
L' e L,if Dy C L' then L C L.

Assume that £ does not satisfy (D’). Then, there exists L C E such that,
for any finite D C L, there is L' € £ such that D C L' but L ¢ L’. Take
D = 0. Thereis L' € L such that L & L'. Put so € L—L', Ly = L'. Assume
s; € Land L; € L, for i = 0,...n, have already been defined with s; &€ L;,
for 0 < i <mn, and sg,...,s; € Lj11, for 0 < i < n. There is L' € L such
that sg,...,8, € L' but L £ L'. Put 8,41 € L— L', L,41 = L'. In this way,
we define a sequence (s;)ic, and a sequence (L;)ic,, showing that £ does
not have finite elasticity.

Assume that £ satisfies (D). Let (s;) be an infinite sequence of expres-
sions. By (D), there is n € w such that, for any L' € L, if sg,...,s, € L'
then s; € L/, for all i € w. Consequently, there exists no infinite sequence
(L;), of languages from L, such that sg,...,s, € Lpy1 but spi1 & Lpta,
which proves the finite elasticity of L.

This yields Kapur’s theorem, since (D) follows from (D’). If £ is a closure
system, that means: L is closed under arbitrary meets, then £ satisfies (D’)
iff it admits no infinite ascending chains, that means: there is no infinite
sequence (L;), of languages from £, such that L; C L;11, for all i € w (this
observation and the equivalence of finite elasticity with (D’) seem to have
been overlooked in literature). We prove this fact.

Assume L satisfies (D’). Let (L;) be an infinite sequence of languages
from L such that L; C L;;1, for all i € w. Let L be the join of this sequence.
Take a finite set Dy, C L, as in (D’). Then, Dy C L,, for some n € w.
Consequently, L C L,, hence L, = L,4+1. Therefore, £ admits no infinite
ascending chains.

Assume that £ is a closure system which does not satisfy (D’). Then,
there exists L C E such that, for every finite D C L, there is L' € L,
satisfying D C L' but L € L'. Clearly, L is infinite. Let (s;) be an infinite
sequence of all expressions from L. For every n € w, let L, denote the
smallest language L' € £ such that sg,...,s, € L; it exists, since L is a
closure system. Clearly, L, C L,1, for all n € w. For every n € w, there
is L' € L such that sg,...,s, € L' but L € L', and consequently, there is



Type Logics in Grammar 333

m > n such that s,, &€ L,, which yields L, C L,,. Then, there exists an
infinite, strictly ascending chain of languages from L.

Let G C ). We always assume that G is recursively enumerable and the
universal membership problem s € L(G), for s € E, G € G, is decidable. We
need one more condition:

(MIN) there exists a computable partial function x from the set of finite
subsets of F into G such that the domain of x is recursive and, for any
finite D C E, the family {L € L(G) : D C L} is nonempty iff x(D) is
defined; if so, L(x(D)) is a € —minimal language in this family.

We prove a basic theorem, due to Kapur [44]:
(T1) if G satisfies (MIN) and L(G) has finite elasticity, then G is learnable.

Assume G satisfies (MIN), and L(G) has finite elasticity. A learning
function ¢ is defined as follows:

(10) ¢ ((s0)) = x({s0}),
(11) if 4,0((30, ey SZ)) = (G is and Si11 € L(G) then (p((So, e 3i+1)) = G,

(12) o((s0, - - -, si+1)) = x({s0, - - -, Si+1}), otherwise.

The relation ‘@ is defined on (s, ..., s;)’ is recursive, since both the do-
main of x and the relation s € L(G), for G € G, are recursive. Consequently,
¢ is recursive. It is easy to show the following: if ¢((so,...,s;)) = G is de-
fined, then L(G) is a minimal language in the family of all L € L(G) such
that sg,...,s; € L.

Let L € L(G), and let (s;) be a text for L. Clearly, ¢((so,...,S:)) is
defined, for all i € w. Let Dy C L be as in (D). There exists n € w
such that Dy C {sg,...,S,}. Since L is the smallest language L' € L
such that Dy C L', then L = L(G), for G = ¢((s0,...,5n)). By (11),
G = ¢((s0,---,5m)), for all m > n.

We have shown that ¢ learns G. Since ¢ satisfies (11), it is conservative
in the sense of formal learning theory. If conservativity is not required, then
the finite elasticity of L(G) is a sufficient condition for the learnability of G
[64].

Now, we apply these methods to CCG. Let us consider the grammar
system (€, E, L) such that  is the class of CCG’s (with a fixed lexicon V),
E = F(V), and L(G) = LY (Q), for G € Q. We assume that all grammars
in 2 have the same principal type S. Since V' and S are fixed, a grammar G
can be identified with Ig.



334 W. Buszkowski

First, we recall a unification-based learning procedure from [20]. Let
D C F(V) be a nonempty, finite set. We define a CCG GF(D), called
the general form of a grammar for D. S is treated as a constant, whereas
other primitive types are treated as variables. We assign S to all structures
from D and distinct variables to all occurrences of argument substructures
of these structures. Then, we assign types to functor substructures of these
structures according to the rules:

(fr) if (XY)q is assigned B and X is assigned A then Y is assigned A — B,
(fl) if (XY); is assigned B and Y is assigned A then X is assigned B « A.

GF(D) contains all assignments v — A obtained in this way, for v € V;
the principal type of GF(D) is S. For instance, if D consists of structures
(Joan works)s and (Joan (works hardly)s2)s, then GF(D) contains the as-
signments:

Joan — x,y, works — z, x — S, hardly — z — (y — 9).

A substitution is a mapping from variables to types; it is naturally ex-
tended to a mapping from types to types. If G is a CCG, and ¢ is a substi-
tution, then Go is a (unique) CCG which assignments v — Ao, whenever
G :v A. We have L/ (G) C L/(Go), for all G, 0. For G, G’ € Q, we write
G C G if I C I The following lemma is crucial [20].

(L1) Let D C F(V) be nonempty and finite. Then, for every G € €,
D C Lf(G) iff there exists o such that GF(D)o C G.

The following notions come from the logical theory of unification; we
modify definitions from [20]. A substitution o is called a unifier of G € )
if, for all v € V and types A, B such that G : v — A and G : v — B,
there holds Ao = Bo. It is called a most general unifier (m.g.u.) of G if
it is a unifier of G and, for every unifier n of GG, there exists a substitution
v such that n = oy. G is said to be unifiable if there exists a unifier of G.
The standard algorithm of unification can be used to decide whether a given
CCG G is unifiable and, if so, to produce an m.g.u. of G (it is unique up
to variants). For rigid CCG’s, and any nonempty, finite D C F(V), there
holds the following theorem [20].

(T2) There exists a rigid G € Q such that D C Lf(G) iff GF(D) is unifiable.
If o is an m.g.u. of GF(D), then GF(D)o is a rigid CCG from € whose
functor language is the smallest language L(G) such that G € Q is rigid
and D C L(G).



Type Logics in Grammar 335

GF(D) from the above example is unifiable; an m.g.u. o is the substitu-
tion: y/x, z/x — S, hence GF(D)o is given by:

Joan — x, works — x — S, hardly — (z — S) — (z — S),

which agrees with our earlier analysis of these sentences.

We define RG(D) =GF(D)o, if GF(D) is unifiable and ¢ is an m.g.u.
of GF(D). Kanazawa [38, 39] proves that RG({so,...,s,}) is a conserva-
tive learning function for the class G,, of all rigid grammars from . It is
true if one identifies ‘isomorphic’ grammars. It is easier to show that, for
Xx(D) =RG(D), the learning function ¢, defined by (10)-(12), learns G, (now,
‘isomorphic’ grammars need not be identified); this function is conservative.
By (T1), one needs (MIN) and finite elasticity of L(G,). (MIN) holds, by
(T2). To prove finite elasticity one may use Kanazawa’s lemma on chains of
rigid languages:

(L2) There exists no infinite sequence (G;) of rigid CCG’s from {2 such that
LI(G;) € LY (Giyq), for all i € w.

We omit a rather involved, combinatorial proof of (L2). Let £ be the
class L(G,) enriched with the total language F'(V'). Using (L2) and (T2),
we prove that £ is a closure system. Let {L;};c;r be a family of languages
from £, and let L be the meet of this family. If I = (), then L = F(V),
hence L € L. So, we may assume [ # () and L # F(V); further, we may
also assume L; € L(G,), for all i € I. We consider two cases. (1) L is
finite. By (T2), RG(L) exists, and the functor language of RG(L) is the
smallest language L' € L(G,) such that L C L. Consequently, this functor
language contains L and is contained in all L;, for ¢ € I, hence it equals
L. Thus, L € L. (2) L is infinite. Let (s;) be a text for L. We define
D,, = {so0,...,sn}. By (T2), RG(D,) exists, for all n € w. Let L(n) denote
the functor language of RG(D,,). Clearly, L(n) C L(n+ 1) and L(n) C L;,
for all n € w, i € I. By (L2), there exists n € w such that L(m) = L(n), for
all m > n, and consequently, L = L(n). Again, L € L.

So, L is a closure system which admits no infinite ascending chains. By
the fact on closure systems, proven above, £ has finite elasticity, and conse-
quently, L (G,) has finite elasticity (this property is preserved by subclasses).
This yields the learnability of G,.

A CCG G is said to be k—valued if {A : (v, A) € G} is of cardinality at
most k, for any v € V. By G we denote the class of all k—valued grammars
in Q. Again, (T1) yields the learnability of Gy.

To show the finite elasticity of Lf(Gy) Kanazawa uses the following
lemma.



336 W. Buszkowski

(L3) Let R C E; x E3 be a finite valued relation, that means, for any
s € Fy, there exist at most finitely many ¢ € Fs such that (s,t) € R.
Let £ be a family of languages on E5 which has finite elasticity. Then,
the family {R™![L] : L € L} has finite elasticity.

The proof of (L3) is an application of the Kénig lemma: every infinite,
finitely branching tree has an infinite branch.

Each atom from V is associated with k copies v',...,v*. Let W denote
the set of all copies of atoms from V. A mapping f : F(W) — F(V)
is defined by: (i) f(v%) = v, (ii) fF((XY);) = (f(X)f(Y))i. We define
a finite valued relation R C F(V) x F(W): (X,Y) € Riff X = f(Y).
For any grammar G € Gy, we define a rigid grammar G’ with lexicon W
in the following way: if Ay,..., A; are all types assigned to v by G, then
G’ assigns A; to v/, for j = 1,...,i. Clearly, L/(G) = R™![L(G")] and
LY (G) = R7Y[L/(G,)]. So, the latter class has finite elasticity.

To prove (MIN) one uses a modification of the construction of RG(D).
Let GFy(D) denote the set of all grammars G with lexicon W, satisfying
the conditions: for all v € V and types A, GF(D) : v — A iff, for some
i, G : v' — A, (ii) if i # j then G assigns no common type to both v’
and v7. Clearly, GF1(D) is a finite set, efectively constructed from GF (D).
Let GF*(D) be defined as follows: (i) construct all grammars Go such that
G €GFg(D), o is an m.g.u. of G (if exists), (ii) return to lexicon V, by
assigning to v all types Go assigns to copies of v. GF¥(D) is an effectively
constructed set of k—valued grammars, fulfilling an analogue of (L1): for
any k—valued grammar G, D C Lf(G) iff there exist G' €GF*(D) and
substitution o such that G’c C G. Consequently, among languages L/ (G),
G €GF*(D), there appear all minimal languages L such that L = Lf(G),
for some k—valued grammar G with D C L/(G). Since the inclusion prob-
lem Lf(G) C Lf(G') is decidable, then we can effectively find a grammar
G €GF*(D) such that L/(G) is minimal among all languages of grammars
from GF¥(D), and consequently, among all languages of k—valued grammars
G such that D C Lf(G). Accordingly, a function y satisfying (MIN) exists.

Kanazawa also considers learnability from strings. Now, the set F con-
sists of all nonempty strings on V', and L(G) is the string language of G. For
X € F(V), by s(X) we denote the string on V resulting from X after one has
dropped all structure markers. The relation R between strings and struc-
tures, given by: (a, X) € Riff a = s(X), is finite valued, and consequently, if
LY (G) has finite elasticity, then L(G) has finite elasticity, by (L3). So, both
L(G,) and L(Gy) have finite elasticity, hence G, and Gy are learnable from
strings, by a general theorem of formal learning theory, mentioned above.



Type Logics in Grammar 337

The corresponding learning functions need not be conservative. Kanazawa
defines nonconservative learning functions for these classes which use the
above constructions performed on all possible structures admissible for a
given string.

We have discussed learnability from positive data. As observed by Gold
[31], if one admits texts consisting of all expressions from F and inform-
ing which expressions belong and which expressions do not belong to the
language, then every recursively enumerable class of grammars is learnable.
The learning function simply picks the first grammar G, (in the fixed recur-
sive sequence of all grammars from the class) which is compatible with the
sample.

In [20, 56], negative data have been handled in a different way. Samples
consist of positive data only, while some negative information is employed
to restrict the search space of admissible grammars. In [56], there are con-
sidered classes B, of grammars, fulfilling the following conditions:

(N1) if G C G’ and G’ € B, then G € B,
(N2) if Go € B, then G € B.

The order of type A is defined by:
o(A) =0, for primitive A, 0o(A — B) = o(B «+ A) = max(o(B),0(A) + 1).

Thus, o(p — ¢q) =1 and o((p — q) — r) = 2. The order of G is the maximal
order of types in G; we denote it by o(G). Always o(G) < o(Go), hence
the class of all CCG’s of order at most n satisfies (N1) and (N2). Another
example is the following. We admit Pr contains some other constant types
besides S, say PN, N etc. Let Xi,..., X, be structures in F(V), and let
Ay, ..., A, be variable-free types. Then, the class of all CCG’s which do not
assign A; to X;, for i =1,...,n, satisfies (N1), (N2).

A set S, of substitutions, is said to be hereditary, if: on € S entails
o € S. If B satisfies (N2), then, for any G, the set of all o such that Go € B
is hereditary. If B is recursive, then the latter set is recursive. We say that
G is unifiable in S if there exists a unifier of G which belongs to S. If S is
hereditary, then G is unifiable in S iff the m.g.u. of G exists and belongs to
S.

Using these facts, all results discussed above for classes G, and Gy can
also be obtained for these classes restricted to grammars from a recursive
class B, fulfilling (N1), (N2). Many results of that kind can be found in
[56, 18, 26, 27].



338 W. Buszkowski

Kanazawa considers similar problems for type grammars based on logics
stronger than AB; Moortgat [60] proposes an extension to grammars based
on multimodal logics. Recently, Foret has shown that string languages of
rigid grammars based on Associative Lambek Calculus (see section 3) admit
a limit point, hence this class of grammars is not learnable from strings.
Rigidness is not a natural constraint for Lambek grammars, since the Lam-
bek calculus transforms each type to infinitely many types. Consequently,
no Lambek grammar is esentially rigid (or k—valued), and grammars of that
kind seem to require some different notion of learnability. On the other hand,
methods discussed above can be adapted to various grammar formalisms,
different from CCG but interpretable in it, as e.g. finite state automata,
CF-grammars in (generalized) Greibach normal form, planar dependency
grammars, and others.

Type logics

The basic logic AB can be extended in various ways. Lambek [49] has in-
troduced Syntactic Calculus, now called Associative Lambek Calculus (AL).
Types are formed out of primitive types by ®, —,«. The axioms are (Id)
and:

(ASS) (A®B)®CFA®(B®C(C), A(BC)F(A® B)®C,
and inference rules are:
(RRES) A BFCiff BFA—C,

(LRES) A® B Ciff AF C — B,
(CUT1) if AF B and B+ C then A+ C.

Theorems of AL (in this format) are simple sequents A F B, interpreted
as: every expression of type A is also of type B. By (Id), (RRES) and
(LRES), one gets:

A®(A— B)FB, (B—A)®AF B,

which correspond to the reduction rules of AB. AL provides many theorems
not derivable in AB, as e.g.:

(1) AFB— (A—B), A+ (B« A) — B,
2)(A-B)®@(B—-C)FA—-C,(C—B)®@(B—A)FC— A,



Type Logics in Grammar 339

B3)(A-B)«~CFHFA—- (B~C(C),A—-(B<—C)F(A— B)<C,
(4) A-B— (B®A), A (A® B) «— B,

called expansion, composition, associativity and lifting, respectively.

According to (1), type PN (proper noun) can be expanded to NP (noun
phrase) equal to S« (PN—S). As a consequence, noun phrase conjunctions
of type (NP—NP)«—NP can be used in contexts like ‘Joan and some teacher’,
analysed as compound noun phrases. According to (2), the sentence negation
‘not’ of type S«+—S can be composed with a noun phrase to produce a negated
noun phrase, e.g. ‘not every teacher’. An application of (3) was observed
by Lambek. Let NP’ equal to (S«~PN)—S be the type of noun phrases on
the object position, as in ‘likes every teacher’. (PN—S)«PN is the type of
transitive verb phrases. If we assign NP’ to ‘him’, then ‘Joan likes him’ gives
rise to the sequent:

NP (PN—S)«PN (S«PN)—=S I S,

which is derivable in AL but not in AB (in AL, use (3) to the middle type).
The sequence A ... A, in the antecedent is interpreted as A1 ® --- ® A,,.

Type transformations provided by AL are justified by an algebra of types,
which is assumed by Lambek but not by Ajdukiewicz and Bar-Hillel. In
CCQG, types of expressions are completely determined by the initial type
assignment of a categorial grammar. If ‘Joan’ is assigned type PN, then PN
is the only type of ‘Joan’ in all syntactic analyses. According to Lambek,
‘Joan’ has type PN, but also type NP, NP’ and infinitely many other types
A such that PNF A is derivable in AL. Types are interpreted as sets of
nonempty strings on a lexicon V' (languages on V). The logical constants
®, —, < are interpreted by the following operations on languages:

(5) Ll'LQZ{abZCLELl, bELQ},
(6) LI\LQ = {CL eVvt: (Vb € Ll)ba S LQ},
(7) Ll/Lz = {CL cVt: (Vb € Lg)ab € Ll}

A language model is defined as a pair (V, ) such that V' is a nonempty
finite set, and x is a mapping from Pr into P(VT). One extends u to a
mapping from Tp (the set of types) into P(V'), by setting:

wA®B) = u(A)-u(B), p(A — B) = p(A)\u(B), p(A — B) = p(A)/u(B).

A sequent A B is said to be true in this model, if u(A) C u(B). It is easy
to show that sequents provable in AL are true in all language models. Pentus



340 W. Buszkowski

[66] proves the completeness: every sequent true in all language models is
provable in AL (for product-free sequents, it has been shown in [7]).

Since AL is sound and complete with respect to language models, gram-
mars based on AL cannot yield incorrect types of expressions provided that
the initial type assignment is correct. Lambek [50] discusses the following ex-
ample. Let us assign type PN«PN to adjectives. Then, AL yields type S to
pseudo-sentence ‘Joan likes poor him’, if ‘Joan’, ‘likes’ and ‘him’ are typed as
above. Lambek concludes that AL is too strong, and proposes to replace AL
by its nonassociative variant without (ASS). Nonassociative Lambek Calcu-
lus (NL) is interesting for many reasons, but Lambek’s conclusion seems to
be misleading. Type PN«PN of ‘poor’ and type (PN—S)«PN of ‘likes’ are
correct, and the sequent:

(PN—>S)<—PN PN+—PN (S<—PN)—>S F PN—S

is provable in AL (hence true in language models), but ‘likes poor him’ is not
a syntactically correct expression of type PN—S (intransitive verb phrase).
The conslusion must be: NP’ is not a correct type of ‘him’. On the other
hand, it is difficult to find totally correct types of lexical atoms in natural
language. Dropping associativity makes this task easier: now, ‘likes poor’
is not a syntactically correct expression of type (PN—S)«—PN, hence NP’
can correctly be assigned to ‘him’. So, Lambek is right in his final solution.
Language models of NL interpret types as phrase languages on V.

Type tranformations in AL correspond to semantic transformations de-
finable in the lambda calculus. Primitive semantic types are ¢ (truth value),
e (entity), and possibly others. a — b is the type of functions which assign
objects of type b to objects of type a. Syntactic types of AL correspond to
semantic types: PN corresponds to e, Stot,and A — B, B «+— A correspond
to a — b, where a corresponds to A and b to B. For instance, the semantic
type of intransitive verb phrases is e — ¢, of functions which assign truth
values to entities; they can be identified with sets of entities. The semantic
type corresponding to NP is (e — t) — ¢, of functions which assign truth
values to objects of type e — t; they can be identified with families of sets
of entities. (The noun phrase ‘every student’ denotes the family of all sets
W such that every student belongs to W.)

We say that a type transformation a; ...a, = a is lambda definable, if
there exists a lambda term M of type a with free variables x; of type a;,
for i = 1,...,n. Let us consider composition (1) for A =PN, B =S. The
corresponding type transformation e = (e — t) — t is definable by the term:

e—t . e—t, e
DV AN Al T



Type Logics in Grammar 341

where the superscripts indicate types of variables. For any given value u of
y©, this term denotes a mapping F;, such that F,(f) = f(u), for any function
f of type e — t. Equivalently, F, is the family of all sets W such that
u € W. Less formally, expansion corresponds to a semantic transformation
which sends each entity u to the family of all (monadic) predicates true on
u (or: properties of u). In semantical terms, the phrase ‘John and every
student’ can be interpreted as follows. First, we expand type e of ‘John’ to
type (e — t) — t of noun phrases. Now, ‘John’ and ‘every student’ are of
the same type. The entity denoted by ‘John’ is transformed by the lambda
term to the family of all properties of this entity. The conjunction ‘and’
is interpreted as the Boolean meet on families of sets. Consequently, ‘John
and every student’ denotes the family of all sets W such that John and all
students belong to W, as expected.

Interconnections between type logics and semantic transformations have
been studied by van Benthem [76, 78], Moortgat [58, 59] and their collab-
orators. van Benthem proves a kind of lambda completeness of the com-
mutative AL: sequents provable in this system are precisely those which are
definable by lambda terms, fulfilling three constraints: (i) every subterm
has a free variable, (ii) every variable occurs at most once in each subterm,
(iii) each lambda binds a variable in its scope. This refines the well-known
Curry-Howard isomorphism between intuitionistic proofs and lambda cal-
culus. Along these lines, derivations in type logics have a sense from the
standpoint of Montague semantics and may serve as a basis for ‘semantic
parsing’.

Type logics as substructural logics

Lambek [49] presents AL in the form of a Gentzen-style sequent system.
Sequents are of the form I' - A, where I' €Tp"™ and A €Tp. The axioms
are (Id) (it suffices to restrict them to primitive types A), and the inference
rules are:

(L) TABT' F C o) A A+ B
MA@ BI'FC’ TAFA®B '
I'BIYEC: AFA AT+ B

(—L) G (om) LR
TA(A = B)I'F C I'FA— B
TBI'FC; A+ A TAF B

L irE—marro “Nrrpoa
where I' # € in (—R) and («R). Dropping the latter constraint yields
a stronger system ALO in which provable sequents may have empty an-
tecedents. ALOQ is not conservative over AL: - p — p is provable in ALO,



342 W. Buszkowski

by (Id) and (—R), hence (p — p) — p F p is provable in ALO, by (Id) and
(—L), but the latter is not provable in AL. ALO is complete with respect to
language models in which languages are subsets of V* (the set of all strings
over V).

Provability in AL and ALO is decidable, since the above axiomatizations
yield cut-free sequent systems in which the complexity of the conclusion of
each rule is greater than the complexity of any premise of this rule. As shown
by Lambek [49], (CUT) is admissible in AL, and the same holds for ALO.
Using (CUT), it is easy to prove that the sequent system of AL is equivalent
to the ‘algebraic’ system given at the beginning of this section. As concerns
computational complexity, AL and ALO are NP-TIME decidable; recently,
Pentus [67] shows NP-completeness.

Nonassociative Lambek Calculus (NL) deals with sequents X F A such
that X is a type structure and A is a type. Type structures are defined as
follows: (i) all types are (atomic) type structures, (ii) if X,Y are type struc-
tures, then (X oY) is a type structure. So, up to notation, type structures
amount to phrase structures on Tp in the sense of section 2. The axioms
are (Id), and the inference rules are:

X[AoB]FC XFAYFB

L) Xasaro VN XoviaeB
X[B|FC; YF A AoXFB
F%JMYMAHB”FOQMﬂXFAHB’
X[B]FC; YF A XoAFB

L _—
M XB—pevire “Nxrpoa
As usual, X[Y] denotes structure X with a distinguished substructure
Y, and in this context X[Z] denotes the result of replacing Y with Z in X.
NLO admits the empty type structure 0, satisfying 0o X = X and X o0 = X,
for any type structure X. The cut rule:

X[AJFB; YEA

X[Y|+B
is admissible in NL and NLO [50]. As shown in [33], NL is P-TIME decidable.
A different proof of this fact will be sketched below.

NL and NLO are genuine substructural logics. In the Gentzen format,
they employ logical rules, that means, rules for logical constants only. They

employ no structural rules, manipulating type structures. AL (ALO) can be
obtained from NL (NLO) by affixing the structural rule of associativity:

(NCUT)




Type Logics in Grammar 343

as a result of (RASS), type structures can be identified with strings of types.
Stronger systems arise by adding other structural rules, as e.g.

FABT' - C
IBAT + C’

IT' + B
TAl'F B’
I'+B

(CON) A+’

in (CON), I' contains at least two occurrences of A, and A drops one of
them. As a result of (EXC) (the rule of exchange), antecedents of sequents
can be identified with multisets of types. For systems with (EXC), rules
(WEA) (weakening) and (CON) (contraction) can be formulated in a more
standard way:

(EXC)

(WEA)

I'-B F'AA+ B
A+ B’ (CON) TAFB -

In the presence of (EXC), ® is commutative, and A — B is equivalent to
B «— A (so, < can be abandoned). The product-free fragment of ALO plus
(EXC) amounts to the logic BCI (the system of types of combinators formed
out of combinators B, C and I). A Hilbert-style system of BCI employs the
axioms:

(WEA)

B) (B—C)— ((A— B)—(A—C)),
C)(A—=(B—C))—(B—(A—0)),
(I) A— A,

and the only rule MP: from A — B and A infer B. In the tradition of
substructural logics, ® is called fusion. ALO plus (EXC) amounts to BCI
with fusion. Analogously, the product-free ALO plus (EXC), (WEA) (resp.
(CON)) amounts to BCK (resp. BCIW), and the system enriched with
(EXC), (WEA), (CON) amounts to the logic of positive implication. The
rule (CUT) is admissible for all systems, mentioned above.

Zielonka [84] proves that the product-free fragment of ALO cannot be
axiomatized by any finite number of axiom schemes with MP and its dual
(from B «— A and A infer B) as the only rules; much earlier [83], this author
obtained similar results for AL. It holds for AL plus (EXC), but it remains
open for NLO. Notice that, for systems like AL, (AL) plus (EXC), one takes
axioms of the form I' - A (closed under substitution), I" # €, and (CUT) as
the only rule.



344 W. Buszkowski

Systems with (EXC) may be regarded as logics of semantic types. For
instance, the product-free AL plus (EXC) has been studied by van Benthem
[76] as a basic logic of semantics.

It is reasonable to consider further extensions of these systems. One
direction is to admit lattice operations A and V. For associative systems,
the rules for A are:

TAT' - C (AL2) I'BI'+C
(ANB)I'FC’ T(AANB)I'FC’

(AL) —

THATFB

(AR) 'AAB '’

and the rules for Vv are:

TAT' - C; TBI'F C

VL) raveree
'rA I'tB
(VR1) AV B’ (VR2) AV B

Again, (CUT) is admissible, and the resulting systems are decidable. Since
AL with A,V is a conservative extension of AL, then the decision problem
for the former is NP-complete, by the Pentus result for AL. The precise
computational complexity of NL with A,V is not known.

Systems with A,V lack some important property, characteristic of sys-
tems like AL, ALO, NL, NLO (also with (EXC)). Proof trees in the latter
systems show no ‘material’ dependence of different branches. Primitive types
appearing in the conclusion of (®R) come from premises independently of
each other, and similarly for other rules. As a consequence, every proof tree
can be transformed into another proof tree in which each axiom p F p ap-
pears precisely once (we use different copies of p for different occurrences of
p b p). In sequents appearing in the modified proof tree, each primitive type
has 0 or 2 occurrences, and the initial proof tree can be obtained from the
latter by substitution (one substitutes p for every copy of p). Accordingly,
every provable sequent is a substitution of a provable sequent in which each
primitive type occurs twice. This property is called Multiplicativity. In the
tradition of linear logic [32], constants ®, —, «— are said to be multiplicative,
while A,V are additive. Actually, in rules (AR) and (VL) the antecedent
string I" must be the same in both premises, hence the two branches of the
proof tree are ‘materially’ dependent.

Multiplicative systems admit a strong form of Interpolation. For p €Pr,
let |A], denote the number of occurrences of p in A. |I'|, is defined in a



Type Logics in Grammar 345

similar way. |I'| denotes the total number of occurrences of primitive types
in I, and similarly for |A|. We state an interpolation lemma, proven by
Roorda [70].

(INT) Let TAIY + B be provable in AL with A # e. Then, there exists
type A (an interpolant of A), satisfying: (i) A A is provable in AL,
(ii) TAIY + B is provable in AL, (iii) for any p €Pr, |A|, is not greater
than the minimum of [A|,, [TT'B|,.

The proof proceeds by induction on proofs in AL. Let us demonstrate
one case. Assume I'T - A ® B is derivable from I' = A and I" + B, by
(®R). Let I' =T'1I'g, I" =TTy, A = T'oI"} with I'; and I'} being nonempty.
We find an interpolant C' of A. By the induction hypothesis, there exists
an interpolant Cy of I'y in I' - A, and there exists an interpolant Cy of I"
inT"F B. Set C = C; ®Cy. Ak C is provable, by (®R). Since I''C; F A
and CoI'y - B are provable, then I';CT% + A ® B is provable, by (®R) and
(®L). We also have:

’Cl‘p < ‘F2|p7 ‘02‘1) < ‘P11|p7

which yields |C|, < |Al, (add both inequalities). In a similar way, we show
Clp < [T1TH(A® B)l,.

Using multiplicativity and interpolation, Pentus [65] proves that type
grammars based on AL generate context-free languages (the converse state-
ment that all context-free languages are generated by these grammars follows
from the Gaifman theorem and the fact that AL is equivalent to AB for se-
quents A ... A, F psuch that Aq,..., A, are types of order at most 1 and
p is primitive). By multiplicativity, for every sequent I" = A, provable in
AL, there exists a provable sequent I" A’ in which each primitive type
occurs exactly twice, and ' - A = (I" + A’)o, for some substitution o. Let
=A4,...A,, TV = A]...Al,. For each i = 1,...,n, one finds an inter-
polant B; of A} in IV = A’ and an interpolant B of I''. Then, B;...B, + B
is provable in AL, each primitive type occurs twice in this sequent and at
most once in every type of this sequent; such sequents are said to be thin.
By a combinatorial argument, Pentus proves the following binary reduction
lemma for thin sequents: if B; ... By, B is thin, |B;| < m, |B| < m, then
there exist 1 < j < n and type C such that |C| < m and C' is an interpolant
of BjBjy1in By ... B, = B. Applying o, we prove the same binary reduction
lemma for the initial sequent I"' = A. Let G be a grammar based on AL, and
let m be the maximal | A[, for types A appearing in G. All types in G employ
only a finite collection of primitive types. By the binary reduction lemma,



346 W. Buszkowski

every sequent Aj ... A, A provable in AL and such that all types appear
in G can be derived by (CUT) from provable sequents C1Cy - C3, C1 F Co
such that |C;| < m. By the decidability of AL, one can effectively determine
all sequents of this form, and they yield production rules of a CF-grammar
equivalent to the initial type grammar.

This proof cannot be adjusted to systems with A,V. Grammars based
on AL, NL with A generate languages which are not context-free [37], which
follows from the fact that the intersection of two context-free languages need
not be context-free.

For NL, NLO, the formulation of (INT) is the following. Let X[Y|F B
be provable, Y # 0. Then, there exists type A, satisfying: (i) Y + A is
provable, (ii) X[A] - B is provable, (iii) for any p €Pr, |A|, is not greater
than the minimum of |Y,, | X[g|B|p, where ¢ # p.

Interestingly, nonassociative systems admit another form of interpola-
tion, not admissible in associative ones. Let 1" be a finite set of types, closed
under subtypes. T—sequents are sequents using types from 7" only.

(NINT) Let X[Y]F B be a provable T—sequent. Then, there exists A € T
such that (i) and (ii) hold true.

(NINT) can easily be proven by induction on proofs in NL, NLO (also with
(EXC)); a similar result has been announced by Jéger (unpublished) As a
consequence, grammars based on these systems yield context-free languages.
Other proofs, based on a normalization procedure for nonassociative systems,
has been given in [9, 40, 41].

Other type logics, e.g. multimodal systems, pregroup systems, will be
discussed later on.

Models and grammars

Abstract algebraic frames of NL are residuated groupoids, i.e. structures of
the form (M, <,-,\,/) such that (M, <) is a nonempty poset, and -, \,/ are

binary operations on M, satisfying the condition of residuation:
(RES) ab < ciff b < a\ciif a < ¢/b,

for all a,b,c € M. A model is a pair (M, ) such that M is a residuated
groupoid, and  is a mapping from Pr into M, which is extended to all types
as for the case of language models. It is also extended to type structures:
WX oY) = pu(X)u(Y). A sequent X + A is said to be true in a model

(M, ), if (X)) < p(A).



Type Logics in Grammar 347

A standard argument, using a canonical model, yields the completeness
of NL with respect to residuated groupoids. We can consider theories in NL,
i.e. systems arising from NL by affixing a set ® of new axioms; then, the
rule (NCUT) is treated as a legal rule of the system. A system S enriched
by a set ® of new axioms will be denoted S(®). Caution: we do not assume
new axioms are closed under substitution. The strong completeness also
holds: the sequents provable in NL(®) are precisely those which are true in
all models (M, ) in which all sequents from ® are true.

Frames for NLO are residuated groupoids with unit 1, satisfying: la =
al = a, for all elements a. We set 14(0) = 1. To construct a canonical model
(from equivalence classes of types) it is expedient to add a propositional
constant 1 to the language, with the following rules:

X[0] - A

W) XaFa

(IR) OF 1,

recall that 0o Y =Y o0 =Y in the metalanguage, hence X[1 o Y| F A can
be infereed from X[Y] F A. This system is denoted NL1. Cut elimination
holds for NL1, and NL1 is conservative over NLO. The completeness of NL1
can be shown by the construction of a canonical model, and consequently,
NLO is also complete with respect to residuated groupoids with unit.

Residuated groupoids in which - is associative are called residuated semi-
groups. Residuated semigroups with unit are called residuated momnoids.
AL is strongly complete with respect to residuated semigroups, and AL1
is strongly complete with respect to residuated monoids (AL1 is NL1 plus
(RASS)). Since AL1 is conservative over ALO, the latter system is complete
with respect to residuated monoids. For systems with A, V, the frames are
residuated groupoids (semigroups) (M, <,-,\,/) such that (M, <) is a lat-
tice; we call them lattice ordered (l.o.) residuated semigroups (monoids),
but the term ‘residuated lattice’ is also used in literature. Completeness can
be obtained, as above. Systems with (EXC) are complete with respect to
commutative residuated semigroups (monoids, groupoids) in which ab = ba,
for all elements a, b.

More special frames are powerset frames. Let (M, -) be a groupoid. For
L1,Ly € M, one defines operations -, \,/, by (5), (6), (7) (replace V* by
M). The structure (P(M),C,-,\,/) is a residuated groupoid (the powerset
residuated groupoid over (M,-)). If (M,-) is a semigroup, then the powerset
structure is a residuated semigroup (the powerset residuated semigroup over
(M,-)). If (M,-,1) is a monoid (i.e. a semigroup with unit), then {1} is the
unit in the powerset structure, and similarly for groupoids. AL (resp. AL1)



348 W. Buszkowski

is strongly complete with respect to powerset residuated semigroups (resp.
monoids) [8].

The proof given in [8] seems to be one of the first applications of labelled
deductive systems, extensively studied by Gabbay [29]. Systems of that kind
admit expressions of the form ¢ : A such that A is a logical formula, and ¢
is a label. Rules of the system perform some logical operations on formulas
and algebraic operations on labels. They are intended to formalize a part
of metalanguage for the object language; for instance, ¢t : A may express the
relation: A is true in state (world) ¢. In [8], ¢ : A means: the element ¢ of
M belongs to p(A). Labels are defined by recursion: (i) all types are atomic
labels, (ii) if ¢1,...,t,, n > 1, are atomic labels, then ¢;...¢, is a label,
(iii) if ¢ is a label, and A, B are types, then (¢, A, B,1) and (¢, A, B, 2) are
atomic labels. One says that label ¢ reduces to label ¢/, if ¢’ arises from ¢ by
a finite number of replacements of (s, A, B,1)(s, A, B,2) by s. The axioms
are (LID) A : A, and the rules are ND rules of elimination and introduction
of ®, —, .

(LRE) from t : A® B infer both (¢, A, B,1): A and (¢, A, B,2) : B,
(L®I) from s : A and ¢ : B infer st : A® B,

(L—E) from s: Aand t : A — B infer st : B,

(L—I) from As: B infer s : A — B,

and the dual rules (L«E), (L«I). We also need a reduction rule: from ¢ : A
infer ¢’ : A, whenever t reduces to t. For any sequent Ay... A, - B, n > 1,
we introduce a rule: from ¢; : A;, for i = 1,...,n, infer ¢;...t, : B. The
system LAL(®) admits the latter rule, for every sequent from ®. To any label
t one assigns a string of types T'(¢) by the following recursion: (i) T'(A4) = A,
(ii)) T(ty...tn) = T(t1)... T(tn), (iii) T'((t, A, B,1)) = A, T((t,A,B,2)) =
B. One shows: t : A is provable in LAL(®) iff T'(t) - A is provable in
AL(®). A label is said to be irreducible if it starts no proper reduction. We
construct a canonical model. Let (M,-) be a semigroup in which M is the
set of irreducible labels, and, for s,t € M, s -t is the only irreducible label
t" such that st reduces to t' (the uniqueness follows from the Church-Rosser
property of reduction). We consider the powerset structure P(M) and the
canonical mapping u, defined by: u(p) equals the set of all ¢ € M such that
t : p is provable in LAL(®). We prove: p(A) equals the set of all t € M such
that t : A is provable in LAL(®). Now, if A+ B is not provable in AL(®),
then A : B is not provable in LAL(®) (by T'(A) = A), hence A € u(A) and
A ¢ u(B). Consequently, A - B is not true in (P(M), ). This yields the



Type Logics in Grammar 349

strong completeness of AL with respect to powerset frames. In a similar
way, one can prove a representation theorem: every residuated semigroup is
embeddable into a powerset residuated semigroup.

In [46], a similar argument shows the strong completeness of NL with
respect to powerset residuated groupoids and the corresponding represen-
tation theorem: every residuated groupoid is embeddable into a powerset
residuated groupoid. If K, K’ are classes of frames such that K C K’, a
propositional system is (strongly) complete with respect to K, and there
holds the representation theorem: every frame from K is embeddable into a
frame from K’, then this system is (strongly) complete with respect to K.
So, the completeness of a system with respect to concrete frames follows from
its completeness with respect to abstract frames and the embeddability of
abstract frames into concrete frames.

Language models discussed at the beginning of this section are special
powerset structures in which the underlying semigroup is the free semigroup
generated by V, i.e. the set VT with concatenation. Pentus [66] shows
the completeness of AL with respect to language models (the proof is very
sophisticated). Strong completeness fails. Take p - p® p as a new axiom. If
1(p) € p(p)u(p), then u(p) = 0, hence u(p) C p(q) in all language models,
satisfying this axiom, but p F ¢ is not provable in AL(p F p ® p) (it is easy
to find a powerset model over a semigroup in which the axiom is true, but
p b qis false). Consequently, the representation theorem also fails: not every
residuated semigroup is embeddable into the powerset residuated semigroup
over a free semigroup.

These completeness results are easier for product-free fragments of type
logics. Consider the free semigroup generated by Tp. In the powerset struc-
ture we define u(p) as the set of all T' such that ' F p is provable in AL.
One proves by induction: for any product-free type A, p(A) is the set of all
I" such that I' - A is provable in AL. Now, if A+ B is not provable in AL,
then A € p(A) and A & u(B), hence A F B is not true in the model. Similar
arguments can be provided for product-free fragments of ALO, NL, NLO and
their variants with 1, A [8].

For systems with product, this simpler method can be applied, if power-
set models are replaced with more general cone models. In a poset (M, <),
aset L C M is called a (lower) cone if a < b and b € L entail a € M. By
C(M) we denote the set of cones in M. Let (M, <,-) be a partially ordered
semigroup (that means: we assume: a < b entails ca < ¢b and ac < be). One
defines operations \, / on C (M) as above and the product as follows:

(5’) Ll . LQ = {Jj‘ . (Ely S Ll,Z S Lg)x S yz}



350 W. Buszkowski

Then, (C(M),C,-,\,/) is a residuated semigroup. There holds the repre-
sentation theorem: every residuated semigroup M is embeddable into the
residuated semigroup C'(M). This yields the strong completeness of AL with
respect to cone models. Dosen [23] gives a direct proof of this fact, using a
canonical model construction with cone models instead of powerset models;
the underlying structure is Tp with @ as the operation and the provable -
as < (it is a preorder, but see below).

A refinement of this construction can be used to prove the subformula
property for theories (since cut elimination fails, this property cannot be
shown in a standard way). In [8], it was proven with the aid of the labelled
deductive system, mentioned above. Here, we sketch a proof using canonical
cone models [17]. First, observe that, in the construction of C'(M), the un-
derlying structure (M, <,-) may be a preordered semigroup, that means, <
is reflexive and transitive, - is monotone in both arguments, and associativ-
ity holds modulo the equivalence generated by <: a ~ b iff both ¢ < b and
b < a. Let T be a set of types, closed under subtypes, which contains all
types appearing in ®. Take M = T+ with concatenation. We write I' -7 A
if there exists a proof of I' = A in AL(®) which consists of T'—sequents only
(see the end of subsection 3.1). We define a preorder < on M as the reflexive
and transitive closure of the following relation: TAIY < TAIY if A b A,
IFABT <T(A® B)I" if (A® B) € T. Then, (M, <) with concatenation is
a preordered semigroup. We consider the residuated semigroup C(M). A
mapping p is defined as follows: u(p) = {I' € M : T' Fp p}. One proves
uw(A) ={T e M : T Fp A}, for all A € T. Now, let I' = A be provable
in AL(®). Let T be the set of all subtypes of the types appearing in ®
and I' F A. Axioms from @ are true in (C(M),u), hence pu(I') C p(A),
by soundness. Since I' € p(I'), then I" € pu(A), and consequently, I' Fr A.
Thus, I' - A has a proof in AL(®) in which all types are in 7. A similar
argument can be given for NL. For product-free fragments, powerset frames
can be used instead of cone frames.

Now, we can prove that the consequence relation ‘X F A follows from
® in NI (that means, X F A is provable in NL(®)) is P-TIME decidable
(® is a finite set of sequents C' = D). Let T be the smallest set of types,
being closed under subtypes and containing all types appearing in X + A
and ®. We can construct 7" from the data in polynomial time, and the size
of T' is not greater than the number of primitive types and logical constants
in the data. Recall that a T'—sequent is a sequent whose all types are in T
A sequent is said to be basic if it is a T'—sequent of the form C; o Cy F C5 or
Ci F Cy. The number of basic sequents equals n? + n3, where n is the size
of T. We can effectively find all basic sequents provable in NL(®).



Type Logics in Grammar 351

First, we construct a set ST of provable basic sequents. Sy consists of all
sequents from ®, T'—sequents (Id), and T'—sequents of the form:

AoBFA®B, Aoc(A— B)FB, (B« A)o At B.

Assume S, has already been defined. S,y1 is 5, enriched with sequents
resulting from the following rules:

Sl1)if Ao BFCisin S, and A® Bisin T, then A® B+ C is in Sy41,

S2)if AcoBFCisin S, and A — C'isin T, then B+ A — C is in Sy41,

)
)
S3)if AoBFCisin Sy, and C < Bisin T, then A+ C « Bisin Sy41,
)
S5)if Ao BFC and B’ B are in S,,, then Ao B'F C'is in Sj41,

)

(
(
(
(S4) if Ao B C and A’ A are in Sy, then A’o B+ C is in Sj41,
(
(

S6) if X - Aand AF B arein S,, then X F B isin Sy y1.

We define ST as the join of this chain. Clearly, ST = Sy, for the least
k such that Sy = Sk41, and this k is not greater than the number of basic
sequents. The construction of S, from S,, can be done in a time polyno-
mial in the number of basic sequents. Consequently, ST can be constructed
in a time polynomial in the size of the data. Clearly, ST is closed under
(NCUT) restricted to basic sequents. Let S(T") denote the system whose
axioms are all sequents from S” and the only rule is (NCUT). It is easy to
show that all basic sequents derivable in S(T) belong to ST (use induction
on derivations). All derivations in S(7T') are actually derivations in a CF-
grammar whose production rules are (reversed) sequents from ST. By the
known CYK algorithm, checking derivability in CF-grammars, the derivabil-
ity in S(T") is P-TIME decidable. Now, it suffices to prove that NL(®) is
equivalent to S(T") in the scope of T—sequents. It is easy to show that all
sequents derivable in S(T) are derivable in NL(®). To show the converse, we
first observe that the interpolation lemma (NINT) evidently holds for S(T').
By the subformula property, T'—sequents provable in NL(®) have proofs
which consist of T'—sequents only. All axioms of NL(®), being T'—sequents,
are axioms of S(7). It suffices to show that S(T) is closed under rules of
NL(®), restricted to T'—sequents. It is obvious for (NCUT). Let us consider
(®L). Assume X[AoB] F C is provable in S(T'). By (NINT) for S(T), there
is D € T such that both Ao B+ D and X[D] + C are provable in S(T).
Ao B F D is a basic sequent, so it belongs to ST. Since A® B is in T,
then A® B I D belongs to ST, by (S1). Then, X[A ® B] I C is provable



352 W. Buszkowski

in S(T), by (NCUT). Let us consider (®R). Assume X - A and Y F B are
provable in S(T), and A® B is in T. Since Ao B+ A® B is in Sp, then
X oY + A® B is provable in S(T), by (NCUT). The remaining rules are
handled in a similar way.

The above construction yields a CF-grammar equivalent to the given
type grammar based on NL(®). Accordingly, type grammars based on finite
theories over NL generate context-free languages. These results strentgthen
earlier results on P-TIME decidability of NL [33] and the equivalence of
grammars based on NL with CF-grammars. Analogous facts can be proven
for other nonassociative systems, e.g. NL1, NL with (EXC), multi-modal
logics and GLC (see below) [17].

Nonlogical axioms can be of interest for linguistics for several reasons.
For the case of AL, grammars based on finite theories generate all recursively
enumerable languages. This fact has been proven in [7] for the product free
fragment. With product, the proof is much easier: every rewriting system
with rules of the form pq — r and p +— ¢gr can be simulated in AL enriched
with axioms p ® ¢ F r and p - ¢ ® r (use the subformula property to
show conservativity [17]). Thus, associative systems with nonlogical axioms
surpass the context-free world. Nonlogical axioms can express subtyping; for
instance, restrictive adjectives are a subcategory of adjectives. Further, it
is known that not every linguistically sound transformation can be deduced
in AL. For instance, ‘and’ of type (S—S)«—S can also act as a verb phrase
conjunction of type (VP—VP)«—VP, e.g. in ‘Joan sings and dances’. One
cannot transform the former type to the latter in AL (it is possible in AL
with (EXC) and (CON)). So, the corresponding sequent can be added to
AL or NL as a nonlogical axiom. By enriching NL with finitely many new
axioms, derivable in AL or not, we can improve its expressibility without
lacking the nice computational simplicity.

In powerset frames and cone frames, A can be interpreted as the intersec-
tion of sets: (A A B) = u(A) N u(B). In general, V should not be modelled
as the union of sets; this would entail the distributivity of A under Vv, which
could not be derived in the systems. Adequate frames consist of ideals, i.e.
cones closed under V. The join of two ideals is the smallest ideal containing
them [69].

An interesting problem is to extend type logics to be able to express
negative facts. We briefly discuss some attempts from [12].

A De Morgan negation — satisfies Double Negation =—a = a and Trans-
position: if a < b then —b < —a [24]. AL enriched with — with additional



Type Logics in Grammar 353

axioms: =—AF A, A+ ——A and the rule:

AFB

does not admit cut elimination. With (CUT), it is complete with respect
to residuated semigroups with De Morgan negation. Its product free frag-
ment is strongly complete with respect to powerset residuated semigroups
with a quasi-Boolean complement in the sense of [6]: for a fixed involutive
mapping f : M +— M and P C M, one defines —P = M — f[P]. The full
system is strongly complete with respect to cone models over semigroups
(the complement is quasi-Boolean). These facts follow from representation
theorems: (i) for every residuated semigroup with De Morgan negation, its
product free reduct is embeddable into some powerset residuated semigroup
with quasi-Boolean complement, (ii) every residuated semigroup with De
Morgan negation is embeddable into some residuated semigroup of cones
(over some semigroup) with quasi-Boolen complement [12].

Unfortunately, AL with De Morgan negation is not complete with re-
spect to linguistically intended models: powerset residuated semigroups with
Boolean complement [12]. Set C' = B — B and consider the sequent:

(TRA)

(C—-C)—-AF~(C—C)— A).

In powerset models, u(C — C) must be nonempty: if p(C) is empty then
w(C — C) = M; if u(C) is nonempty, then u(C — C) is nonempty, since
w(C) C u(C — C). Consequently, the sequent is true in all powerset models
in which — is interpreted as the Boolean complement of sets. It is not
provable in the system, since it is not true in the following model. Set
V = {a,b} and consider the free semigroup V. For any string z € VT,
let f(z) be the mirror image of x, e.g. f(ab) = ba. Then, f is involutive,
i.e. fo f=Id (the identity mapping). We consider the powerset residuated
semigroup over V1 with the quasi-Boolean complement, given by f. Let
w(B) be the set of all b—strings, and let p(A) be the set of all strings in V'
whose last symbol is a. Then, p(C) = u(B), and p(—A) equals M — f[u(A)],
i.e. the set of all strings in V* whose first symbol is b. Consequently,
sends the left side of the sequent to the total set V. u((C — C) — A)
equals p(A), hence p sends the right side of the sequent to M — flu(A)].
Since the latter set is not total, then the sequent is not true.

The decidability of AL with De Morgan negation seems to be an open
problem, and similarly for other type logics, mentioned above.

We have discussed frames in which logical constants of type logics are
interpreted by means of some operations on sets which are naturally deter-



354 W. Buszkowski

mined by the underlying semigroup (groupoid) structure. A more general
approach uses Kripke-style frames for modal logics [78, 80]. A frame is a
pair (M, R) such that M is a set of states, and R is a ternary relation on
M. For sets P, P, C M, one defines:

(Kl) PP = {Z eM: (Hl' € Pye€ PQ)R(Z‘,y,Z)},
(K2) PLI\Po ={ye M : (Vz € P,z € M)(R(z,y,2) = z € P»)},
(K3) Pi/Po={zeM:(Vy € Pa,z€ M)(R(z,y,2) = z € P1)}.

The structure (P(M),C,-,\,/) is a residuated groupoid. Every power-
set residuated groupoid is a structure of this form, since one can define:
R(z,y, z) iff z = xy. Consequently, NL is strongly complete with respect to
Kripke models. A similar fact holds for AL and Kripke frames, satisfying
associativity: (i) if R(z,y,z) and R(z,u,v) then there exists w such that
R(y,u,w) and R(z,w,v), (ii) if R(y, u,w) and R(z,w,v) then there exists z
such that R(z,y, z) and R(z,u,v).

Kripke frames suggest a generalization of type logics toward multi-modal
systems [80, 59]. Besides a ternary relation R, one also regards a binary
relation S, and defines unary modalities , [ as follows:

(K4) O(P) ={z € M : By € P)S(z,y)},

(K5) O(P) ={x e M : (Vy € M)(S(z,y) =y € P)}.
The above are standard modalities of Classical Modal Logic. Moortgat [59]
also considers minimal modalities of substructural logics [69]:

(K6) O(P) ={y € M : (3z € P)S(z,y)},

and [ is defined as above. Clearly, ¢ yields the image under S, and O yields
the coimage under S. The linguistic role of modalities is to control the usage
of structural rules in type logics. The basic logic BL is NL with the following
rules for minimal modalities:

X[eAlF B XEFA

(or) LD oy XEA
X[QA]F B X HOA
X[A]F B XFA

444L4L444,7([HD it
X[eOA]F B XHFOA
where e is a new, unary operation on type structures. Moortgat admits

several modality pairs <;,[J; with the corresponding operations e;, for i =
1,...,n. A restricted commutativity can be expressed, say, by the axiom:

C1A® BE B® $14,

(L)



Type Logics in Grammar 355

and similarly for restricted associativity, contraction, etc. One can also em-
ploy several residuation triples ®;, —, «—; with the corresponding structure
operations oj, for j = 1,...,m. Associativity (commutativity, contraction)
may hold for some of them. Such hybrid systems can easily be modelled by
Kripke frames. Some of them admit cut elimination.

An analogous formalism, under the name Generalized Lambek Calculus
(GLC), has been proposed in [11]; Dunn [25] studies a closely related system
with more general models. One starts from abstract algebras (M, F') such
that M is a nonempty set and F' = (f;);cs is an indexed family of operations
on M. On the powerset P(M ), one defines powerset operations:

fi(Pl,...,Pn) = {fi($1>~"7xn):xl S Pl,...,$n € Pn},

and for each 1 < j < n (n is the arity of f;), the residuation operation fij
is defined as follows: fz] (P1,...,P,) equals the set of all ; € M such that
filz1,...,zp) € Py, for all x, € Py, k # j. The resulting structures are
obvious generalizations of powerset residuated groupoids. Types of GLC are
formed out of primitive types by means of logical constants ®;, —>z and the
structure operation o;, for i € I (their arity is that of f;). The axioms are
(Id), and the inference rules are:

X[Oi(Al,...,An)] FB
X[@i(Al,...,An] FB’

(®;L)

le_Al;...;an_An
Oi(Xl,...,Xn) F@i(Al,...,An),

X[Aj]F B; ik Ap;..; Y F A,
zloi(Yh,..., = (A1,...,An), ..., V)] F B’

(—)J ) Oi(Ala"'v.X""’An) FAJ?

! X =7 (A1, Ap)

(®;R)

(~11)

and (NCUT). In rule (—{L), the premise Y; = A; is dropped and the type

—J

7 (...) is the j—th argument of o; in the conclusion. In rule (—>{R), X is
the j—th argument of o; in the premise. GLC admits cut elimination. For
n = 1, ®;, —} and o; behave like ¢, [ and e, respectively. As shown in
[46], GLC is strongly complete with respect to powerset frames over abstract
algebras. Clearly, ®; is interpreted by f; and —>g by fg . By cut elimination,
GLC is decidable; actually, all finitely axiomatizable theories over GLC are

P-Time decidable [17]. This also holds, obviously, for multi-modal systems



356 W. Buszkowski

without additional structural postulates (rules). Grammars based on GLC
generate context-free languages [42, 17].

Systems with many products can be used in linguistics to formalize dif-
ferent modes of composition of expressions. Instead of concatenation, one
may use other operations which compose a complex expression from simpler
ones. A good candidate is substitution. We enrich the lexicon V' with vari-
ables x1,xg, ... and define f;(a,b) to be equal to the result of substitution of
b for x; in a. In this way, we can analyse discontinuous phrases. For instance,
‘if ... then ...” can be identified with ‘if z1 then x5’ and be assigned type
—1 (=1 (S,9),S). A similar approach to discontinuity has been proposed by
Morrill [61, 62].

Type logics can also be modelled by algebras of relations; see van Ben-
them [78, 79] for a thorough discussion of information logics formalized in
this way. For relations R, S C M?, one defines:

(RM1) R-S = {(x,y) € M?: 32((x,2) € R&(2,y) € 9)},
(RM2) R\S = {(x,y) € M?: (V2)((z,2) € R= (z,y) € 5)},
(RM3) S/R = {(z,y) € M?: (V2)((y,2) € R= (z,2) € 9)}.

The structure (P(M?),C,-,\,/,I), where I is the identity relation, is a
residuated monoid. It has been shown in [4] that every residuated monoid is
embeddable into a structure of that kind, and consequently, ALO and AL1 are
strongly complete with respect to such models. For AL, one uses restricted
frames P(T) such that T is a transitive relation on M (replace M? with T in
(RM1)-(RM3)). Other completeness and representation theorems for type
logics with respect to relational models can be found in [48, 47, 19, 73].

Relational models show a link between type logics and logics of programs
(dynamic logics). R-S corresponds to the composition of programs R and S.
R\S (resp. S/R) is the weakest post-specification (resp. pre-specification)
of program R with respect to program .S in the sense of Hoare and Jifeng
[35]. If one adds + and x, then the resulting algebras are action algebras in
the sense of Pratt [68]. In opposition to Kleene algebras, based on -, +, %,
action algebras form a variety with finitely many equational axioms [68].
Many basic properties of action algebras and logics seem unknown, as yet.
Since AL and its variants are complete with respect to relational models,
proof systems for these logics can be designed in the style of relational proof
systems of Ortowska [63, 55]. Labelled deductive systems corresponding to
relational models are studied in [48, 47].

Type logics are directly related to linear logics, introduced by Girard [32].
Linear logics are commutative and, besides logical constants ®, —, A, V, they



Type Logics in Grammar 357

admit @, =, 0, 1, T and L. & is a dual of ®; it corresponds to a composition
of structures on the right hand of sequents. — is a linear negation. 0 is the
neutral element for & and 1 for ®, while T and L are the lattice top and
bottom.

The most easy way to explain the meaning of linear constants is to con-
sider algebraic models of linear logic. A bilinear algebra is a residuated
monoid in which there exists an element 0, satisfying:

0/(a\0) = a = (0/a)\a,

for all elements a. In a bilinear algebra, one defines a! = 0/a, a” = a\0. One
proves (b"a")! = (blal)", for all a,b; this element is denoted by a & b.

Bilinear algebras which are bounded lattices are models of Noncommu-
tative Linear Logic of Abrusci [1]. If they additionally satisfy: 0/a = a\0,
for all a, then they determine Cyclic Linear Logic of Yetter [82]. Com-
mutative bilinear algebras determine Classical Linear Logic of Girard. In
commutative bilinear algebras and cyclic bilinear algebras a! = a”, for all a;
this operation corresponds to linear negation. The term ‘bilinear algebra’ is
due to Lambek [51]. Bilinear algebras determine the multiplicative fragment
of Noncommutative Linear Logic. As shown in [2], ALl is a conservative,
multiplicative fragment of both Noncommutative Linear Logic and Cyclic
Linear Logic. Girard interprets Classical Linear Logic by means of phase
spaces. Phase spaces are powerset frames over commutative monoids with a
distinguished set P C M. Sets of the form P/Q, for Q C M, are called facts.
Linear constants are interpreted as operations on facts. For instance, linear
negation correspond to the operation Q+ = P/Q and ® to the operation
Q1 - Q2 = (Q1Q2)*+. Linear logics show many profound interactions with
logical proof theory and theoretical computer science. Their role for linguis-
tics remains not quite clear, since linear constants lack a natural linguistic
sense. However, a graph-theoretic representation of proofs in the form of
proof nets in multiplicative fragments of linear logics has attracted some
linguists; see e.g. Casadio [21].

At the end of this subsection, we mention a recent innovation in type
logics, due to Lambek [52]. Instead of binary operations \, /, Lambek uses
unary operations [ and 7, of left and right adjoint, respectively. A pregroup
is a structure (M, <,-,1,r,1) such that (M, <,-,1) is a p.o. monoid, and the
following inequalities:

(PRE) da<1<ad, aa” <1< da,

hold, for every a € M. Equivalently, pregroups are bilinear algebras in which
- =@ and 0 = 1. Commutative pregroups coincide with commutative p.o.



358 W. Buszkowski

groups. A pregroup M is a p.o. group iff a! = a”, for all @ € M. Pregroups
which are not p.o. groups are said to be proper. As shown in [15], proper
pregroups can be neither finite, nor totally ordered, nor bounded. Every
pregroup is a residuated monoid with operations \, / defined by: a\b = a"b
and a/b = ab'. A residuated monoid is a pregroup iff a\(bc) < (a\b)c and
(ab)/c < a(b/c), for all elements a, b, ¢ (then, a' = 1/a, a” = a\1).

Concrete pregroups can be formed out of order preserving functions on
a poset (W, <) which are downward and upward unbounded:

VoIy(f(y) < =), VaIy(f(y) > z).

One defines f < g iff f(z) < g(x), for all z, and (f - g)(x) = f(g(z)). The
so-defined structure is a p.o. monoid with the identity function as the unit.
In every p.o. monoid, [ and r can be defined as partial operations: a’ is the
unique b (if exists) such that ba < 1 < ab, and a" is the unique b (if exists)
such that ab < 1 < ba. Every p.o. monoid contains a greatest pregroup:
it consists of all elements a such that "' and a™" exist, for all finite
iterations of [ and r (in pregroups a” = a" = a, so mixed iterations need not
be considered). In some cases, this greatest pregroup is proper. Lambek’s
example is the pregroup of all unbounded, order preserving functions on the
poset of integers. Other models have been studied in [15].

For linguistics, Lambek offers free pregroups, i.e. pregroups induced by
the formal theory (with special axioms of the form p I ¢). For instance, if p;
is the type of personal pronouns in i—th Person, and p is the common type of
personal pronouns, then p; F p is a special axiom. If s is the type of sentences,
then ‘works’ is assigned type p5s. Accordingly, ‘he works’ is parsed as p3p5s,
hence it reduces to s, by (PRE). This method has successfully been used by
Lambek and his followers to analyse quite delicate syntactic structures of
English, German, Italian and other ethnic languages; see e.g. [22, 53, 45].

Free pregroups can be presented in the form of a formal system; Lambek
calls it Compact Bilinear Logic. Primitive types are as above. Atoms are of
the form p(™, for primitive p and arbitrary integers n. We interprete atoms
as follows: p(@ = p, pt1) = (p())r pr=1) — (p(M) Types are finite
strings of atoms. In pregroups, (ab)! = b'a' and (ab)” = b"a”. Thus, for
type ai ...ayg, the left adjoint is agf . all, and the right adjoint is aj,...a7.
Special axioms form a finite set of rules p I ¢, for primitive p, q. The system
is based on the following rewriting rules:

(P-CON) Contraction: T'a™a("*DA F TA,

(P-EXP) Expansion: T'A F Ta(tDa(M A



Type Logics in Grammar 359

(P-IND) Induced Step: Ta(™A + Tb(™MA if either n is even and a - b is a
special axiom, or n is odd and b I a is a special axiom.

(P-IND) expresses tha fact that in pregroups a < b entails b < a! and
b" < a". A derivation is a standard rewriting procedure. Lambek [52] shows
an important property: if I" reduces to I, then there is a type A such that
I’ reduces to A by (P-CON) and (P-IND) only, and A reduces to I by
(P-EXP) and (P-IND) only (the switching lemma). As a consequence, if T’
reduces to an atom or €, then the reduction can use (P-CON) and (P-IND)
only. Such reductions are derivations in CF-grammars based on (a finite
set) of the rewriting rules. Accordingly, grammars based on free pregroups
generate context-free languages. The provability is P-TIME decidable, since
I' - A is provable iff AT reduces to e [15].

The logic of pregroups can be formalized as a sequent system which
admits cut elimination; two versions of such a system are formulated in [16].
The cut elimination theorem for them is closely related to the switching
lemma (they are deducible from each other). Let us recall the one-sided
version. Atomic formulas are atoms (in the above sense) and the constant 1.
Formulas are formed out of atomic formulas by ®. Adjoints are defined in the
metalanguage. For terms, the definition is given above. We set 1! = 1" =1
and (A® B)? = A?® B?, for d = I,r. Sequents are finite strings of formulas.
The axiom is €, and the inference rules are:

' ABTY rr’
I'Ag B)IY' T117’

T’ rr’
TAAT” TAT AT

The cut elimination theorem is the following: (i) if I'A' and AA are
provable then I'A is provable, (ii) if 'A and A" A are provable, then I'A is
provable. T' reduces to A in the rewriting system iff DeltaI* is provable in
the sequent system.

We had began with a simple logic AB, went through a variety of type
logics, and have finished at a strong system of Compact Bilinear Logic. Rel-
atively weak systems like AB, NL and the strong logic of pregroups are P-
TIME decidable, while the intermediate ones are NP-complete. All systems
except the last one can easily be interpreted as fragments of Intuitionis-
tic Logic or type logics of lambda calculus. This seems to be impossible
for Compact Bilinear Logic, hence its semantical validity remains an open
problem.



360

W. Buszkowski

References

1]

[10]

[11]

[12]

V.M. Abrusci, Phase Semantics and Sequent Calculus for Pure Noncom-
mutative Classical Linear Logic, Journal of Symbolic Logic 56 (1991),
1403-1451.

V.M. Abrusci, Classical Conservative Extensions of Lambek Calculus,
Studia Logica 71.3 (2002), 277-314.

K. Ajdukiewicz, Die syntaktische Konnexitat, Studia Philosophica 1
(1935), 1-27.

H. Andréka and S. Mikuléds, Lambek Calculus and Its Relational Seman-
tics. Completeness and Incompleteness, Journal of Logic, Language and
Information 3 (1994), 1-37.

Y. Bar-Hillel, C. Gaifman and E. Shamir, On categorial and phrase
structure grammars, Bull. Res Council Israel F 9 (1960), 155-166.

A. Biatynicki-Birula and H. Rasiowa, On the Representation of Quasi-
Boolean Algebras, Bull. Acad. Polonaise Scie. 5 (1957), 259-261.

W. Buszkowski, Some Decision Problems in the Theory of Syntactic
Categories, Zeitschrift f. math. Logik u. Grundlagen der Mathematik
28 (1982), 539-548.

W. Buszkowski, Completeness Results for Lambek Syntactic Calculus,
Zeitschrift f. math. Logik u. Grundlagen der Mathematik 32 (1986),
13-28.

W. Buszkowski, Generative Capacity of Nonassociative Lambek Calcu-
lus, Bull. Polish Academy Scie. Math. 34 (1986), 507-516.

W. Buszkowski, Gaifman’s Theorem on Categorial Grammars Revis-
ited, Studia Logica 47 (1988), 23-33.

W. Buszkowski, Logical Foundations of Ajdukiewicz-Lambek Categorial
Grammars (in Polish), Polish Scientific Publishers, Warsaw, 1989.

W. Buszkowski, Categorial Grammars with Negative Information, in:
H. Wansing (ed.), Negation. A notion in focus, de Gruyter, Berlin, 1996,
107-126.



Type Logics in Grammar 361

[13]

[14]

[15]

23]

W. Buszkowski, The Ajdukiewicz Calculus, Polish Notation and Hilbert
Style Proofs, in: K. Kijania-Placek and J. Wolenski (eds.), The Lvov-
Warsaw School and Contemporary Philosophy, Kluwer, Dordrecht,
1998, 241-252.

W. Buszkowski, Mathematical Linguistics and Proof Theory, in: J. van
Benthem and A. ter Meulen (eds.), Handbook of Logic and Language,
Elsevier, Amsterdam, 1997, 683-736.

W. Buszkowski, Lambek Grammars Based on Pregroups, in: P. de
Groote, G. Morrill and C. Retoré (eds.), Logical Aspects of Compu-
tational Linguistics, LNAI 2099, Springer, Berlin, 2001, 95-109.

W. Buszkowski, Sequent Systems for Compact Bilinear Logic, Mathe-
matical Logic Quarterly (2003), to appear.

W. Buszkowski, Lambek Calculus with Nonlogical Axioms, in: C. Casa-
dio et al. (eds.), A Festschrift for Jim Lambek, CSLI Publications, Stan-
ford, to appear.

W. Buszkowski and B. Dziemidowicz, Restricted Optimal Unification,
in: Y. Hamamatsu et al. (eds.), Formal Methods and Intelligent Tech-
niques in Control, Decision Making, Multimedia and Robotics, Warsaw,
2000, 1-8.

W. Buszkowski and M. Kolowska-Gawiejnowicz, Representation of
Residuated Semigroups in Some Algebras of Relations. The Method
of Canonical Models, Fundamenta Informaticae 31 (1997), 1-12.

W. Buszkowski and G. Penn, Categorial Grammars Determined from
Linguistic Data by Unification, Studia Logica 49 (1990), 431-454.

C. Casadio, Non-Commutative Linear Logic in Linguistics, Grammars
3/4 (2001), 1-19.

C. Casadio and J. Lambek, An Algebraic Analysis of Clitic Pronouns
in Italian, in: P. de Groote, G. Morrill and C. Retoré (eds.), Logical As-
pects of Computational Linguistics, LNAI 2099, Springer, Berlin, 2001,
110-124.

K. Dogen, A Completeness Theorem for the Lambek Calculus of Syntac-
tic Categories, Zeitschrift f. math. Logik u. Grundlagen der Mathematik
31 (1985), 235-241.



362

[24]

[25]

W. Buszkowski

J.M. Dunn, Perp and Star: Two Treatments of Negation, in: J. Tomber-
lin (ed.), Philosophical Perspectives (Philosophy of Language and Logic)
7 (1993), 331-357.

J.M. Dunn, Partial Gaggles Applied to Logics with Restricted Struc-
tural Rules, in: P. Schroeder-Heister and K. DoSen (eds.), Substructural
Logics, Clarendon Press, Oxford, 1993, 63-108.

B. Dziemidowicz, Optimal Unification and Learning Algorithms for Cat-
egorial Grammars, Fundamenta Informaticae 49 (2002), 297-308.

B. Dziemidowicz, On Learnability of Restricted Classes of Categorial
Grammars, Fundamenta Informaticae, to appear.

D.M. Gabbay, A General Theory of Structured Consequence Relations,
in: P. Schroeder-Heister and K. Dosen (eds.), Substructural Logics,
Clarendon Press, Oxford, 1993, 109-151.

D;M. Gabbay, Labelled Deductive Systems, Oxford University Press,
Oxford, 1996.

M. Gécség and M. Steinby, Tree Automata, Akademiai Kiad6, Budapest,
1984.

E.M. Gold, Language Identification in the Limit, Information and Con-
trol 10 (1867), 447-474.

J.Y. Girard, Linear logic, Theoretical Computer Science 50 (1987), 1-
102.

P. de Groote and F. Lamarche, Classical Non-Associative Lambek Cal-
culus, Studia Logica 71.3 (2002), 355-388.

H. Hiz, Grammar logicism, The Monist 51 (1967), 110-127.

C.A.R. Hoare and H. Jifeng, The weakest prespecification, Fundamenta
Informaticae 9 (1986), 51-84, 217-252.

E. Husserl, Logische Untersuchungen, Halle, 1900-1901.

M. Kanazawa, The Lambek Calculus Enriched with Additional Connec-
tives, Journal of Logic, Language and Information 1.2 (1992), 141-171.

M. Kanazawa, Identification in the Limit of Categorial Grammars,
Journal of Logic, Language and Information 5 (1996), 115-155.



Type Logics in Grammar 363

[39]

[40]

[41]

[44]

[45]

[46]

[47]

M. Kanazawa, Learnable Classes of Categorial Grammars, CSLI Publi-
cations, Stanford, 1988.

M. Kandulski, The Equivalence of Nonassociative Lambek Categorial
Grammars and Context-Free Grammars, Zeitschrift f. math. Logik u.
Grundlagen der Mathematik 34 (1988), 41-52.

M. Kandulski, Normal Form of Derivations in the Nonassociative
and Commutative Lambek Calculus with Product, Mathematical Logic
Quarterly 39 (1993), 103-114.

M. Kandulski, On Generalized Ajdukiewicz and Lambek Calculi and
Grammars, Fundamenta Informaticae 30.2 (1997), 169-181.

M. Kandulski, Derived Tree Languages of Nonassociative Lambek Cat-
egorial Grammars with Product, Fundamenta Informaticae (2003), to
appear.

S. Kapur, Computational Learning of Languages, Ph.D. Thesis, Cornell
University, 1991.

A. Kislak, Pregroups versus English and Polish grammar, in: V.M.
Abrusci and C. Casadio (eds.), New Perspectives in Logic and Formal
Linguistics, Papers in Formal Linguistics and Logic, Bulzoni Editore,
Roma, 2002, 129-154.

M. Kolowska-Gawiejnowicz, Powerset Residuated Algebras and Gener-
alized Lambek Calculus, Mathematical Logic Quarterly 43 (1997), 60-
72.

M. Kolowska-Gawiejnowicz, A Labelled Deductive System for Rela-
tional Semantics of the Lambek Calculus, Mathematical Logic Quarterly
45 (1999), 51-58.

N. Kurtonina, Frames and Labels. A modal analysis of categorial infer-
ence, Ph.D. Thesis, University of Utrecht, 1995.

J. Lambek, The mathematics of sentence structure, American Mathe-
matical Monthly 65 (1958), 154-170.

J. Lambek, On the Calculus of Syntactic Types, in: R. Jakobson (ed.),
Structure of Language and Its Mathematical Aspects, Proc. Symp. Appl.
Math., AMS, Providence, 1961, 166-178.



364

[51]

[56]

[57]

[58]

[59]

W. Buszkowski

J. Lambek, Bilinear Logic in Algebra and Linguistics, in: J.Y. Girard,
Y. Lafont and L. Regnier (eds.), Advances in Linear Logic, Cambridge
University Press, Cambridge, 1995, 43-59.

J. Lambek, Type Grammars Revisited, in: A. Lecomte, F. Lamarche
and G. Perrier (eds.), Logical Aspects of Computational Linguistics,
LNAT 1582, Springer, Berlin, 1999, 1-27.

J. Lambek, Type Grammars as Pregroups, Grammars 4 (2001), 21-39.

S. Lesniewski, Grundziige einer neuen System der Grundlagen der
Mathematik, Fundamenta Mathematicae 14 (1929), 1-81.

W. MacCaull and E. Ortowska, Correspondence Results for Relational
Proof Systems with Application to the Lambek Calculus, Studia Logica
71.3 (2002), 389-414.

J. Marciniec, Learning Categorial Grammars by Unification with Neg-
ative Constraints, Journal of Applied Non-Classical Logics 4 (1994),
181-200.

R. Montague, Formal Philosophy, Selected papers of R. Montague
edited by R. Thomason, Yale University Press, New Haven, 1974.

M. Moortgat, Categorial Investigations. Logical and Linguistic Aspects
of the Lambek Calculus, Foris, Dordrecht, 1988.

M. Moortgat, Categorial Type Logics, in: J. van Benthem and A. ter
Meulen (eds.), Handbook of Logic and Language, Elsevier, Amsterdam,
1997, 93-177.

M. Moortgat, Structural Equations in Language Learning, in: P. de
Groote, G. Morrill and C. Retoré (eds.), Logical Aspects of Computa-
tional Linguistics, LNAT 2099, Springer, Berlin, 2001, 1-16.

G. Morrill, Type Logical Grammar. Categorial Logic of Signs, Kluwer,
Dordrecht, 1994.

G. Morrill, A Generalised Discontinuity, manuscript, LICS, Ottawa,
2003.

E. Ortowska, Relational Proof System for Relevant Logics, Journal of
Symbolic Logic 57 (1992), 1425-1440.



Type Logics in Grammar 365

[64]

[65]

[66]

[67]

[69]

[70]

[71]

D. Osherson, D. de Jongh, E. Martin and S. Weinstein, Formal learning
theory, in: J. van Benthem and A. ter Meulen (eds.), Handbook of Logic
and Language, Elsevier, Amsterdam, 1997, 737-775.

M. Pentus, Lambek Grammars are Context-Free, Proc. of 8th IEEE
Symposium on Logic in Computer Science, 1993, 429-433.

M. Pentus, Models for the Lambek Calculus, Annals of Pure and Ap-
plied Logic 75 (1995), 179-213.

M. Pentus, Lambek calculus is NP-complete, manuscript, Moscow State
University, 2003.

V. Pratt, Action Logic and Pure Induction, in: J. van Eijck (ed.), Logics
in AL, LNAI 478, Springer, Berlin, 1991, 97-120.

G. Restall, An Introduction to Substructural Logics, Routledge, London,
2001.

D. Roorda, Resource Logics. Proof-Theoretical Investigations, Ph.D.
Thesis, University of Amsterdam, 1991.

T. Shinohara, Inductive Inference of Monotonic Formal Systems from
Positive Data, in: S. Arikawa et al. (eds.), Algorithmic Learning Theory,
Springer, Tokyo, 1990, 339-351.

T.A. Sudkamp, Languages and Machines. An Introduction to the Theory
of Computer Science, Addison-Wesley, Reading, 1991.

M. Szczerba, Representation Theorems for Residuated Groupoids, in:
C. Retoré (ed.), Logical Aspects of Computational Linguistics, LNAI
1328, Springer, Berlin, 1997, 426-434.

H-J. Tiede, Deductive Systems and Grammars, Ph.D. Thesis, Indiana
University, 1999.

H. Uszkoreit, Categorial Unification Grammars, Proc. 11th Interna-
tional Conference on Computational Linguistics, Bonn, 1986, 187-194.

J. van Benthem, Fssays in Logical Semantics, D. Reidel, Dordrecht,
1986.

J. van Benthem, Categorial Equations, in: E. Klein and J. van Ben-
them (eds.), Categories, Polymorphism and Unification, University of
Amsterdam, 1987, 1-17.



366

78]

[79]
[80]

W. Buszkowski

J. van Benthem, Language in Action. Categories, Lambdas and Dy-
namic Logic, North Holland, Amsterdam, 1991.

J. van Benthem, Ezploring Logical Dynamics, CSLI, Stanford, 1996.

J. van Benthem, Categorial Grammar at a Cross-Roads, in: C. Casa-
dio et al. (eds.), A Festschrift for Jim Lambek, CSLI Publications, to
appear.

K. Wright, Identification of unions of languages drawn from an identifi-
able class, in: The 1989 Workshop on Computational Learning Theory,
Morgan Kaufmann, San Mateo, 1989, 328-333.

D.N. Yetter, Quantales and (Non-Commutative) Linear Logic, Journal
of Symbolic Logic 55 (1996), 41-64.

W. Zielonka, Axiomatizability of Ajdukiewicz-Lambek Calculus by
means of Cancellation Schemes, Zeitschrift f. math. Logik u. Grund-
lagen der Mathematik 27 (1981), 215-224.

W. Zielonka, On Reduction Systems Equivalent to the Lambek Calculus
with the Empty String, Studia Logica 71.1 (2002), 31-46.



