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Abstract

We study Nonassociative Lambek Calculus and Associative Lambek
Calculus enriched with finitely many nonlogical axioms. We prove that
the nonassociative systems are decidable in polynomial time and gener-
ate context-free languages. In [Buszkowski 1982] it has been shown that
finite axiomatic extensions of Associative Lambek Calculus generate all
recursively enumerable languages; here we give a new proof of this fact.
We also obtain similar results for systems with permutation and n−ary
operations.

1 Introduction and preliminaries

In [Buszkowski 1982], systems of Associative Lambek Calculus with finitely
many nonlogical axioms, not containing product, are shown to be undecid-
able (in general) and to generate all recursively enumerable languages. In sec-
tion 3 of the present paper we give a new version of this result. In section
2 we show that for Nonassociative Lambek Calculus the situation is different:
all systems of Nonassociative Lambek Calculus with finitely many nonlogical
axioms are decidable in polynomial time and generate context-free languages.
The same holds for systems with unary modalities, studied in [Moortgat 1995,
Moortgat 1997], n−ary operations (i.e. for the Generalized Lambek Calculus
of [Buszkowski 1989], studied in [Ko lowska 1997, Kandulski 1997, Jäger 2002]),
and the rule of permutation [Kandulski 1995, Jäger 2002]. These results are
new; they do not rely on cut elimination which is not available for systems with
nonlogical axioms. Further, our results from section 2 provide a new proof of
the context freeness of categorial grammars based on Nonassociative Lambek
Calculus, first proven in [Buszkowski 1986a] for the product-free system, then
in [Kandulski 1988] for the full system, and recently in [Jäger 2002] by a mod-
ification of results of [Roorda 1991] and [Pentus 1993], the same system with
permutation [Kandulski 1995, Jäger 2002] and Generalized Lambek Calculus
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[Kandulski 1997, Jäger 2002]. The polynomial time decidability of Nonasso-
ciative Lambek Calculus with modalities and/or permutation and Generalized
Lambek Calculus seems to be new; [de Groote and Lamarche 2002] prove it for
(Classical) Nonassociative Lambek Calculus. Recently, [Pentus 2003] proves
that Associative Lambek Calculus is NP-complete.

Our interest in adding nonlogical axioms to the Lambek calculus can be
motivated in various ways. First, it is an obvious logical thread of theories
based on the given logic; in other words, one studies the consequence rela-
tion associated with this logic. Second, for the associative case, nonlogical
axioms enable one to surpass the limitations of the context-free languages.
Third, there are many types of evidence for the usefullness of nonlogical ax-
ioms in natural language description. For example, Lambek [Lambek 1999,
Lambek 2001, Casadio and Lambek 2002] uses axioms of the form πi → π to
express the inclusion of the class of personal pronouns in i−th Person in the
class of personal pronouns; different kinds of subcategorization can be found
in Keenan and Faltz [Keenan and Faltz 1985]. More in the style of Moortgat
[Moortgat 1997], one might take Nonassociative Lambek Calculus as the basic
logic and, besides modalities, use axioms of the form (A · B) · C ↔ A · (B · C)
or A · B ↔ B · A, for some concrete types A,B,C, to admit associativity or
permutation in some special cases. A limited usage of contraction can also be
helpful: Lambek Calculus does not lift S\(S/S) (the type of sentence conjunc-
tion) to VP\(VP/VP), VP=PN\S (the type of verb phrase conjunction), but
one may stipulate S\(S/S)→VP\(VP/VP). Fourth, Lambek logics can also be
treated as a machinery of grammar transformation: for instance, a context-free
grammar can be transformed into an equivalent basic categorial grammar (see
[Buszkowski 1996]).

We describe the formalism of Nonassociative Lambek Calculus (NL). For-
mulas (also called types) are formed out of (denumerably many) atoms p.q, r, . . .
by means of binary operation symbols • (product), \ (left residuation), / (right
residuation); these symbols are called multiplicative conjunction and implica-
tions in substructural logics [Restall 2000]. Formula structures are recursively
defined as follows: (i) all formulas are (atomic) formula structures, (ii) if X,Y
are formula structures, then (X ◦ Y ) is a formula structure. X[Y ] denotes a
formula structure X with a distinguished substructure Y , and X[Z] stands for
the substitution of Z for Y in X. Sequents are formal expressions X → A such
that X is a formula structure and A is a formula. Axioms and inference rules
of NL (in a sequential form) are the following:

(Id) A→ A

(\L)
Y → A; X[B]→ C

X[Y ◦ (A\B)]→ C
(\R)

A ◦X → B

X → A\B

(/L)
X[A]→ C; Y → B

X[(A/B) ◦ Y ]→ C
(/R)

X ◦B → A

X → A/B

(•L)
X[A ◦B]→ C

X[A •B]→ C
(•R)

X → A; Y → B

X ◦ Y → A •B
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(CUT)
Y → A; X[A]→ B

X[Y ]→ B

NL is due to Lambek [Lambek 1961] who has proven cut elimination theorem
and decidability of this system. It is easy to show that NL is complete with re-
spect to residuated groupoids. It is also complete with respect to powerset struc-
tures over groupoids [Ko lowska 1997], though not free groupoids [Došen 1992].

We shall consider extensions of NL by structural rules:

(ASS)
X[(Y ◦ Y ′) ◦ Y ′′]→ A

X[Y ′ ◦ (Y ′ ◦ Y ′′)]→ A

(PER)
X[Y ◦ Z]→ A

X[Z ◦ Y ]→ A

i.e. the rule of associativity and the rule of permutation. (ASS) acts up-down
and down-up. Associative Lambek Calculus (L) is NL plus (ASS); it is due to
Lambek [Lambek 1958]. NL plus (PER) will be denoted by NLP. L is complete
with respect to residuated semigroups, powerset structures over semigroups
[Buszkowski 1986] and over free semigroups [Pentus 1995]. Cut elimination and
decidability hold for both systems.

They, however, need not hold, if we affix new nonlogical axioms of the form
A → B. For a set Φ, of formulas A → B, NL(Φ) denotes the system NL with
all formulas from Φ as new axioms, and similarly for L(Φ), NLP(Φ). Caution:
we always assume (CUT) to be a rule in these extended systems. This rule is
necessary to prove strong completeness: the sequents provable in the extended
system are precisely those which are valid in the appropriate frames under all
assignments (of elements of the frame for variables) which satisfy the new ax-
ioms. Since new axioms are not supposed to be closed under substitution, atoms
appearing in them have to be treated as constants rather than variables, but
this will not be regarded in notation.

It has been shown in [Buszkowski 1982] that there exist finite Φ such that
L(Φ) is undecidable, and the formulas in Φ are of the form p or p/q. In section 2
of the present paper we prove that all systems NL(Φ), with Φ finite, are decidable
in polynomial time and generate context-free languages. The same holds for
NLP, Generalized Lambek Calculus and NL, NLP with unary modalities. In
section 3 we give a new discussion of the situation for L(Φ).

Associative Lambek Calculus with (PER) was studied in [van Benthem 1986,
van Benthem 1991] as a logic of semantic types (the system is known as the
Lambek-van Benthem calculus). It is decidable, but its complexity and the
decidability of its extensions by means of nonlogical axioms remain unknown.

2 NL with nonlogical axioms

Since (CUT) is a rule in NL(Φ), it is not obvious that the system has the
subformula property. A slightly generalized form of this property can be shown
by a refinement of standard proofs of the completeness theorem. Actually, in
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[Buszkowski 1986] the subformula property for L(Φ) has been proven in this
way. Here we give a simpler proof, based on more general algebraic models of
NL.

A residuated groupoid is a structure M = (M,≤, ·, \, /) such that (M,≤) is
a poset, (M, ·) is a groupoid, and \, / are binary operations on M , satisfying
the equivalences:

(RES) ab ≤ c iff b ≤ a\c iff a ≤ c/b,

for all a, b, c ∈M . It is easy to show that every residuated groupoid fulfills:

(MON) if a ≤ b then ca ≤ cb and ac ≤ bc,

for all elements a, b, c. Also, the following monotonicity laws for residuals hold
true:

(MRE) if a ≤ b then c\a ≤ c\b, a/c ≤ b/c, b\c ≤ a\c, c/b ≤ c/a.

A model is a pair (M, µ) such that M is a residuated groupoid and µ is an
assignment of elements of M for atoms. One extends µ to be defined for all
formulas:

(µ) µ(A •B) = µ(A)µ(B), µ(A\B) = µ(A)\µ(B), µ(A/B) = µ(A)/µ(B).

For any formula structure X, define the formula F (X), by setting: (i)
F (A) = A, (ii) F (X ◦ Y ) = F (X) • F (Y ). A sequent X → A is said to be
true in model (M, µ) if µ(F (X)) ≤ µ(A).

All sequents provable in NL(Φ) are true in all models (M, µ) such that all
sequents in Φ are true. This can easily be proven by induction on proofs in
NL(Φ). The converse is also true: if X → A is not provable in NL(Φ), then
there exists a model (M, µ) in which X → A is not true. This can be proven
by a Lindenbaum model.

To get the subformula property, we need more special models. Let (M,≤, ·)
be a preordered groupoid, that means, it is a groupoid with a preordering (i.e.
a reflexive and transitive relation), satisfying (MON). A set P ⊆ M is called a
cone on M if a ≤ b and b ∈ P entails a ∈ P . Let C(M) denote the set of cones
on M . The operations ·, \, / on C(M) are defined as follows:

(M1) P1P2 = {c ∈M : (∃a ∈ P1, b ∈ P2) c ≤ ab}

(M2) P1\P2 = {c ∈M : (∀a ∈ P1) ac ∈ P2}

(M3) P1/P2 = {c ∈M : (∀b ∈ P2) cb ∈ P1}

It is easy to see that (C(M),⊆, ·, \, /) is a residuated groupoid; we call it
the residuated groupoid of cones over the given preordered groupoid.

Let T be a set of formulas, closed under subformulas and such that all
formulas appearing in Φ belong to T . By a T−sequent we mean a sequent
X → A such that A and all formulas appearing in X belong to T . We prove
the subformula property for NL(Φ).
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Lemma 1 Every T−sequent provable in NL(Φ) has a proof in NL(Φ) such that
all sequents appearing in this proof are T−sequents.

Proof. We write X →T A if X → A has a proof in NL(Φ), consisting of
T−sequents only. Let M be the set of all formula structures all of whose atomic
substructures belong to T . We define a preordering ≤ on M . First, we say that
X directly reduces to Y if either Y = Y [A] and X = Y [Z], for some Z,A such
that Z →T A, or Y = Y [A ◦ B] and X = Y [A • B], for some A,B such that
(A • B) ∈ T . Now, X ≤ Y holds iff there exist Y0, . . . , Yn, n ≥ 0, such that
Y = Y0, X = Yn and Yi directly reduces to Yi−1, for each i = 1, . . . , n. Clearly,
X ≤ Y entails Z ◦X ≤ Z ◦Y and X ◦Z ≤ Y ◦Z, hence (M,≤, ◦) is a preordered
groupoid. Further, if Y →T A and X ≤ Y then X →T A.

We consider the residuated groupoid of cones C(M). An assignment µ is
defined by setting:

µ(p) = {X ∈M : X →T p}, for all atoms p.

Clearly, µ(p) is a cone. We prove:

µ(A) = {X ∈M : X →T A}, for all A ∈ T.

We proceed by induction on A. For atomic A, this follows from the definition
of µ. Let A = B • C. Let X ∈ µ(A). Then, there exist Y ∈ µ(B), Z ∈ µ(C)
such that X ≤ Y ◦ Z. By the induction hypothesis, Y →T B, Z →T C, hence
Y ◦ Z →T B • C, by (•R). We get X →T A. For the other direction, assume
X →T A. We have B ∈ µ(B) and C ∈ µ(C), by the induction hypothesis and
(Id), which yields B ◦ C ∈ µ(A). Using the definition of ≤, we get A ≤ B ◦ C,
hence X ≤ B ◦ C, which yields X ∈ µ(A). Let A = B\C. Let X ∈ µ(A).
By the induction hypothesis and (Id), B ∈ µ(B), which yields B ◦ X ∈ µ(C).
By the induction hypothesis again, B ◦X →T C, and consequently, X →T A,
by (\R). Now, assume X →T A. Let Y ∈ µ(B). By the induction hypothesis,
Y →T B, which yields Y ◦X →T C, by (CUT) and B ◦ (B\C) →T C. Then,
Y ◦ X ∈ µ(C), by the induction hypothesis. We have shown X ∈ µ(A). For
A = B/C, the argument is dual. The equality has been proven.

If A → B is in Φ, then µ(A) ⊆ µ(B): if X ∈ µ(A) then X →T A, hence
X →T B, which yields X ∈ µ(B). So, (C(M), µ) satisfies all axioms in Φ.
Consequently, all sequents provable in NL(Φ) must be true in this model. Let
X → A be a T−sequent provable in NL(Φ). Since B ∈ µ(B), for all B ∈ T , we
get X ∈ µ(F (X)), hence X ∈ µ(A). Then, X →T A, which finishes the proof.
Q.E.D.

Notice that the above proof yields the completeness of NL(Φ) with respect to
residuated groupoids of cones over preordered groupoids, hence also with respect
to residuated groupoids. If A → B is not provable, then, for an appropriate T
and the corresponding M,µ, we have A ∈ µ(A) and A 6∈ µ(B), hence A→ B is
not true in the model.

Let Φ be finite, and let T be a finite set of formulas, closed under subformulas
and such that T contains all formulas appearing in Φ. We shall describe an
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effective procedure which produces all T−sequents A ◦ B → C and A → B
which are provable in NL(Φ). Furthermore, we show that every T−sequent
provable in NL(Φ) can be derived from those T−sequents by (CUT) only.

Let S0 consist of all T−sequents of the form (Id), all sequents from Φ and
all T−sequents of the form:

(S0) A ◦ (A\B)→ B, (A/B) ◦B → A, A ◦B → A •B.

T−sequents of the form A ◦ B → C or A → B are called basic sequents. If S
is a set of basic sequents, then S′ denotes the closure of S under (CUT), that
means, S′ is the smallest set of basic sequents containing S and such that, if
the premises of (CUT) are in S′ and the conclusion is a basic sequent, then
the conclusion is in S′. Assume Sn has already been defined. Let Sn+1 be
the smallest set S, of basic sequents, containing S′n, which is closed under the
following rules:

(R1) if (A ◦B → C) ∈ S and (A •B) ∈ T then (A •B → C) ∈ S,

(R2) if (A ◦B → C) ∈ S and (A\C) ∈ T then (B → A\C) ∈ S,

(R3) if (A ◦B → C) ∈ S and (C/B) ∈ T then (A→ C/B) ∈ S.

Clearly, Sn ⊆ Sn+1, for all n ≥ 0. We define ST as the union of all Sn, for
n ≥ 0. Evidently, ST is closed under rules (R1), (R2), (R3). ST is a set of basic
sequents, hence it must be finite. Then, there exists n ≥ 0 such that Sn = Sn+1,
and ST = Sn, for the least n satisfying Sn = Sn+1.

Let m denote the cardinality of T . There are f(m) = m3 +m2 T−sequents
whose antecedents are of length at most 2, hence the least n such that ST = Sn

must not exceed f(m). The construction of S′i from Si can be done in at most
f(m)2 steps, and similarly the construction of Si+1 from S′i. Accordingly, we
can construct ST from T in time O(m9).

By S(T ) we denote the system whose axioms are all sequents from ST

and whose only inference rule is (CUT). Then, every proof in S(T ) consists
of T−sequents only. We write X →S(T ) A if X → A is provable in S(T ). Ob-
serve that every basic sequent provable in S(T ) belongs to ST (use induction
on proofs in S(T )). We state an interpolation lemma for S(T ).

Lemma 2 If X[Y ] →S(T ) A, then there exists D ∈ T such that Y →S(T ) D
and X[D]→S(T ) A.

Proof. We proceed by induction on proofs in S(T ). Assume X[Y ] → A
belongs to ST . If Y = X, then D = A. Otherwise, X[Y ] = B ◦ C, and Y = B
or Y = C, hence D = B or D = C, respectively. Assume X[Y ] → A is the
conclusion of (CUT). Then, X[Y ] = Z[Y ′]and, for some B ∈ T , Y ′ →S(T ) B
and Z[B]→S(T ) A. We consider three cases.

(1) Y is contained in Y ′. Then, Y ′ = Y ′[Y ] and, by the induction hypothesis,
there exists D ∈ T such that Y →S(T ) D and Y ′[D] →S(T ) B. Using (CUT),
we get Z[Y ′[D]]→S(T ) A, which means X[D]→S(T ) A.
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(2) Y ′ is contained in Y . Then, X[Y ] = X[Y [Y ′]] and Z[B] = X[Y [B]].
By the induction hypothesis, there exists D ∈ T such that Y [B] →S(T ) D and
X[D]→S(T ) A. Clearly, Y →S(T ) D, by (CUT).

(3) Y and Y ′ do not overlap. Then, Y is contained in Z and does not
overlap B in Z. We write Z[B] = Z[B, Y ]. By the induction hypothesis,
there exists D ∈ T such that Y →S(T ) D and Z[B,D] →S(T ) A. By (CUT),
Z[Y ′, D]→S(T ) A, which means X[D]→S(T ) A. Q.E.D.

Lemma 3 For any T−sequent X → A, X →T A iff X →S(T ) A.

Proof. The ‘if’ direction is easy. One shows X →T A, for all sequents
X → A in ST , by a direct inspection of the construction. S(T ) uses (CUT)
restricted to T−sequents.

The T−sequents which are axioms of NL(Φ) belong to S0. Thus, to prove the
‘only if’ direction it suffices to show that all inference rules of NL(Φ), restricted
to T−sequents, are admissible in S(T ). This is obvious for (CUT). Let us
consider (\L). Assume X[B] →S(T ) C, Y →S(T ) A and (A\B) ∈ T . Since
A ◦ (A\B) → B is in S0, then X[Y ◦ (A\B)] →S(T ) C, by two applications of
(CUT). Let us consider (\R). Assume A ◦ X →S(T ) B and (A\B) ∈ T . By
lemma 2, there exists D ∈ T such that X →S(T ) D and A ◦ D →S(T ) B.
Since A ◦D → B is basic, then it belongs to ST , and consequently, D → A\B
also belongs to ST . So, X →S(T ) A\B, by (CUT). For rules (/L) and (/R),
the argument is dual. Let us consider (•L). Assume X[A ◦ B] →S(T ) C and
(A • B) ∈ T . By lemma 2, there exists D ∈ T such that A ◦ B →S(T ) D
and X[D] →S(T ) C. Again A ◦ B → D belongs to ST , hence A • B → D
belongs to ST . So, X[A•B]→S(T ) C, by (CUT). Let us consider (•R). Assume
X →S(T ) A, Y →S(T ) B and (A •B) ∈ T . Then, A ◦B → A •B belongs to S0,
hence X ◦ Y →S(T ) A •B, by two applications of (CUT). Q.E.D.

We are ready to prove main results of this section.

Theorem 1 If Φ is finite, then NL(Φ) is decidable in polynomial time.

Proof. Fix a finite set Φ. Let X → A be a sequent. Let n be the number
of logical constants and atoms in X → A. It is easy to show that the number of
subformulas of a formula B equals the number of logical constants and atoms
in B. Let T be the set of all subformulas of formulas appearing in X → A and
formulas appearing in Φ. We can construct T in time O(n2), and T has O(n2)
elements. By lemma 1, X → A is provable in NL(Φ) iff X →T A. By lemma 3,
X →T A iff X →S(T ) A. Since proofs in S(T ) are actually derivation trees of
a context-free grammar whose production rules are the reversed sequents from
ST , then X →S(T ) A can be checked in time pn3, where p is the size of ST .
ST can be constructed in O(n18) steps, and the size of ST is at most O(n6).
Accordingly, the total time equals O(n18). The same computation can be done
for variable Φ with n being the number of logical constants and atoms in X → A
and Φ. Q.E.D.

A categorial grammar , based on a system S, can be defined as a finite set of
assignments a→ A such that a ∈ Σ, Σ is an alphabet, and A is a formula. For
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a formula structure X, by s(X) we denote the string of formulas which arises
from X by dropping all occurrences of ◦ and the corresponding parentheses. For
a categorial grammar G and a formula A, the language L(G,A) consists of all
strings a1 . . . an, n ≥ 1, satisfying the following condition: there exist formulas
Ai, i = 1, . . . , n, and a formula structure X such that s(X) = A1 . . . An, all
ai → Ai belong to G, and X → A is provable in S.

Theorem 2 If G is a categorial grammar, based on NL(Φ), for a finite Φ, then,
for any formula A, L(G,A) is a context-free language.

Proof. We construct a context-free grammar for L(G,A) as in the proof
of theorem 1. Now, T is the set of all subformulas of A and all subformulas of
formulas appearing in G. We add lexical production rules A → a for a → A
belonging to G. Q.E.D.

Theorem 1 generalizes the result of [de Groote and Lamarche 2002] who
prove polynomial time complexity of the decision problem for NL. Theorem
2 generalizes the results of [Buszkowski 1986a, Kandulski 1988] that NL gen-
erates context-free languages. It, however, should be noticed that the latter
results were stronger: they established the equivalence of categorial grammars
based on NL and basic categorial grammars in the scope of phrase-structure
languages, which could not directly be obtained by the above method. On the
other hand, the methods of [Buszkowski 1986a, Kandulski 1988], using a nor-
malization procedure for derivations of unary sequents in NL, are not extendible
to axiomatic extensions of NL.

Since S(T ) is equivalent to NL(Φ) for T−sequents, then lemma 2 yields
an interpolation lemma for NL(Φ): if X[Y ] → A is derivable in NL(Φ), then
there exists D ∈ T such that both Y → D and X[D] → A are derivable in
NL(Φ), where T is the smallest set of formulas, containing all formulas appearing
in Φ and X → A and being closed under subformulas. For Φ = ∅, this is
essentially the interpolation lemma proven in Jäger [Jäger 2002] who uses a
standard induction on cut-free derivations in NL. This author observes that
theorem 2 for NL follows from this lemma: if X → A is derivable in NL, then
it can be derived from the basic sequents (in the sense defined above), provable
in NL, by means of (CUT), which can easily be simulated by a context-free
grammar. This grammar is effectively constructed, since the decision procedure
for NL, based on cut elimination, yields all basic sequents, provable in NL (of
course, cut elimination also guarantees the subformula property).

For the case of NL(Φ), cut elimination is not possible, hence we have proven
the subformula property in a different way (lemma 1). Now, with the subformula
property already proven, we could prove the interpolation lemma for NL(Φ) by
induction on proofs in NL(Φ) with (CUT). Then, as in [Jäger 2002], theorem 2
follows from the interpolation lemma, but the resulting context-free grammar is
not effectively constructed, since we have not provided any decision procedure
for NL(Φ). Therefore, we have gone a completely different way: we explicitly
construct all basic sequents (for a fixed T ), provable in NL(Φ), prove the in-
terpolation lemma for the auxiliary system S(T ), and prove the equivalence of
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S(T ) and NL(Φ) for T−systems. This yields both goals: a polynomial time
decision procedure for NL(Φ) and the equivalence with context-free grammars.

Theorems 1 and 2 can also be proven for systems NLP(Φ), with Φ finite.
We outline the proofs.

A residuated groupoid (M,≤, ·, \, /) is said to be commutative , if ab = ba,
for all a, b ∈ M (then, a\b = b/a, for all a, b ∈ M , so one may abandon one of
\, /). Clearly, all sequents provable in NLP(Φ) are true in all models (M, µ)
such thatM is a commutative residuated groupoid and all sequents from Φ are
true in the model.

We modify the proof of lemma 1. We add a new disjunct to the definition
of direct reducibility: Y = Z[Y ′, Y ′′] and X = Z[Y ′′, Y ′], for some Z, Y ′, Y ′′.
Then, C(M) is a commutative residuated groupoid. Let P1, P2 ∈ C(M). Let
X ∈ P1P2. By (M1), X ≤ Y ◦Z, for some Y ∈ P1, Z ∈ P2. But Y ◦Z ≤ Z ◦ Y ,
hence X ∈ P2P1, which yields P1P2 ⊆ P2P1. The converse inclusion can be
shown in a similar way. The remainder of the proof goes without change.

The construction of sets Sn needs one change: S′ is the smallest set of basic
sequents which contains S and is closed under (CUT) and (PER). The proof of
lemma 2 needs no change. In the proof of lemma 3, we must show that S(T )
is closed under (PER). Assume X[Y ◦ Z] →S(T ) A. By lemma 2, there exist
D′, D′′ ∈ T such that Y →S(T ) D

′, Z →S(T ) D
′′ and X[D′ ◦D′′]→S(T ) A. By

lemma 2 again, there exists D ∈ T such that D′ ◦D′′ →S(T ) D and X[D]→S(T )

A. Since D′ ◦D′′ → D belongs to ST , then also D′′ ◦D′ → D belongs to ST ,
and consequently, X[Z ◦ Y ]→S(T ) A, by three applications of (CUT).

Generalized Lambek Calculus (GLC) admits a finite number of product sym-
bols f , of arity n(f) ≥ 1, each of them giving rise to residuation symbols f/i,
for i = 1, . . . , n(f). Formulas are atoms and complex formulas f(A1, . . . , An(f)),
(f/i)(A1, . . . , An(f)). Formula structures are formed out of formulas (atomic
structures) by means of structure operations ◦f , of arity n(f), for every prod-
uct symbol f . The axioms of GLC are (Id), for every formula A, and the
inference rules are the following:

(fL)
X[◦f (A1, . . . , An(f))]→ B

X[f(A1, . . . , An(f))]→ B

(fR)
X1 → A1; . . . ;Xn(f) → An(f)

◦f (X1, . . . , Xn(f))→ f(A1, . . . , An(f))

(f/iL)
X[Ai]→ B; Y1 → A1, . . . ;Yn(f) → A(n(f)

X[◦f (Y1, . . . , (f/i)(A1, . . . , An(f)), . . . , Yn(f))]→ B

(f/iR)
◦f (A1, . . . , X, . . . , An(f))→ Ai

X → (f/i)(A1, . . . , An(f))

and (CUT). In rule (f/iL), premise Yi → Ai is dropped, and in the conclusion
the formula (f/i)(A1, . . . , An(f)) takes the place of the i−th argument of ◦f . In
rule (f/iR), X takes the place of the i−th argument of ◦f in the premise.

Actually, the cited papers regard the case n(f) ≥ 2 only, but all results
can easily be generalized to the case n(f) ≥ 1. For n(f) = 1, f and f/1 are
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precisely the minimal modalities diamond and box, studied in [Moortgat 1997,
Restall 2000]. Clearly, NL is GLC with exactly one product symbol f , n(f) = 2.

Frames for GLC are residuated algebras [Buszkowski 1989]. A residuated
algebra is a structure M = (M,≤, F ) such that (M,≤) is a poset, F is a set of
operations on M , and the following condition holds: for every f ∈ F , of arity
n(f), there exist n(f)−ary operations f/i on M , for i = 1, . . . , n(f), satisfying
the equivalence:

(GRES) f(a1, . . . , an(f)) ≤ b iff ai ≤ (f/i)(a1, . . . , b, . . . , an(f)),

for all i = 1, . . . , n(f), aj , b ∈ M . In (GRES), b takes the place of the i−th
argument of f/i. One easily shows that every residuated algebra satisfies:

(GMON) if ai ≤ bi, for i = 1, . . . , n, then f(a1, . . . , an) ≤ f(b1, . . . , bn),

for all f ∈ F with n(f) = n and aj , bj ∈ M . Models are defined as for the
case of NL with residuated algebras instead of residuated groupoids. One can
show that the sequents provable in GLC are precisely those which are true in
all residuated algebras.

GLC(Φ) can be defined in a similar way as NL(Φ). Theorems 1 and 2 can
easily be proven for GLC(Φ), Φ finite.

In the proof of lemma 1, we must consider preordered algebras, i.e. structures
(M,≤, F ) such that (M,F ) is an algebra and ≤ is a preordering on M , satisfying
(GMON), for all f ∈ F . The set C(M), of cones on (M,≤), can be supplied
with operations f and f/i, defined as follows:

(GM1) f(P1, . . . , Pn) = {a ∈M : (∃a1 ∈ P1, . . . an ∈ Pn) b ≤ f(a1, . . . , an)},

(GM2) (f/i)(P1, . . . , Pn) = {a ∈M : ∀ [aj ∈ Pj ] f(a1, . . . , a, . . . , an) ∈ Pi}.

In (GM2), [aj ∈ Pj ] is the list a1 ∈ P1, . . . , an ∈ Pn, with ai ∈ Pi omitted, and
a takes the place of the i−th argument of f . One easily shows that C(M) with
⊆ and the operations defined by (GM1) and (GM2) is a residuated algebra.

For a fixed set T , we construct a preordered algebra (M. ≤, F ) in the fol-
lowing way. M is the set of all formula structures whose atomic substructures
are in T . F consists of all operations ◦f admissible in GLC. X directly reduces
to Y if either X → B arises from Y → B (B is arbitrary) by some rule (f/iL)
with Yj →T Aj , for all j 6= i, or X → B arises from Y → B (B is arbitrary)
by some rule (fL). The remainder of the proof is essentially the same as in the
proof of lemma 1 except for obvious replacements of binary product symbols and
operations with n−ary product symbols and operations. Let us only consider
the proof of:

µ(A) = {X ∈M : X →T A}

for A = f(B), A ∈ T (so, nf = 1). Assume X ∈ µ(A). By (GM1), there exists
Y ∈ µ(B) such that X ≤ ◦f (Y ). By the induction hypothesis, Y →T B, hence
◦f (Y )→T f(B), by rule (fR). We obtain X ≤ A, and consequently, X →T A.
Assume X →T A. We have B ∈ µ(B), by the induction hypothesis, hence
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◦f (B) ∈ µ(A), by (GM1). Since A ≤ ◦f (B), by the definition of ≤, and X ≤ A,
then X ∈ µ(A).

In the construction of ST , conditions (R1), (R2) and (R3) must be replaced
with:

(GR1) if ◦f (A1, . . . , An) → A belongs to S and f(A1, . . . , An) ∈ T , then
f(A1, . . . , An)→ B belongs to S,

(GR2) if ◦f (A1, . . . , An)→ B belongs to S and (f/i)(A1, . . . , B, . . . , An) ∈ T ,
then Ai → (f/i)(A1, . . . , B, . . . , An) belongs to S;

in (GR2), B takes the place of the i−th argument of f/i. Further, basic sequents
are T−sequents of the form A→ B or ◦f (A1, . . . , An(f))→ B. S0 consists of all
basic sequents of the form (Id), all basic sequents from Φ, and all basic sequents:

◦f (A1, . . . , An(f))→ f(A1, . . . , An(f)),

◦f (A1, . . . , (f/i)(A1, . . . , An(f)), . . . , An(f))→ Ai.

In the latter, (f/i)(A1, . . . , An(f)) takes the place of the i−th argument of ◦f .
ST can be constructed in time polynomial with respect to the cardinality of

T . Now, lemmas 2 and 3 and theorems 1 and 2 can be proven by a straightfor-
ward modification of the proofs given above. Clearly, this also yields theorems
1 and 2 for Moortgat’s calculus NL with minimal modalities and its finite ax-
iomatic extensions (for the pure NL with minimal modalities, theorem 2 has
been proven in [Jäger 2002]). The same holds for GLC(Φ) enriched with the
permutation rule, for some product symbols f :

(GPER)
X[◦f (. . . , Y, . . . , Z, . . .)]→ A

X[◦f (. . . , Z, . . . , Y, . . .)]→ A

3 L with nonlogical axioms

Recall that L equals NL plus (ASS). It has been shown in [Buszkowski 1982] that
finite axiomatic extensions of L can generate arbitrary recursively enumerable
languages, if even nonlogical axioms are of the form p ◦ q → r and p/q → r
(then, the /−fragment of L is sufficient). For the full L, an analogous result can
be obtained in a more easy way. We give the proof.

A generative grammar is a quadruple G = (Σ, N, s, P, V ) such that Σ and N
are disjoint finite alphabets, s ∈ N , P is a finite set of production rules x → y
such that x, y ∈ N?, x 6= y, and V is a finite set of lexical rules a 7→ p such
that a ∈ Σ and p ∈ N . The relation x →? y is defined in the standard way
(only production rules are taken into account). The language of G, denoted by
L(G), is the set of all a1 . . . an, n ≥ 0, such that, for some lexical rules a1 7→
p1, . . . , an 7→ pn, we have s→? p1 . . . pn. The languages of generative grammars
are precisely the recursively enumerable languages (r.e. languages). Recall that
elements of Σ and N are called terminals and nonterminals, respectively.

11



The ε−free r.e. languages can be generated by generative grammars whose
production rules are of the form p → q, p → qr and pq → r, for p, q, r ∈ N ;
we call them binary grammars. This can be shown by a routine construction.
First, rules of the form x→ ε and ε→ x are replaced with x→ E and E → x,
respectively, where E is a new nonterminal; one also adds rules Ep→ p, pE → p,
p → Ep, p → pE, for any p ∈ N . Clearly, the new grammar is equivalent to
the initial one. Second, by introducing new nonterminals, every rule of the form
p → p1 . . . pn, n > 2, is replaced with a set of rules of the form q → q′q′′, and
every rule of the form p1 . . . pn → p, n > 2, is replaced with a set of rules of the
form q′q′′ → q. To generate r.e. languages with ε it is sufficient to admit lexical
rules of the form ε→ s.

L(Φ) is L with (CUT) and all sequents from Φ as nonlogical axioms. The
subformula property for L(Φ) can be proven by a modification of the proof of
lemma 1. A residuated semigroup is a residuated groupoid, satisfying: (ab)c =
a(bc), for all elements a, b, c. Sequents provable in L(Φ) are precisely those
which are true in all models (M, µ) such thatM is a residuated semigroup, and
all sequents from Φ are true in the model. Let T be a set of formulas which
contains all formulas from Φ and is closed under subformulas. M is defined
as in the proof of lemma 1. We define: X directly reduces to Y iff either X
directly reduces to Y in the sense of lemma 1, or X → B arises from Y → B (B
is arbitrary), by (ASS). Then, (M,≤, ◦) is a preordered groupoid, but C(M) is
a residuated semigroup. The remainder of the proof of lemma 1 goes without
change.

Let G = (Σ, N, s, P, V ) be a binary grammar. We construct a finite set Φ(G)
of nonlogical axioms, to be added to L. Symbols from N are identified with some
atomic formulas. Φ(G) contains all sequents q → p, for p → q belonging to P ,
q • r → p, for p→ qr belonging to P , and all r → p • q, for pq → r belonging to
P .

Lemma 4 For all p1, . . . , pn, p
′ ∈ N , p′ →? p1 . . . pn in the sense of G iff

p1 ◦ · · · ◦ pn → p′ is provable in L(Φ(G)).

Proof. Due to (ASS), we may omit parentheses in p1 ◦ · · · ◦ pn. The ‘only
if’ part is proven by induction on derivations in G. If n = 1 and p′ = p1,
then p′ → p′ is (Id). Assume p1 . . . pn arises by production rule p → q. Then,
pi = q and p1 . . . p . . . pn is derivable from p′. We use the induction hypothesis
and (CUT). Assume p1 . . . pn arises by production rule p → qr. Now, pi = q,
pi+1 = r, and p1 . . . pi−1ppi+2 . . . pn is derivable from p′. Since q • r → p is a
nonlogical axiom, and q ◦r → q •r is provable in L, then our thesis holds, by the
induction hypothesis and two applications of (CUT). Assume p1 . . . pn arises by
production rule pq → r. Now, pi = r and p1 . . . pi−1pqpi+1 . . . pn is derivable
from p′. Since r → p • q is a nonlogical axiom, then our thesis holds, by the
induction hypothesis, (•L) and (CUT).

Let T be the smallest set of formulas which contains all atoms from N and
all formulas from Φ(G) and is closed under subformulas. Clearly, T is finite,
and each formula from T has the form either p, or p • q, for p, q ∈ N . We define
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a string a(X) ∈ N?, for every formula structure X which consists of formulas
from T : a(p) = p, a(p • q) = a(p)a(q), a(X ◦ Y ) = a(X)a(Y ).

The ‘if’ part is a consequence of the following claim: ifX → A is a T−sequent
provable in L(Φ(G)), then a(A) →? a(X) in G. We use induction on proofs in
L(Φ(G)), consisting of T−sequents. If X → A is an axiom of L(Φ(G)), then the
thesis is obvious. The only inference rules to be considered are (•L), (•R) and
(CUT). Assume X → A arises by (•L). Then, X = X[p • q], and the premise
is X[p ◦ q] → A. By the induction hypothesis, a(A) →? a(X[p ◦ q]), hence
a(A)→? a(X[p • q]), since a(X[p ◦ q]) = a(X[p • q]). For (•R), we use the fact:
x→? y and x′ →? y′ entail xx′ →? yy′. For (CUT), we use the fact: x→? yzy′

and z →? z′ entail x→? yz′y′. Q.E.D.
Categorial grammars based on L(Φ) are defined as in section 2 with L(Φ)

replacing NL(Φ). We state the main result of this section.

Theorem 3 For any binary grammar G, there exists a categorial G′, based on
L(Φ(G)), such that L(G) = L(G′, s).

Proof. Consider the grammar G′, based on L(Φ(G)), whose lexical rules
are the same as the lexical rules of G. By lemma 4, L(G′, s) = L(G). Q.E.D.

As a consequence, we obtain the undecidability of L(Φ), for some finite Φ.
Here, Φ may consist of sequents of the form p→ q • r and p • q → r. The latter
sequents can be replaced with p ◦ q → r or p→ r/q, since both are deductively
equivalent to p • q → r in L. The former sequents, however, essentially involve
product. In [Buszkowski 1982], it has been shown that sequents p→ q•r can be
replaced with a finite number of product-free sequents of the form p′ → r′/q′ and
p′/q′ → r′; the new set of nonlogical axioms is not deductively equivalent to the
initial one, but it yields the same derivable sequents of the form p1 ◦ · · · pn → p.
We refer the reader to [Buszkowski 1982] for details.
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