On Action Logic

Wojciech Buszkowski
Adam Mickiewicz University, Poznan, Poland
University of Warmia and Mazury, Olsztyn, Poland

Abstract

Pratt [22] defines action algebras as Kleene algebras with residuals and
action logic as the equational theory of action algebras. In opposition to
Kleene algebras, action algebras form a (finitely based) variety. Jipsen
[9] proposes a Gentzen-style sequent system for action logic but leaves it
as an open question if this system admits cut-elimination and if action
logic is decidable. We show that Jipsen’s system does not admit cut-
elimination. We prove that the equational theory of *-continuous action
algebras and the simple Horn theory of *-continuous Kleene algebras are
not recursively enumerable and they possess FMP, but action logic does
not possess FMP.

Keywords: Kleene algebra, action algebra, action lattice, undecidability, fi-
nite model property

1 Introduction

Kleene algebras have been introduced by Kozen [11, 12] in order to axiomatize
the equalities true for regular expressions. The Kozen completeness theorem
states that a = [is true for regular expressions iff this equality is true in all
Kleene algebras. Kleene algebras form a quasi-variety but not a variety. It
follows from the Kozen completeness theorem that the equational theory of
Kleene algebras is decidable (PSPACE-complete).

Pratt [22] introduces action algebras as Kleene algebras with residuals (with
respect to product) and shows that action algebras form a finitely based variety.
In the language of Kleene algebras, the equalities true in all action algebras
are the same as for Kleene algebras. Consequently, in the language of Kleene
algebras enriched with residuals one succeeds in an elegant, finite and purely
equational axiomatization of the algebra of regular expressions. On the other
hand, many basic problems concerning action algebras and their logic are still
open. For instance, it is not known if the equational theory of action algebras
(action logic, ACT) is decidable.

Jipsen [9] proposes a Gentzen-style sequent system for action logic which
arises from Full Lambek Calculus (FL) in the sense of Ono [19] by adding
certain rules for *. Actually, these rules closely follow Kozen’s algebraic axioms

for *. The cut-elimination theorem and the decidability of this system are left
open.

We show that the cut-elimination theorem does not hold for Jipsen’s system.
We consider logic ACTw, i.e. the equational theory x—continuous action alge-
bras (roughly: action algebras with a standard *—operation). While in the case
of Kleene algebras the (equational) logics of all algebras and of all *—continuous
algebras are equal, we show that in the case of action algebras the situation is
different. ACTw is not recursively enumerable (it is II{—complete), while ACT
is X9, Consequently, ACT is not complete with respect to *—continuous action
algebras. In particular, it is not complete with respect to finite action algebras,
which means that it does not possess Finite Model Property (FMP). Palka [20]
shows that the equational theory of Kleene algebras possesses FMP, and this
fact is equivalent to the Kozen completeness theorem.

It can be shown that the Horn theory of Kleene algebras is undecidable. By
a simple atomic formula we mean a formula x; - --- - x, < x such that x;,x
are individual variables. By a simple Horn formula we mean a Horn formula
p1& ... &p, = ¢ such that ¢; are simple atomic formulas and ¢ is an arbitrary
atomic formula. As a consequence of the above results, we show that the simple
Horn theory (i.e. the logic of simple Horn formulas) of *-continuous Kleene
algebras is undecidable (IT)—complete); for *-free fragments of action logic, such
theories are decidable. This result is related to (but it is not a consequence of)
those of Kozen [14] who proves the I1{ —completeness of a restricted Horn theory
of *-continuous Kleene algebras with Horn formulas whose assumptions ¢; are
equalities x - y = y - z, the IIy—completeness of an analogous theory in which
the assumptions are arbitrary monoid equations, and the ITi —completeness of
the general Horn theory of *-continuous Kleene algebras.

At the end, we show that ACTw possesses FMP. The proof is based on
methods elaborated by Okada [17], Okada and Terui [18], and Belardinelli,
Jipsen and Ono [2], providing an algebraic analysis of cut-elimination and FMP
for substructural logics, and a recent result of Palka [21] on the elimination of
negative occurrences of * in ACTw.

2 Preliminaries

A Kleene algebra is an algebra A = (A,V,-,*,0,1) such that (4,V,0) is a
join semilattice with the least element 0, (A4,-,1) is a monoid with the identity
element 1, the product - distributes over V, 0 is an annihilator for product, and
* is a unary operation, satisfying the conditions:

(K1) 1Vaa* <a*, 1Va'a<a®,

(K2) ab<b=a"b<b, ba <b=ba* <b,

for all a,b € A. Here < is a standard semilattice ordering: a < b iff a Vb =b.
The above notion is due to Kozen [11, 12]. Kleene algebras can be axiom-
atized by the following axioms: semilattice axioms (a V b) Ve = aV (bV ¢),

aVb=bVa,aVa=a,aV0=a, monoid axioms (ab)c = a(bc), al = a = 1a,
distribution axioms a(bV ¢) = abV ac, (a V b)c = ac V be, annihilator axioms
a0 = 0 = Oa, and (K1), (K2). (K2) are quasi-equalities, and the remaining
axioms are equalities. A well-known construction of Conway’s Leap (see [22])
shows that Kleene algebras are not closed under homomorphic images, and con-
sequently, they do not form a variety.

Le A be a Kleene algebra. An element a € A is said to be reflexive, if
1 < a, and transitive, if aa < a. In any Kleene algebra, a* is the least reflexive
and transitive element b such that a < b, which is equivalent to the following
conditions:

(Cl)1Vvava*a® <a*,

(C2)1Vavbb<b=a" <b.

A standard Kleene algebra is the algebra of languages on a finite alphabet
3. A language on 3 is a set of finite strings on Y. The largest language on ¥ is
denoted X*. The empty string is denoted A\. ¥ = X*—{\}. For L, L1, Ly C ¥*,
one sets: Ly V Lo = Ly U Ly, Ly - Ly = {wy : x € Li&y € Lo}, L* = e, L™,
0=0,1={\}, where L° = 1, L™*! = L"L. Another example is the algebra
of all binary relations on a set U; now, product is relational product, 1 is the
identity relation, and the remaining notions are defined as above.

A Kleene algebra A is said to be *-continuous, if za*y =l.u.b.{za"y : n € w},
for all z,y,a € A. Clearly, the algebra of languages and the algebra of relations
are *-continuous. They are also complete, which means that every set of elements
has L.u.b.

Regular expressions on X are variable-free terms of the (first-order) language
of Kleene algebras enriched with all symbols from ¥ as new individual constants.
For a € %, one sets L(a) = {a} and extends the mapping L to a (unique)
homomorphism from the (variable-free) term algebra to the algebra of languages
on Y. For a regular expression «, the language L(«a) is called the language
denoted by «. The equality o = 3 is said to be true for reqular expressions,
if L(a) = L(B). The Kozen completeness theorem states: o = [is true for
regular expressions iff it is true in all Kleene algebras. The ‘if’-direction is
obvious, while the ‘only if’-direction is a deep result [11, 12], proved by means
of some matrix representation of finite-state automata. It would be interesting
to find a model-theoretic proof of this theorem.

A residuated (join) semilattice is an algebra A = (A, V, -, —, <, 1) such that
(4,-,1)is amonoid, (4, V) is a join semilattice, and —, < are binary operations
on A, satisfying the equivalences:

(RES)ab<c&eb<a—csa<c—b,

for all a,b,c € A. A more general notion is a residuated monoid: V is replaced
by a partial ordering <. The operations — and « are called the right and
left, respectively, residuals for product. An action algebra is an algebra which
is both a Kleene algebra and a residuated semilattice. It is easy to show that,
for action algebras, the distribution axioms and the annihilator axioms can be

omitted. Also, (K1), (K2) can be replaced with (C1), (C2) [22], which is not
true for Kleene algebras ((C1), (C2) hold in right-handed Kleene algebras, and
not every right-handed Kleene algebra is a Kleene algebra [10]). An action
algebra is *-continuous (as a Kleene algebra) iff a* =l.u.b.{a" : n € w} (use the
fact that, in action algebras, product distributes over infinite joins). Pratt [22]
proves that action algebras form a finitely based variety.

An action lattice (resp. a Kleene lattice) is an action algebra (resp. a Kleene
algebra) which is a lattice, this means, it admits a meet operation A, satisfying
the semilattice axioms except for the last one (with V replaced with A) and the
absorption axioms a V (a Ab) = a, a A (a V b) = a. Similarly, residuated lattices
are defined as residuated semilattices which are lattices with the meet operation
A. Some results on action lattices can be found in Kozen [13].

The algebra of languages can be expanded to an action lattice by setting
L1 A L2 = Ll N LQ and:

L1 — L2 = {z € ¥ Ll{:c} Q LQ}, Ll — L2 = {.’75 € ¥ {’I‘}LQ Q Ll}

Regular languages on ¥, i.e. languages denoted by regular expressions on 3,
form a subalgebra of this action lattice. The algebra of relations on U can
also be expanded to an action lattice with the meet defined as the set-theoretic
intersection and residuals defined as follows:

Rl - R2 = {(xay) S U2 : Rl © {(x,y)} c RQ}?

Ry < Ry = {(z,y) € U? : {(x,y)} o Ry C Ry }.

Residuated lattices have extensively been studied as models of non-classical
logics, especially substructural logics, i.e. logics whose sequent systems avoid
some structural rules like Contraction, Weakening, Exchange; see e.g. the books
[24, 23]. Ono [19] studies a Gentzen-style sequent system FL (Full Lambek
Calculus) which is complete with respect to residuated lattices. Atomic formulas
of FL are variables and constants 0 and 1. Formulas of FL are formed out of
atomic formulas by means of the connectives -, —,«,V, A. We use characters
p,q,r for atomic formulas and ¢, v, x for formulas. Greek capitals represent
finite strings of formulas. Sequents are expressions of the form I' = ¢. The
axioms of FL are:

(Id) ¢ F ¢, (OL) T,0,AF ¢, (IR) F 1,
and the inference rules are the following:

Lo, AFx
Lo o.ary
Ty, Al x; @
F,@,gp—)?ﬁ,A}—X’(L'y —a’
Ty, Al x; @ | RNV R T
Toepoary TRy

'k, Ay
DLLAR@ -9’

o, '

(L)

(—=L) —R)

(<L)

4

Om)R%AFle%AFX (1L) IAFp
DoV, Ak x ’ I1L,AF @’
Tk T+
VR;) —— " (VRy) ————
(”kavw’(ﬂFF¢vw’
T, 0,AF T4, Ak
(/\L1)#,() M’
Cipn, A x Lo AN, Ak x
Tk T
AR) — 22— 7
() F'Fony

FL admits cut-elimination, this means, the set of provable sequents is closed

under the rule:
AN e

L,O,AF

This fact is well-known. The first cut-elimination theorem for systems of
that kind was proved by Lambek [15] for the fragment without A,V,0,1, not
admitting empty antecedents of sequents; this system is usually referred to as
the Lambek calculus (L). FL is not conservative over L, but FL is conservative
over L’ which is the (-, —, <)—fragment of FL. Different variants of the Lambek
calculus, their models and applications in formal grammars have been studied
ineg. [3,4,5,7, 6, 25, 26, 16].

To formalize the logic of action lattices we add to this language the new
connective *. Let ACT denote the system which admits all axioms and rules of
FL (in the extended language) with (CUT) and the following ones:

(*1) Fo*, (*2) @, 0" F ", (*3) ¢*, 0 F ¢,

F F
PUY qeoy BUE S
A o, P
Let A be an action lattice. Homomorphisms from the free algebra of formulas

to A are called assignments in A. Assignments are extended to strings of
formulas by setting:

f(>‘):17 f(@la---awn):f(wl)' f(%pn)

A sequent T' F ¢ is said to be true in a model (A, f) if f(T') < f(p).

It is easy to show that ACT is complete with respect to the class of action
lattices, this means, the sequents provable in ACT are precisely those sequents
which are true in all models (A, f) such that A is an action lattice. Soundness
is straightforward, since all axioms of ACT are true and all rules preserve the
truth. Completeness can be shown by a standard construction of a Lindenbaum
algebra. In a similar way, one shows that ACT without A is complete with
respect to the class of action algebras, FL is complete with respect to the class
of residuated lattices (with 0), and so on.

By ACTw we denote the set of all sequents true in all models (A, f) such
that A is a *-continuous action lattice. Clearly, ACTCACTw (we identify the

(CUT)

(K21)

logic ACT with its set of provable sequents). ACTw is closed under the following
rules:

Tibg:..;Ty b
(*R) 1F1 L F, ng*(p’ for any n > 1,
(*L) (FvgpnaA}_lﬁ)nEw

Lot Aby

(*R) is an infinite family of finitary rules. (*L) is an infinitary rule (an w—rule);
here " stands for the string of n copies of ¢, ¢ is the empty string. (*1) can
be treated as an additional instance of (*R) for n = 0.

(*R) is derivable in ACT. (*L) (together with (*R)) expresses *-continuity.
Palka [21] shows that ACTw can be axiomatized as the system FL enriched with
(*1), (*R) and (*L) (without (CUT)). With (CUT), the completeness theorem
can be proved in a straightforward way (see above). The cut-elimination the-
orem can be proved by a standard, syntactic argument. The set of provable
sequents is the least fixpoint of a monotone operator C on the powerset of the
set of sequents, defined as follows: C(X) is the set of all sequents which are
conclusions of inference rules of the system with all premises belonging to X
(axioms are treated as rules with the empty set of premises). One defines the
hierarchy C®, for ordinals a: C° = (), C**! = C(C?), C* = Uacy €, for limit
ordinals A. Then, the rank of a provable sequent equals the least « such that
this sequent belongs to C*. Palka proves that the rule (CUT) is admissible in
the system by a triple induction: (1) on the complexity of ¢, (2) on the rank
of T', o, A F 4, (3) on the rank of ® - . (The complexity of a formula is the
total number of occurrences of logical connectives in this formula.) Then, we
can identify ACTw with the system FL plus (*L), (*R).

As a consequence, ACTw is a conservative supersystem of all its fragments,
defined by a restriction of the language; in particular, it is a conservative su-
persystem of FL, and the same holds for systems without A. Actually, these
facts can also be shown by an algebraic argument, using the construction of a
MacNeille completion [2]. We recall this notion in section 4.

ACTw without A and —,« is the logic of *-continuous Kleene algebras
which equals the logic of all Kleene algebras, and consequently, it is decidable. In
the next section, we prove that ACTw is undecidable (II{—complete). Actually,
this already holds for its fragments, restricted to (—,V, %) and (—, A, %) (— can
be replaced with «).

3 ACTw is not recursively enumerable

We show that the following undecidable problem:
(TOTAL) L(G) = (X¢)*, for context-free grammars G,

is reducible to ACTw.
A context-free grammar (CF-grammar) is a quadruple G = (3, N, S, P) such
that 3, N are finite alphabets, ¥ # 0, X\NN =0, S € N,and P C ¥ x (ZUN)* is

a finite relation. Elements of ¥ (resp. N) are called terminal (resp. nonterminal)
symbols of G. S is the initial symbol of G. P is the set of production rules of
G. The terminal alphabet of G will also be denoted by ¥¢.

Let G be a CF-grammar, and z,y € (X U N)*. We say that y is directly
derivable from x in G if there exist (A4,2) € P and u,v € (XU N)* such that
x = uAv and y = uzv. We say that y is derivable from x in G and write =% y
if there exist xq,...,2Zn, (n > 0), such that © = zg, y = x,, and z; is directly
derivable from x;_1, for all: = 1,...,n. The language generated by G is defined
as the set:

LG)={zext:S=§).

The undecidability of (TOTAL) is a well-known undecidability result for
CF-grammars (see [8]). Actually, this problem is II9—complete. We reduce this
problem to an analogous problem for categorial grammars, i.e. formal grammars
based on some logics of types. Since categorial grammars do not regard the
empty string, then we need a A—free version of (TOTAL).

A CF-grammar is said to be A—free if it does not contain production rules of
the form (A, A) (nullary rules). A well-known algorithm of elimination of nullary
rules transforms any CF-grammar G into a A—free CF-grammar H such that
Yy =3¢ and L(H) = L(G) — {\}. Another algorithm decides if A € L(G), for
CF-grammars G. We formulate a variant of (TOTAL):

(TOTAL™) L(G) = (Xg)™", for A—free CF-grammars G.

It is easy to show that (TOTAL™) is undecidable. Suppose that an algorithm
for (TOTAL™) exists. We can use it to provide an algorithm for (TOTAL). Let
G be a CF-grammar. We ask if L(G) = (2¢)*. First, we check if A € L(G). If
not, then the answer is NO. If so, then we construct a grammar H, as above, and
check if L(H) = (Xg)*". If so, then the answer is YES; if not, the answer is NO.
It is also easy to show that (TOTAL™) is 119 —complete. Obviously, it is IT9. Tt
is II{—hard, by the following reduction. Fix a A—free CF-grammar K such that
L(K) = 0, for example, K with the empty set of production rules. We define
a computable mapping F' from the set of CF-grammars to the set of A—free
CF-grammars. If A € L(G), then F(G) is the grammar H for G; otherwise,
F(G) = K. Clearly, G satifies (TOTAL) iff F(G) satisfies (TOTAL™).

Let £ be a logic in the language of ACT or its fragment. An £—grammar
on ¥ (an alphabet) is defined as a finite relation G C ¥xFOR,, where FOR .
stands for the set of formulas of £. The domain of G is called the alphabet of G
and denoted . Formulas are also called types. The codomain of G is called
the type lexicon of G. Let vy,...,v, € ¥g. We say that G assigns a type ¢ to
the string vy ... v, if there exist types ¢1,..., ¢, such that (v;, ;) € G, for all
i=1,...,n, and the sequent @1, ...,®, F ¢ is provable in £. We fix an atomic
formula s (a designated variable or a new constant). For any type ¢, one defines
the set:

L(G,p) = {z € (X¢)" : G assigns type ¢ to z}.

The language L(G, s) is called the language of G.

Categorial grammars are L—grammars, for different logics £. The simplest
ones are AB-grammars (from the names of Ajdukiewicz and Bar-Hillel who
formulated basic ideas). The logic AB is restricted to types formed out of
variables by means of — and « only. In the linguistic literature, one often
writes \¢ for ¢ — ¥ and ¥/ for ¥ «— ¢, but we will not use the latter
notation. AB is usually presented as a rewriting system, based on Ajdukiewicz
reduction rules:

(AID) @, (p —) = ¥ (b — @), 0 = .

A sequent I' F ¢ is provable in AB iff I is reducible to ¢ by a finite number of
applications of rules (AJD). It is well-known (see e.g. [3]) that AB is equivalent
to the subsystem of FL, admitting (—,+«)—formulas, axioms (Id) and rules
(—L), («L) only (no sequent with the empty antecedent can be proved in this
system).

It is also well-known that languages of AB-grammars are precisely the lan-
guages generated by A—free CF-grammars, i.e. the A—free context-free lan-
guages. We will need the exact formulation of the nontrivial part of this theorem

).

The Gaifman theorem: For any A—free CF-grammar G, one constructs an AB-
grammar H such that L(G) = L(H,s), and all types in the type lexicon
of H are of the form p, p < ¢, (p < q) < r.

The Gaifman theorem easily follows for the Greibach Normal Form theorem
for CF-grammars. By the latter theorem, for any A—free CF-grammar G, one
can construct a CF-grammar G’ in the Greibach Normal Form with the same
terminal alphabet and such that L(G) = L(G’). All production rules of G’ are of
the form (A, v), (4,vB) or (A,vBC), where v is a terminal symbol, and A, B, C
are nonterminal symbols. One constructs an AB-grammar H in the following
way. Nonterminal symbols of G’ are identified with different variables. For
any v € Xg, one puts: (1) (v,A) € H iff (4,v) is a production of G', (2)
(v,A — B) € H iff (A,vB) is a production of G’, (3) (v,(A— C)— B)e H
iff (A,vBC) is a production in G’. By induction on n > 1, one proves:

A= v ovg iffor oo ov, € L(H, A).

One identifies s with the initial symbol of G’. Consequently, L(H,s) = L(G") =
L(G).

The Greibach Normal Form theorem immediately follows from the Gaifman
theorem, and the latter has been proved earlier (in 1960), by a direct transforma-
tion of CF-grammars in the Chomsky Normal Form to equivalent AB-grammars.
In the Gaifman theorem, the types in the type lexicon of H can also be taken
in the form p, p — ¢, p — (¢ — r) (use a dual form of CF-grammars in the
Greibach Normal Form).

We need some syntactic properties of FL; some of them are concerned with
the (—,«)—fragment, so they are, in fact, properties of the Lambek calculus
L.

The order of a (—,«)—formula ¢ is recursively defined, as follows:

o(p) =0, o(p —) = o(¢ +— @) = max(o(¢),0(p) + 1).

Then, all types mentioned in the Gaifman theorem are of order not greater than
1.

We write I' b ¢ if T' F ¢ is provable in the logic £. The following lemma
was proved in [3]. We repeat the proof for the sake of completeness.

Lemma 1 Let T' be a string of (—,«)—formulas of order not greater than 1
and p be a variable. Then, U'tpp p iff T Fap p.

Proof. The ‘if’-part holds, since AB is a subsystem of FL. We prove the
‘only if’-part, by induction on cut-free proofs in FL. If ' - p is an axiom
(Id), then T" F4p p. Otherwise, I' F p must be the conclusion of («L) or
(—L). Consider the first case. The premises are: T'1,,T's F p and @ + ¢,
where I' = T'1, (¢ « ¢q),®, 3. The antecedents of these premises are strings
of formulas of order not greater than 1, so they are provable in AB, by the
induction hypothesis. The AB-proof of I' F p looks, as follows. First, reduce ®
to g. Second, apply (AJD): (¢ < ¢q),q = ¢. Third, reduce I'1, p,T's to p. The
second case is dual. Q.E.D.

The notion of a subformula of a formula is defined in the natural way. We
distinguish positive and negative occurrences of subformulas in a formula. Let
us define these notions for all formulas of ACT. If ¢ is an atomic formula, then
o is the only positive subformula of ¢, and ¢ has no negative subformulas. If
© = ¥ o x, where o € {-,V,A}, then the positive subformulas of ¢ are ¢ and
all positive subformulas of ¢ or x, and the negative subformulas of ¢ are all
negative subformulas of ¢ or x. If ¢ = ¥ — x or ¢ = x < %, then the
positive subformulas of ¢ are ¢, all positive subformulas of x, and all negative
subformulas of ¥, and the negative subformulas of ¢ are all negative subformulas
of x and all positive subformulas of . If ¢ = 1*, then the positive subformulas
of i are ¢ and all positive subformulas of ¢, and the negative subformulas of ¢
are all negative subformulas of .

The positive (resp. negative) subformulas of a sequent I' - ¢ are all positive
(resp. negative) subformulas of ¢ and all negative (resp. positive) subformulas
of formulas appearing in I'. This definition is justified by the fact that I' F ¢ is
provable iff - ¢ «— I' is provable, for any logic closed under (CUT), («L) and
(«R). The formula ¢ < T is defined, by induction on the length of T:

p—=A=p, o= T,¢)=(p—7) —T.

Lemma 2 Let ¢ A ¢ be a negative subformula of a sequent I' - x, provable
in the (A, —, «—)-fragment of FL and containing no positive subformulas of the
form @1 A pa. Let Ty F x1 (resp. T'a b x2) be the sequent resulting from I' F x
after one has replaced the subformula @ A by ¢ (resp.). Then, T'1 Frr x1
orI's Frp xa.

Proof. Induction on cut-free derivations in the (—, <, A)—fragment of FL.
I' b x cannot be an axiom (Id) or the conclusion of (AR), since it contains
no positive occurrences of A. If it is the conclusion of (AL), not introducing
the designated formula ¢ A ¢, (—L), (—R), (<L) or («R), then we apply the
induction hypothesis directly. If it is the conclusion of (AL), introducing the
designated formula ¢ A 1), then our thesis is obvious. Q.E.D.

Corollary 1 For eachi =1,...,n, let ¢; = ;1 AN ... Nk, ki > 1 and all
formulas ¢, ; and ¢ be (—,—)—formulas. Then, @1,...,0n FrL @ iff, for each
i=1,...,n, there exists j; € {1,...,k;} such that ©1,,...,¢n;, FrL ¢.

Proof. The ‘if’-part holds, by (AL). The ‘only if’-part is proved by induction
on the number of occurrences of A in ¢1,...,p, F ¢, using lemma 2. Q.E.D.

We define a natural equivalence relation on formulas: ¢ ~pp ¥ iff ¢ Fpp ¥
and ¢ Frp @, and similarly for any logic £. Let ¢ = ¢ V... ¢k, k > 1. By
Y", for n > 1, we denote now the formula % - --- -9 with n copies of ¢». We
reserve the variable m for finite sequences of integers. If m = (iy,...,1i,), then
we denote Y(m) =), - -+ -1 ; we assume m € {1,...,k}"™, n > 1. We set
[k] ={1,...,k}. \/ stands for an iterated V.

Lemma 3 Let ¢ = \/ie[k] v;. Then, Y™ ~pp, vme[k]" Y(m), for anyn > 1.

Proof. An easy induction on n, using the distribution of product over finite
joins. Q.E.D.

Lemma 4 Let X = V¢, Xi- Then, x Frr ¢ iff xi Frr o, for alli € [m].

Proof. The ‘if’-part holds, by (VL). The ‘only if’-part holds, since x; Frr X,
by (VR1), (VRz), and FL is closed under (CUT). Q.E.D.

We are ready to prove the main lemma. Let H be an AB-grammar such
that all types in its type lexicon are («—)—formulas of order not greater than 1.
Let Xg = {v1,..., v} Let @;1,...,¢ik be all types ¢ such that (v;,) € H.
Define 9; = @;1 A ... A, and ¢ = \/ie[k] ;.

Lemma 5 L(H,s) = (Sg)" iff ¥*, ¢ F s belongs to ACTw.

Proof. Clearly, 9™ - ¥* belongs to ACTw, for all n € w. Since ACTw is
closed under (*L), then we obtain:

(1) ¥*, v F sisin ACTw iff, for all n € w, Y™, ¢ F s is in ACTw,
(2) ¥v*, Y F sisin ACTw iff, for all n > 1, ¢¥" F s is in ACTw.

By (-L), (-R) and (CUT), it does not matter how do we understand ¢": as a
string or as a product. Formulas 9™ are *-free, and ACTw is conservative over
FL, whence " I s is in ACTw iff 9" g s. By lemmas 3 and 4, we get:

(3) for n > 1, Y™ Fpy, s iff, for all m € [k]™, ¥(m) kgL s.

10

By the definition of L(H, s), lemma 1 and corollary 1, we have:
(4) for m = (i1,...,4p), ¥(m) Fpr s iff v;, ... v, € L(H,s).

We finish the proof. L(H,s) = (Xg)" iff, for all n > 1 and all (i1,...,i,) €
[k]™, there holds v;, ...v;, € L(H,s) iff (by (4)), for all n > 1 and all m € [k]",
there holds ¢»(m) Frp, s iff (by (3)), for alln > 1, ¥" Fpp, siff (by (2)) v*, ¢ F s
is in ACTw. Q.E.D.

We can prove the main result of this section.

Theorem 1 ACTw is not recursively enumerable.

Proof. By the Gaifman theorem and lemma 5, (TOTAL™) is reducible to
ACTw. Consequently, ACTw is undecidable. Since FL is decidable, then, by
(1), ACTw, restricted to sequents of the form ¥* ¢ F s, where v is *-free, is
9. So, ACTw cannot be %¢. Q.E.D.

Actually, the proof yields the I1{—hardness of ACTw. My student Palka [21]
proves that the whole ACTw is I1{ in the following way. Formulas of the form
x* are called *-formulas. We define ¢=" = %V ...V ¢", n € w (we assume
@’ =1). Let P,(¢) (resp. N, (¢) be the formula arising from 1 by a (successive)
replacement of any positive (resp. negative) *-subformula x* by x=". This
rough formulation can be replaced by a strict, recursive definition whose most
characteristic cases are: P, (v*) = (P,(¥)))=", N,(¢*) = (N,(¥))*. For a
string T' = 41,...,%m,, we set Po(T') = Po(¢1),..., Py(¢m). The following
theorem is proved in [21]:

(*E) for any sequent I' - ¢, this sequent is in ACTw iff, for all n € w, the
sequent P, (T) F N, (¢) is in ACTw.

The ‘only if” part is easy, since P, (¢) b ¢ and ¢ - N, (¢)) are in ACTw, and
the ‘if’-part is proved by a transfinite induction, using cut-elimination. Since the
right-hand sequent in (*E) contains no negative *-subformula, it is provable in
ACTw iff it is provable in ACTw without the rule (*L); let us denote the latter
system by ACTw™. ACTw™ is a finitary system with an effective proof-search
procedure, and consequently, the right-hand condition of (*E) is IIJ. Therefore,
ACTw is IIY—complete.

From the proof of theorem 1, it follows that the (V,A,«,*)—fragment of
ACTw is 119 —hard, and « can be replaced with —. We show that A and V can
be eliminated (not both together). To eliminate A we need two other lemmas
from [3] (lemma 3 and a direct consequence of lemmas 4 and 5).

Lemma 6 LetT' = ¢1,...,¢0,. In the («)—fragment of FL, (s — T'),A F s
1s provable iff there exist Ay, ..., A, such that A = Aq,..., A, and A; F @, is
provable, for alli=1,... n.

Proof. The ‘if’-part holds, by (Id), («L), and the ‘only if’-part can be
proved by induction on cut-free proofs. Q.E.D.

11

Lemma 7 In the same system, s < (s < ¢1),...,58 < (s < ©p) I s is provable
iff ©1,...,0n F s is provable.

Proof. We prove the following equivalence:

s (s—wix1)y. s S— (s —n),01,.-..pi Frr s, il 1,...,0n FrL s,

where all formulas are («)—formulas. This is proved by induction on 0 < n—i <
n. For ¢ = n, there is nothing to prove. Take i < n. Assume the left-hand side.
By lemma 6:

S<_(8(_g0i+2)7"'75(_(5<_<)0n)7§017"'7§0i "FLS‘_QDH-I,

which yields:

s (8 @ir2)y- 8 (8 ¥n),P1,. -, piy1 FFL 8,

whence the right-hand side holds, by the induction hypothesis. Assume the
right-hand side. By the induction hypothesis, we get:

5 (5 ir2)y- 8¢ (8 @n), 01, -, Piy1 FFL 5,

whence, by («R), (<L) and (Id), the left-hand side holds. Q.E.D.

Now, replace the AB-grammar H with all types being («)—formulas of order
not greater than 1 with an FL-grammar H’, defined as follows: (v,x) € H iff
(v, «— (s « x)) € H', and construct the formula ¢’ for H' in the same
way as the formula ¢ for H. By lemmas 1 and 7, L(H,s) = L(H',s), so
L(H,s) = (Zg)* iff (¢")*,4' I sis in ACTw. But, A in v’ only appears in
contexts:

(s—=(s—pir)) Ao A (s — (5 — @ik,)),

which can be replaced by equivalent formulas:

s [(s = i) V...V (s = pir)l

because a «— (bV ¢) = (a < b) A (a « ¢) is true in action lattices.
The elimination of V (keeping A) is simpler. According to the Kleene algebra
law:
(aVb)* = (a"b)*a”,

for the formula ¥ = 11 V..., constructed before lemma 5, 1* is equivalent to
a (A, «,*)—formula y. We have: ¥*, ¢ I s is in ACTw iff x,9 F s is in ACTw
iff, foralli =1,...,k, x,¥; Fsisin ACTw iff, foralli=1,...,k, x b s < 1
is in ACTw iff x /\ie[k](s —1);) is in ACTw.

Theorem 2 The (V,«,*)—fragment and the (A, —,*)—fragment of ACTw are
19— complete, and < can be replaced with —.

12

I do not know if the multiplicative fragment of ACTw (i.e. the (V,A)—free
fragment) is undecidable.

The (A, —, «)—free fragment of ACTw is the logic of *-continuous Kleene al-
gebras, which is decidable, by the Kozen completeness theorem. Below we show
that the simple Horn theory of *-continuous Kleene algebras is I1J—complete
(see the introduction for references to analogous results of Kozen).

Simple atomic formulas (see the introduction) are expressible in the language
of FL by sequents of the form I'" F p such that p is a variable and T is a string
of variables; we call them simple sequents. Let X be a set of simple sequents.
By ACTw(X) we denote the system ACTw enriched with all sequents from X
as new axioms (not closed under substitution). If (CUT) is admitted, then the
sequents provable in ACTw(X) are precisely those sequents which are true in
all models (A, f) such that A is a *-continuous action lattice, and all sequents
from X are true in (A, f). If X is closed under (CUT), then the cut-elimination
theorem holds for ACTw(X). The proof is the same as for ACTw with one new
case: C' = p and both premises of (CUT) are new axioms. Then, the conclusion
is a new axiom, too. Further, theorem (*E) can be generalized to ACTw(X),
X closed under (CUT). Consequently, if X is a recursive set of simple sequents,
then ACTw(X) is 119 [21].

Let us return to the construction of formula i before lemma 5. For each
i=1,...,k, introduce a new variable p; and consider all sequents p; - ; ;, for
j=1,...,k;. By the form of the grammar H, ¢; ; = ¢;; — ®;;, where g; ; is
a variable and ®; ; is a string of at most two variables. So, sequent p; F ¢; ;
is deductively equivalent (in FL or ACTw) to the simple sequent p;, ®; ; F ¢; ;.
Let X (H) denote the smallest set of simple sequents which contains all sequents
constructed in this way and is closed under (CUT). Then, X (H) is a recursive
set, since it can be generated by a CF-grammar. We write simply X for X (H).

Let us consider the (A, —, «)—free fragment of ACTw(X). It is a conser-
vative subsystem of ACTw(X), and consequently, it is I1. By x we denote the
formula py V...V pr. For the formula ¢ constructed for H, we prove:

X", x F sisin ACTw(X) iff ™9 F s is in ACTw.

We prove the ‘only if’-part. Assume that x*, x I s is provable in ACTw(X).
By completeness, this sequent is true in all models (A, f) such that A is a *-
continuous action lattice and all sequents from X are true in (A, f). Since no
variable p; occurs in formulas ¢; ;, then we can stipulate:

f(pi) = floin Ao A i),

for i = 1,...,k. All sequents from X are true in models, satisfying the latter
postulate, so x*,x F s must be true in these models, but this means that
Y*, ¥ F sis in ACTw. The ‘if’-part holds, by (CUT) and the monotonicity of
* since x F ¢ is provable in ACTw(X).

Further, both x and the sequents from X are (A, —, <)—free, whence x*, x b
s is provable in ACTw(X) iff it is provable in the Kleene algebra fragment of
ACTw(X) (use cut-elimination). This finishes the proof of the next theorem.

13

Theorem 3 The simple Horn theory of *-continuous Kleene algebras is not
recursively enumerable (it is 11— complete).

We turn to ACT. It follows from theorem 1 that ACTw is essentially stronger
than ACT, since ACT is Y. The decidablity of ACT remains an open problem.
Recall that a logic possesses FMP iff it is complete with respect to its finite
models. Finite action algebras (lattices) are complete as posets, and complete
action algebras (lattices) are *-continuous. This yields the following fact.

Corollary 2 ACT does not posses FMP.

Proof. Assume that ACT possesses FMP. Then, the sequents provable in
ACT are precisely those sequents which are true in all *-continuous action lat-
tices. So, ACT equals ACTw. By theorem 1, this is impossible. Q.E.D.

At the end of this section, we show that a sequent system for ACT, proposed
by Jipsen [9], does not admit cut elimination. This system arises from FL (in
the language of ACT) by adding the following inference rules for *.

TH1 Tk
(R s (R2) 2

Dhu gk o0 DEG vk

B = rre ™ 1oy

Let us denote this system by ACT’. With (CUT), ACT’ is equivalent to
ACT. Let us consider the sequent:

(s—(s—(s238)))" s (s—s) ks

We show that the above sequent is provable in ACT’ with (CUT), but not
without (CUT). First, the following sequent:

s—(s—(s—8)),s—(s—8)Fs— (s s),

is provable in FL, and consequently, in ACT” without (CUT). By (Id) and (R3),
the sequent:

(s—(s—(s—238))) s (s—3s)Fs— (s s),

is provable in ACT’ without (CUT). Since s < (s < s) I s is provable in FL, by
(Id), («R) and (<L), then the first sequent is provable in ACT’ with (CUT).
Suppose that it is provable in ACT’ without (CUT). It is not an axiom. It can
be the conclusion of (R3) or («L). In the first case, the right premise is:

s (s (s 3)),sks.

This is impossible, since the latter sequent is not provable in FL. In the second
case, the left premise is:

(s — (s (s 39))) sk s

Consequently, this sequent is true in action lattices. Since ¢ - ¢* is also true,
then the unprovable sequent, considered above, must be true in action lattices,
which is impossible, by the completeness of FL.

14

4 FMP of ACTw

In this section, we prove that ACTw possesses FMP. First, we prove FMP for a
weaker logic, being an extension of ACTw™.

By a weak action lattice we mean an algebra A = (A4, V,A\,*,—,«,0,1) such
that the *-free reduct of A is a residuated lattice with the least element 0, and
* fulfills the following conditions:

(WA1) for alla € A and n € w, a”™ < a*,
(WA2) for all a,b € A, if a < b then a* < b*.

Clearly, every action lattice is a weak action lattice. The converse does not
hold, as we show for a moment. We consider a system WACT, which arises
from ACTw™ (i.e. ACTw without the rule (*L)) by adding the rule:

ey
pr e

which is derivable in ACTw, using (*L). So, WACT is an extension of ACTw™
and a subsystem of ACTw.

(MON)

Lemma 8 If Tt ¢ contains no negative *-subformula, then T' b ¢ is provable
i WACT iff it is provable in ACTw.

Proof. The ‘only if’-part is obvious. The ‘if’-part follows from the fact
that ACTw coincides with ACTw™ in the scope of sequents without negative
occurrences of *. Q.E.D.

The cut-elimination theorem holds for WACT. It is easy to provide a syn-
tactic proof, using three kinds of induction: (1) on the complexity of ¢, (2) on
the proof of the left premise of (CUT), (3) on the proof of the right premise
of (CUT). In comparing with an analogous proof for FL, the new case of (1) is
© = x*. We switch on induction (2). There is one interesting case: I', x*, A F ¢
is the conclusion of (MON). Then, ' = A\, A = A, ¢» = §*, and the premise
is x F 0. Then, we switch on induction (3). There are three interesting cases:
(A) ® F x* is an axiom (*1), (B) it is the conclusion of (*R), (C) it is the
conclusion of (MON). For (A), ® = X, whence the conclusion of (CUT) is again
axiom (*1) F §*. For (B), the n premises of (*R) are &1 F x, ..., &, F X,
where ® = ®4,...,P,,. By the induction hypothesis of (1), ®; F ¢ is provable
in WACT, for all i = 1,...,n, and consequently, ® - ¢ is provable in WACT,
by (*R). For (C), ® = v*, and v* F x* is the conclusion of (MON) with the
premise v - y. By the induction hypothesis of (1), v F § is provable in WACT,
and consequently, ® - 1 is provable in WACT, by (MON).

Accordingly, one can show the completeness of WACT with respect to weak
action lattices. Let us notice that the cut-elimination theorem for WACT is not
needed in our proof of FMP. Like in [2], cut-elimination follows from our further
completeness results.

15

We adopt methods for proving cut-elimination and FMP for intuitionistic
substructural logics, in particular for FL, elaborated in [17, 18, 2]; see also [5, 7]
for different proofs.

Let A be a residuated lattice. A closure operator on A is a mapping C :
A — A, satisfying the following conditions:

(c1) 2 < C(a),
(c2) if x <y then C(x) < C(y),
(e3) C(C(z)) < =,

(c4) C(z) - Cly) < C(z - y),

for all z,y € A. An element x € A is said to be closed, if C(x) = z. Let C(A)
denote the set of closed elements of A with respect to C. One defines operations

on C(A):

c4

a-cb=C(a-b), aVeb=C(a VD).

The set C(A) is closed under meet and residuals. The algebra C(A) with
operations V¢, A, ¢, —, <+ and designated elements C'(0),C(1)) is a residuated
lattice, and it will be denoted by C 4.

Let (M,-,1) be a monoid. For X, Y C M, one defines operations: X VY =
XUY, XAY =XnY, XY ={zsy:zeX,yeY}, X ->Y={z: X-{2} CY},
X «Y ={z:{z}-Y C X}. Then, the algebra (P(M),U,N, -, —,«,0,{1}) is
a complete residuated lattice, and it will be referred to as the residuated lattice
P(M).

Let A be a residuated lattice. A closure operator on the residuated lattice
P(A) (determined by the monoid (A4,-,1)) can be defined as follows:

X)=(lal : a € A&X C [a]},

where [a] = {x € A: 2 < a} is the (lower) principal cone generated by a. The
mapping f(a) = [a] is an embedding of A into the complete residuated lattice
Cp(a); this embedding preserves all existing infinite joins and meets in A. The
latter lattice is called the MacNeille - completion of A.

Let A be an action lattice. Cp(4) is a complete residuated lattice, so it
admits a unique operation *, fulfilling conditions (C1) and (C2) (see section
2), which means that Cp(4) has a unique expansion to an action lattice. The
MacNeille embedding f(a) = [a] need not preserve *. If A is *-continuous, then
[a*] = [a]*, which means that f preserves *. Consequently, *-continuous action
lattices are precisely the subalgebras of complete action lattices. The same holds
for action algebras, but not for Kleene algebras.

Every *-continuous Kleene algebra (lattice) A can be embedded into a com-
plete action lattice Cp(yy, for a different closure operator C' on P(A). For
z,y,a € A, denote:

[x—y,al ={z € A:zzy <a},

16

and define:
C(X)= ﬂ{[w —y,a]:x,y,a € A&X C [z —y,al}.

The so-defined operator C' is a closure operator on P(A), and the mapping
f(a) = [a] is an embedding of A into Cp 4, which preserves the whole Kleene
algebra structure.

An analogous construction will be used in our proof of FMP for WACT.
We fix a sequent I'y F ¢g. Let S denote the set of all subformulas of formulas
occurring in this sequent plus formulas 0,1. S* denotes the set of all finite
strings of formulas from S. Let T be the set of all sequents which appear in the
proof-search tree for I'y F ¢g in WACT. This means that T is the smallest set
of sequents fulfilling the conditions:

(T1) (To o) €T,

(T2) for any instance of an inference rule of WACT, if the conclusion of this
rule belongs to T', then all premises of this rule belong to T'.

Since all rules of WACT increase the complexity of sequents (i.e. the total
number of occurrences of atomic formulas), and WACT has the subformula
property, then T is a finite set, and all sequents in T" are formed out of formulas
from S. We consider the free monoid (S*, -,), where - stands for concatenation.
Following [2], we define a relation <C §* x S: T < ¢ iff either T - ¢ does not
belong to T, or I F ¢ is provable in WACT. Clearly, I' < ¢ holds for all but
finitely many pairs (I, o) € S* x S.

A closure operator C on P(S*) is defined as follows:

C(X)=(WM -A ¢ :T,AeS,0ecSXC-Aql,

where [I' = A, p] ={p € S : T, 9, A < p}. It is easy to prove (c1)-(c4).

The relation < satisfies all axioms of WACT and is closed under all inference
rules of WACT such that all formulas appearing in these axioms and rules belong
to S. We prove this fact for axioms and rules concerning *. For axiom k- ¢*,
this sequent is provable in WACT, whence A < ¢*. Let us consider rule (*R).
Assume I'; < ¢, foralli =1,....,n. If I'1,..., T, F ¢* does not belong to T,
then T'q,..., T, < ¢*. Otherwise, all sequents I'; - ¢;, i = 1,...,n, belong
to T, whence they are provable in WACT. Then, I'y,..., T, F ¢* is provable
in WACT, and consequently, I'1,..., T, < ¢*. For (MON), the reasoning is
similar.

We consider the complete residuated lattice Cp(s+) and the assignment
f(p) = [p], for variables p € S. Now, [¢/] denotes the set [\ — A, 1)]. As usual, f
is uniquely extended to a homomorphism from the algebra of *-free formulas of
WACT to Cp(g+). As in [2], one proves:

(QE) ¢ € f(¢) C [¢], for any *-free formula ¢ € S.

17

The label (QE) comes from ‘quasi-embedding’. The proof goes by induction
on formula ¢. We consider one case: ¢ = ¢ — x. Let I' € f(¢). By the
induction hypothesis, I € [¢], and consequently, I < 1. Let [A — A’, 4] contain
f(x). By the induction hypothesis, x € f(x), and consequently, A, y, A’ < 4.
Since < satisfies (—L), then A,T',¢) — x, A’ < §, which means that the string
I',¢ — x belongs to [A — A’,§]. Therefore, this string belongs to f(x). We
have shown ¢ € f(p). Let I' € f(¢). By the induction hypothesis, 1 € f(v),
and consequently, the string ¥, T belongs to f(x). By the induction hypothesis,
f(x) € [x], which yields ¥, < x. Since < satisfies (—R), then ' < . We
have shown f(p) C [¢].

We define an operation * on Cp(g-:

(W) X* = ({[e] : 9" € S&X C [i]}.

We show that * fulfills (WA1). Let X C S* be closed. Let n = 0. Let X C
[¢], ¢* € S. Since 1 F ¢* is provable in WACT, by (*1) and (1L), then 1 < ¢*.
Consequently, 1 € X*. So, {1} C X*, which yields C({1}) C C(X*) = X*.
Let n > 0. Let X C [¢]. We have X" = X ¢ -+ -¢ X, where X appears n
times. Let I'; € X, fori =1,...,n. Then, I'; K ¢, for i = 1,...,n. Since <X is
closed under (*R), we get I'y,..., T, < ¢*. Consequently, the string T'y,..., T,
belongs to X*. This yields X ----- X C X*. Then, C(X ----- X) C X*. Using
(c4), one easily shows X*" C C(X ----- X), by induction on n > 1. It is obvious
that * fulfills (WA2).

We have shown that C'p(g-) with the operation * defined by (W*) is a weak
action lattice. Since there are only finitely many pairwise distinct sets [I'— A, ¢],
then Cp(g-) is a finite algebra. We extend the mapping f to all formulas of
WACT, by setting f(¢*) = (f(¢))*, where the right-hand * is defined by (W*).
We show:

(QE™) v € f(¢) C [¢], for any formula ¢ € S.

The inductive proof of (QE) must be supplied with the new case: ¢ = ¥*.
We show ¥* € f(¢*). Let f(¢) C [x], x* € S. By the induction hypothesis,
¥ € f(v), whence ¢ < x. Since < is closed under (MON), then ¥* < x*.

Consequently, ¥* € (f(¢))* = f(¢*). By the induction hypothesis, f(¢) C [¢],
and consequently, f(1)* C [¢*].

Theorem 4 WACT possesses FMP.

Proof. Assume that I'g = ¢ is not provable in WACT. We define Cp(g-) and
f as above. Since I'g I ¢g belongs to T, then Ty A ¢o. By (QE*), Ty € f(Ty)
and T'g € f(go). Then, f(I'o) Z f(p0). Q.E.D.

Let A be a complete weak action lattice. Then, its *-free reduct is a complete
residuated lattice, so it admits a unique expansion to a complete action lattice
A’ in which a* equals the Lu.b. of all ¢, n € w. To avoid collision of symbols,
we denote the latter operation by *). By (WA1), a*) < a*, for all a € A.

Let A be a finite weak action lattice, and let f be the assignment in A..
The extension of f to all formulas fulfills f(p*) = (f(v))*, where * denotes the

18

weak *-operation in A.. Since A is finite, then it is complete, so one can define
a unique operation (*), as in the preceding paragraph. Let g be the assignment
fulfilling g(p) = f(p), for variables p, which is extended to a homomorphism
from the algebra of formulas to A’ using the clause g(p*) = (g())™).

Lemma 9 If ¢ contains no negative occurrence of *, then g(v) C f(v). If ¢
contains no positive occurrence of *, then f(p) C g(¢).

Proof. Induction on formula . If ¢ is atomic, then f(¢) = g(¢). For
@ = 1) o x, where o is a binary connective, one uses the induction hypothesis
and monotonicity conditions for residuated lattices. Let ¢ = ¥*. Assume
that 1* contains no negative occurrences of *. Then, 1) contains no negative
occurrences of *. By the induction hypothesis, g(¢)) C f(v). We get:

g(@¥*) = (g()™) C (g(4))* C (F(¥))*,

where the last inequality follows from (WA2). Since ¢* contains at least one
positive occurrence of *, we are done. Q.E.D.

Theorem 5 ACTw possesses FMP.

Proof. Assume that I' F ¢ is not provable in ACTw. By (*E), there exists
n € w such that P, (I") = N, (¢) is not provable in ACTw. By lemma 8, P,(T") -
N, (p) is not provable in WACT. Then, by theorem 4, there exist a finite weak
action lattice A and an assignment f such that f(P,(T)) € f(Nn(p)). We
consider the finite action lattice A’, which is the only expansion of the *-free
reduct of A, and an assignment g, defined as before lemma 9. By lemma 9,
F($) C g(#), for any formula % appearing in Po(T), and g(No(2)) C £(Na(9)).
Consequently, g(P,(T")) € g(Nn(p)). As we have observed in section 3 (under
(*E)), P.(¢¥) F ¢ and ¢ F N, (¢) are in ACTw, for any formula 1), which yields
9(P(I)) € g(I') and g(¢) € g(Nn(p)). Therefore, g(I') Z g(¢). Q.E.D.

It is obvious that theorems 4 and 5 remain true for algebras without A
and the corresponding systems; in particular, the A—free fragment of ACTw
possesses FMP, this means, it is complete with respect to finite action algebras.

To provide sequent systems, we have considered sequents I' - ¢ which cor-
respond to atomic formulas o < 3. All results remain true for equalities o = 3,
since a < (3 is an equality, and conversely, a = 3 is equivalent to o < & (8 < a.

Let ACT* denote the class of *-continuous action algebras (lattices) and
ACT/ the class of finite action algebras (lattices). It follows from theorem 5
that HSP(ACT*)=HSP(ACT/), this means, the two classes generate the same
variety.

At the end, we explain how to prove theorem 5 for simple Horn theories of
Kleene algebras (lattices) or action algebras (lattices). Let Y be a finite set of
new axioms of the form pi,...,p, F p such that n > 1 and p;,p are variables.
Let X be the smallest set of sequents of this form which contains Y and is
closed under (CUT). We have noticed in section 3 that ACTw(X) admits cut-
elimination, (*E) is true for systems of that kind. The constructions and proofs

19

of section 4 can be repeated with slight changes. The set S should additionally
contain all variables appearing in sequents from Y. Since ACTw(X) is closed
under (CUT), then it is closed under the following rule: from T’y F pq, ...,
Iy, Fpyinfer 'y, ... T, F p, for any axiom py,...,p, - p from Y. We add these
rules to inference rules regarded in the construction of T'. Then, the relation =<,
defined as above, is closed under these new rules. Since f(p) = g(p) = [p], then
axioms from Y are true both in model (A, f) and in model (A’ g).

References

[1] Bar-Hillel, Y., Gaifman, H., Shamir, E, ‘On categorial and phrase structure
grammars’, Bulletin Res. Council Israel F9 (1960), 155-166.

[2] Belardinelli, F., Jipsen, P., Ono, H., ‘Algebraic aspects of cut elimination’,
Studia Logica T7 (2004), 209-240.

[3] Buszkowski, W., ‘The equivalence of unidirectional Lambek categorial
grammars and context-free grammars’, Zeitschrift f. math. Logik und
Grundlagen der Mathematik 31 (1985), 369-384.

[4] Buszkowski, W., ‘Completeness results for Lambek Syntactic Calculus’,
Zeitschrift f. math. Logik und Grundlagen der Mathematik 32 (1986), 13-
28.

[6] Buszkowski, W., ‘The Finite Model Property for BCI and Related Systems’,
Studia Logica 57 (1996), 303-323.

[6] Buszkowski, W., ‘Mathematical Linguistics and Proof Theory’, in: Hand-
book of logic and language, (van Benthem, J., ter Meulen, A., eds.), Elsevier,
Amsterdam, 1997, 683-736.

[7] Buszkowski, W., ‘Finite Models of Some Substructural Logics’, Mathemat-
ical Logic Quarterly 48 (2002), 63-72.

[8] Hopcroft, J.E., Ullman, J.D., Introduction to Automata Theory, Languages
and Computation, Addison-Wesley, Reading, 1979.

[9] Jipsen, P., ‘From Semirings to Residuated Kleene Algebras’, Studia Logics
76 (2004), 291-303.

[10] Kozen, D., ‘On Kleene algebras and closed semirings’, in: Proc. MFCS
1990, Lecture Notes in Comp. Science 452, 1990, 26-47.

[11] Kozen, D., ‘A completeness theorem for Kleene algebras and the algebra
of regular events’, in: Proc. 6th Symp. Logic in Comp. Sci., IEEE, 1991,
214-225.

[12] Kozen, D., ‘A Completeness Theorem for Kleene Algebras and the Algebra
of Regular Events’, Information and Computation 110:2 (1994), 366-390.

20

Kozen, D., ‘On Action Algebras’, mnuscript, presented at: Logic and the
Flow of Information, Amsterdam, 1991.

Kozen, D. ‘On the complexity of reasoning in Kleene algebra’, Information
and Computation 179 (2002), 152-162.

Lambek, J., ‘The mathematics of sentence structure’, The American Math-
ematical Monthly 65 (1958), 154-170.

Moortgat, M., ‘Categorial Type Logics’, in: Handbook of logic and lan-
guage’; (van Benthem, J., ter Meulen, A., eds.), Elsevier, Amsterdam, 1997,
93-177.

Okada, M., ‘Phase semantic cut-elimination and normalization proofs in
first- and higher-order linear logic’, Theoretical Computer Science 227:1-2
(1999), 333-396.

Okada, M., Terui, K., ‘The finite model property for various fragments of
intutionistic linear logic’, Journal of Symbolic Logic 64:2 (1999), 780-802.

Ono, H., ‘Semantics for Substructural Logics’, in: [24], 259-291.

Palka, E., ‘On Finite Model Property of the Equational Theory of Kleene
Algebras’, Fundamenta Informaticae 68.3 (2005), 221-230.

Palka, E., ‘An infinitary sequent system for the equational theory of *-
continuous action lattices’, manuscript.

Pratt, V., ‘Action Logic and Pure Induction’, in: Logics in AI. Proc. of
JELIA’90, Lecture Notes in Artif.. Intelligence 478, 1991, 97-120.

Restall, G., An Introduction to Substructural Logics, Routledge, London
and New York, 2000.

Substructural Logics, (Dosen, K., Schroeder-Heister, P., eds.), Clarendon
Press, Oxford, 1993.

van Benthem, J., Essays in Logical Semantics, D. Reidel, Dordrecht, 1986.

van Benthem, J., Language in Action. Categories, Lambdas and Dynamic
Logic, North-Holland, Amsterdam, 1991.

21

