
Lambek grammars based on pregroups

Wojciech Buszkowski
Faculty of Mathematics and Computer Science

Adam Mickiewicz University
Poznań Poland

e-mail: buszko@amu.edu.pl

Logical Aspects of Computational Linguistics, LNAI 2099: 95–109,
2001

Abstract

Lambek [13] introduces pregroups as a new framework for syntactic
structure. In this paper we prove some new theorems on pregroups and
study grammars based on the calculus of free pregroups. We prove that
these grammars are equivalent to context-free grammars. We also discuss
the relation of pregroups to the Lambek calculus.

1 Introduction and preliminaries

A pregroup is a structure G = (G,≤, ·, l, r, 1) such that (G,≤, ·, 1) is a partially
ordered monoid, and l, r are unary operations on G, satisfying the inequalities:

(PRE) ala ≤ 1 ≤ aal and aar ≤ ara,

for all a ∈ G. The elements al and ar are called the left adjoint and the right
adjoint , respectively, of a. Recall that a partially ordered monoid is a monoid
(i.e. a semigroup with unit), satisfying the monotony conditions with respect
to the partial ordering ≤: if a ≤ b, then ca ≤ cb and ac ≤ bc, for all elements
a, b, c.

The notion of a pregroup, introduced in Lambek [13], is related to the notion
of a residuated monoid, known from the theory of partially ordered algebraic
systems [8]. A residuated monoid is a structure G = (G,≤, ·, \, /, 1) such that
(G,≤, ·, 1) is a partially ordered monoid, and \, / are binary operations on G,
fulfilling the equivalences:

(RES) ab ≤ c iff b ≤ a\c iff a ≤ c/b,

for all a, b, c ∈ G. It suffices to assume that (G,≤) is a poset, and (G, ·, 1) is
a monoid, since the monotony conditions can be derived, using (RES). Residu-
ated monoids are most general algebraic frames for the Lambek calculus with

1



empty antecedents: the sequents provable in this calculus express precisely the
inequalities valid in all frames of that kind [4].

Now, in any pregroup one can define a\b = arb and a/b = abl, and the
defined operations satisfy (RES). Accordingly, every pregroup can be expanded
(by definitions) to a residuated monoid. Then, all sequents provable in the
Lambek calculus with empty antecedents are valid in all pregroups. As observed
by Lambek, the converse does not hold: (a·b)/c = a·(b/c) is true in all pregroups
but not all residuated monoids.

First examples of pregroups are partially ordered groups, i.e. structures of
the form (G,≤, ·, ()−1, 1) such that (G,≤, ·, 1) is a partially ordered monoid,
and ()−1 is a unary operation on G, satisfying a−1a = 1 = aa−1, for all a ∈ G.
In a partially ordered group one defines al = ar = a−1, and inequalities (PRE)
hold true. Conversely, if al = ar, for all a ∈ G, then one can define a−1 = al,
and the resulting structure is a partially ordered group. We say that a pregroup
G is proper, if it is not a group, that means, al 6= ar, for some a ∈ G. If · is
commutative (ab = ba, for all a, b), then the pregroup is not proper (in a group,
the converse element a−1 is uniquely determined by a). Consequently, proper
pregroups must be noncommutative.

Lambek [13] provides only one natural example of a proper pregroup. It
consists of all unbounded, monotone functions from the set of integers into
itself. For f(n) = 2n, one obtains f l(n) = [(n + 1)/2] and fr = [n/2], hence
f l 6= fr; here [x] denotes the greatest integer m ≤ x. This example will be
further discussed in section 2. This pregroup will be referred to as the Lambek
pregroup.

Lambek’s approach to syntactic structure is based on the notion of a free
pregroup, generated by a poset (P,≤). A precise definition of this notion will
be given in section 3. Roughly speaking, elements of P are treated as atomic
types in categorial grammars. For p ∈ P , one forms iterated adjoints pl...l,
pr...r. Types assigned to expressions are strings a1 . . . an such that a1, . . . , an

are atomic types or iterated adjoints. If A,B are types, then A ≤ B holds, if
this inequality can be derived by (PRE) and the presupposed ordering ≤ on P
together with antimonotony conditions: if A ≤ B, then Bl ≤ Al and Br ≤ Ar,
which are true in all pregroups.

Let us illustrate the matter by simple examples, after Lambek [13]. Atomic
types π1, π2, π3 are assigned to personal pronouns: π1 to I, π2 to you, we ,they,
π3 to he, she, it. Types s1 and s2 correspond to declarative sentences in the
present tense and in the past tense, respectively.

Types of conjugated verb forms are as follows: go - types πr
1s1 and πr

2s1,
goes - type πr

3s1, went - types πr
ks2, for k = 1, 2, 3. We obtain the following

parsing forms:

(1) he goes - π3(πr
3s1) ≤ s1,

(2) I slept - π1(πr
1s2) ≤ s2.

Type i is assigned to infinitives. The auxiliary verb do in conjugated forms
is given types πr

ksli
l, for k = 1, 2, 3 and l = 1, 2, which yields:

2



(3) he does go - π3(πr
3s1i

l)i ≤ s1.

Adverbs (quietly) are of type ili. Lambek proposes to analyse conjugated
forms of verbs as modifications of infinitives: goes as C31go, going as Partgo,
gone as Perfgo, where: Ckl = πr

ksli
l, Part= p1i

l, Perf= p2i
l. Then, p1 and p2

are types of present participle and past participle, respectively, since pli
li ≤ i,

for l = 1, 2. Conjugated forms of be can be given types πr
kslp

l
1, for k = 1, 2, 3,

l = 1, 2; so, am is of type πr
1s1p

l
1. We obtain:

(4) she goes quietly - π3(πr
3s1i

l)i(ili) ≤ s1,

(5) I was going quietly - π1(πr
1s2p

l
1)(p1i

l)i(ili) ≤ s2.

To account for transitive verbs Lambek introduces type o of objects (also
accusative forms of pronouns) and assigns types πr

kslo
l, for k = 1, 2, 3 and

l = 1, 2 to conjugated forms of transitive verbs.

(6) I saw you - π1(πr
1s2o

l)o ≤ s2.

Since plural forms of verbs are independent of Person, then one can introduce
a common type π of personal pronouns together with inequalities πk ≤ π, for
k = 1, 2, 3. Then, transitive verbs in past tense can be given a common type
πrs2o

l, and the latter example admits another parsing:

(7) I saw you - π1(πrs2o
l)o ≤ π(πrs2o

l)o ≤ s2.

Modal verbs are given types: πrs1j
l for may, can, will, shall and πrs2j

l for
might, could, would, should. Here, j is the type of infinitival intransitive verb
phrases, and one supposes i ≤ j.

(8) I may go - π1(πrs1j
l)i ≤ s1,

(9) I should have loved him - π1(πrs2j
l)(ipl

2)(p2o
l)o ≤ s2,

Lambek uses types q1, q2 for interrogatives in present tense and past tense,
respectively, and a common type q with postulates ql ≤ q.

(10) does he go? - (q1i
lπl

3)π3i ≤ q1.

Type q′ is a common type of interrogatives and wh-questions, and one stip-
ulates q ≤ q′.

(11) whom does he see? - (q′ollql
1)(q1i

lπl
3)π3(iol) ≤ q′.

The above examples may be enough to give the reader an idea of Lambek’s
approach. It is interesting to compare this method with the earlier one, based on
the Lambek calculus, introduced in Lambek [12]. First, we recall basic notions.

Syntactic types (shortly: types) are formed out of atomic types by means
of operation symbols · (product), \ (left residuation) and / (right residuation).
A,B, C will denote types and Γ,∆ finite (possibly empty) strings of types.

3



Sequents are of the form Γ ` A. The calculus L1 (the Lambek calculus with
empty antecedents) admits the following axioms and inference rules:

(Ax) A ` A,

(L·) Γ, A, B, Γ′ ` C

Γ, A ·B,Γ′ ` C
, (R·) Γ ` A; ∆ ` B

Γ,∆ ` A ·B
,

(L\) Γ, B,Γ′ ` C; ∆ ` A

Γ,∆, A\B,Γ′ ` C
, (R\) A,Γ ` B

Γ ` A\B
,

(L/)
Γ, A, Γ′ ` C; ∆ ` B

Γ, A/B,∆,Γ′ ` C
, (R/)

Γ, B ` A

Γ ` A/B
,

(CUT)
Γ, A, Γ′ ` B; ∆ ` A

Γ,∆,Γ′ ` B
.

The original calculus L (from [12]) results from restricting (R\) and (R/) to
nonempty Γ. L1 is a natural strengthening of the original calculus. As shown
by Abrusci [1], L1 is a conservative fragment of classical noncommutative linear
logics. Both calculi admit cut elimination, but (CUT) is necessary for axiomatic
extensions of these systems. In models, ` is interpreted by ≤, and ` A is true,
if 1 ≤ µ(A) (µ(A) is the element of the model which interprets type A).

Let R be a calculus of types. An R-grammar is a quadruple (V, I, s, R) such
that V is a nonempty, finite lexicon (alphabet), I is a mapping which assigns
a finite set of types to each word from V , and s is a distinguished atomic
type. Different calculi R determine different classes of categorial grammars.
L-grammars and L1-grammars are two kinds of Lambek categorial grammars.
Classical categorial grammars are based on the calculus AB, of Ajdukiewicz [2]
and Bar-Hillel [3], which admits product-free types only and can be axiomatized
by (Ax), (L\) and (L/). Then, AB is a subsystem of L. One says that the R-
grammar assigns type A to string v1 . . . vn, for vi ∈ V , if there exist types
Ai ∈ I(vi), for i = 1, . . . , n, such that sequent A1 . . . An ` A is provable in
R. The language of this grammar is defined as the set of all nonempty strings
on V which are assigned type s. As shown by Pentus [14], the languages of
L-grammars are precisely the context-free languages (not containing the empty
string), and the same is true for L1-grammars [6] and AB-grammars [3].

It has been observed by Kíslak [11] that parsing examples provided in Lam-
bek [13] can also be accomplished in L-grammars; precisely, in some cases one
must add to L postulates A ` B, for some atomic A,B. Actually, the types
assigned by Lambek are translations of syntactic types according to the rules:
A\B = ArB, A/B = ABl, using equalities (AB)l = BlAl and (AB)r = BrAr,
which are valid in pregroups (see section 2). For (1)-(11), we obtain the following
sequents, derivable in L ((1)-(10) are even derivable in AB!).

(1’) π3, π3\s1 ` s1,

(2’) π1, π1\s2 ` s2,

(3’) π3, (π3\s1)/i, i ` s1,

4



(4’) π3, (π3\s1)/i, i, i\i ` s1,

(5’) π1, (π1\s2)/p1, p1/i, i, i\i ` s2,

(6’) π1, (π1\s2)/o, o ` s2,

(7’) π1, (π\s2)/o, o ` s2 assuming π1 ` π,

(8’) π1, (π\s1)/j, i ` s1 assuming i ` j,

(9’) π1, (π\s2)/j, i/p2, p2/o, o ` s2 under assumptions from (7’), (8’),

(10’) (q1/i)/π3, π3, i ` q1,

(11’) q′/(q1/o), (q1/i)/π3, π3, i/o ` q′.

This observation might suggest that L1 is equivalent to the calculus of pre-
groups for sequents A1 . . . An ` A such that A1, . . . , An are product-free and
A is atomic. This conjecture is false. The sequent (p/((p/p)/p))/p ` p with p
atomic, is not provable in L1 (use cut-free derivations and the fact that ` p is
not provable), but its translation is pppplpl ≤ p, which is valid in pregroups. In
section 3, we show that the calculus of pregroups is equivalent to AB, hence also
to L and L1, for sequents A1, . . . , An ` A such that A1, . . . , An are product-free
types of order not greater than 1 and A is atomic. Recall that the order of a
product-free type A (o(A)) is defined as follows: (i) o(A) = 0, for atomic A,
(ii) o(A/B) = o(B\A) =max(o(A), o(B) + 1) (see [7]). Sequents (1’)-(10’) are
of that form, whereas in (11’) the left-most type is of order 2. Yet, the latter
sequent is provable in L. This leads us to the open question: are there any
‘linguistic constructions’ which can be parsed by means of pregroups but not
the Lambek calculus? In other words: do any syntactic structures in natural
language require types of order greater than 1 such that the resulting sequents
are valid in pregroups but not provable in L1? Evidently, this problem cannot
be solved by purely mathematical methods.

We briefly describe further contents. In section 2, we prove some theorems
on pregroups. In partcular, we prove: (i) no fully ordered pregroup is proper,
(ii) no finite pregroup is proper, (iii) every pregroup of all unbounded, mono-
tone functions on a fully ordered set (P,≤), P infinite, is isomorphic to the
Lambek pregroup. In section 3, we define grammars based on the calculus of
free pregroups and prove that the languages of these grammars are precisely the
context-free languages. It is worthy of noticing that this proof is easier than the
proofs of analogous theorems for L and L1 as well as the nonassociative Lam-
bek calculus [5, 10]. In general, pregroups are definitely easier to handle than
residuated semigroups and monoids; on the other hand, the latter are abundant
in natural linguistic frames, which is not the case for the former.

2 Pregroups

The aim of this section is to throw more light on the notion of a pregroup by
establishing some basic properties of these structures. We are motivated by

5



Lambek’s confession that he does not know any ‘natural model’ except for the
pregroup of unbounded, monotone functions on the set of integers (and p.o.
groups, of course). Our results can help to understand the reasons.

The following conditions are valid in pregroups:

1l = 1 = 1r, alr = a = arl, (ab)l = blal, (ab)r = brar,

aala = a, aara = a, if a ≤ b then bl ≤ al and br ≤ ar.

Proofs are elementary. We consider one case. By (PRE),

a ≤ alrala ≤ alr and alr ≤ aalalr ≤ a,

which yields alr = a. One can also use:

Proposition 1 In any partially ordered monoid, for every element a, there
exists at most one element b such that ba ≤ 1 ≤ ab, and there exists at most
one element c such that ac ≤ 1 ≤ ca.

Proof. If ba ≤ 1 ≤ ab and b′a ≤ 1 ≤ ab′, then b ≤ bab′ ≤ b′ and
b′ ≤ b′ab ≤ b, hence b = b′. �

Let (P,≤) be a poset. A function f : P 7→ P is said to be monotone, if x ≤ y
entails f(x) ≤ f(y). For functions f, g, one defines (f ◦ g)(x) = f(g(x)), and
f ≤ g iff, for all x ∈ P , f(x) ≤ g(x). I denotes the identity function: I(x) = x.
The set M(P ), of all monotone functions from P into P with ≤, ◦ and I is a
p.o. monoid. A pregroup is called a pregroup of functions, if it is a substructure
(as a p.o. monoid) of the p.o. monoid M(P ), for some poset (P,≤).

Proposition 2 Every pregroup is isomorphic to a pregroup of functions.

Proof. Let (G,≤, ·, l, r, 1) be a pregroup. We consider the poset (G,≤).
For a ∈ G, we define fa(x) = ax. Clearly, fa is a monotone functions from
G into G. Further, fab = fa ◦ fb, f1 = I, and a ≤ b iff fa ≤ fb. Then, the
mapping h(a) = fa is an isomorphic embedding of (G,≤, ·, 1) into M(G). We
define adjoints: f l

a = fal and fr
a = far . Then, (PRE) hold, and h is the required

isomorphism. �

Proposition 3 Let F be a pregroup of functions on a poset (P,≤). For every
f ∈ F , the following equalities are true:

f l(x) = min{y ∈ P : x ≤ f(y)}, for all x ∈ P,

fr(x) = max{y ∈ P : f(y) ≤ x}, for all x ∈ P.

Proof. Since f l(f(x)) ≤ x ≤ f(f l(x)), for all x, then f l(x) belongs to the
set of all y such that x ≤ f(y). Let z also belong to this set. Then, x ≤ f(z),
and consequently, f l(x) ≤ f l(f(z)) ≤ z. This proves the first equality. The
second one is dual. �

Conversely, if F is a substructure of M(P ), and for every f ∈ F , the functions
f l, fr, defined above, exist and belong to F , then F is a pregroup of functions.
For f l(f(x)) =min{y : f(x) ≤ f(y)} ≤ x and x ≤ f(f l(x)). The second part of
(PRE) can be proved in a similar way.

6



Corollary 1 If F is a pregroup of functions on a poset (P,≤), then all functions
in F are unbounded, that means, ∀x∃y(x ≤ f(y)) and ∀x∃y(f(y) ≤ x).

Proof. The sets om the right hand side of equalities from proposition 3
must be nonempty. �

Accordingly, pregroups of functions must consist of unbounded, monotone
functions on a poset. The Lambek pregroup FL consists of all unbounded,
monotone functions on (Z,≤), where (Z,≤) is the set of integers with the natural
ordering. Since the composition of two unbounded functions is unbounded, then
the Lambek pregroup is a substructure of M(Z), hence it is a p.o. monoid.
For every f ∈ FL, functions f l, fr, defined (!) as in proposition 3, exist and
are monotone. We show that f l is unbounded. Since f l(f(x)) ≤ x, then f l

is unbounded in the negative direction. If f l were bounded in the positive
direction, then f ◦ f l would also be bounded, against x ≤ f(f l(x)). For fr,
the reasoning is dual. Consequently, f l, fr ∈ FL, hence FL is a pregroup. For
f(x) = 2x, one obtains:

f l(x) = min{y : x ≤ 2y} = [(x + 1)/2], fr(x) = max{y : 2y ≤ x} = [x/2],

which yields f l 6= fr. Thus, the Lambek pregroup is proper.

Lemma 1 Let F be a pregroup of functions on a poset (P,≤), and let a be the
first or the last element of (P,≤). Then, for all f ∈ F and x ∈ P , f(x) = a iff
x = a.

Proof. We only consider the case a be the first element. Let f ∈ F . Since
f is unbounded, then f(y) = a, for some y ∈ P , and consequently, f(a) = a, by
monotony. Assume f(x) = a. Then, fr(a) ≥ x, by proposition 3, hence x = a
due to the fact fr(a) = a. �

We prove that the Lambek pregroup is (up to isomorphism) the only pre-
group of all unbounded, monotone functions on an infinite, fully ordered set.

Theorem 1 Let (P,≤) be a fully ordered set of cardinality greater than 2 such
that the family of all unbounded, monotone functions on (P,≤) is a pregroup.
Then, (P,≤) is isomorphic to (Z,≤).

Proof. First, we show that (P,≤) has no endpoints. Suppose a be the first
element of (P,≤). By the cardinality assumption, there exist b, c ∈ P such that
a < b < c. We define f(x) = a, for all x ≤ b, f(x) = x, for all x > b. Clearly, f
is monotone and unbounded, which contradicts lemma 1, since f(b) = a, b 6= a.
If a is the last element, the reasoning is similar.

Consequently, P is infinite. It suffices to show that, for all a, b ∈ P , if a < b,
then {x ∈ P : a < x < b} is a finite set. Suppose this set be infinite, for some
a < b. We consider two cases.

(I) {x : a < x < b} is well-ordered by ≤. Then, there exists an infinite
chain (xn) such that a < xn < b and xn < xn+1, for all n ≥ 0. We define a
function f : P 7→ P by setting: f(x) = x, if x < a or x > xn, for all n ≥ 0,

7



and f(x) = a, otherwise. Clearly, f is unbounded and monotone. On the other
hand, {y : f(y) ≤ a} is cofinal with (xn), hence it contains no maximal element.
Then, fr(a) does not exist, which contradicts the assumptions of the theorem.

(II) {x : a < x < b} is not well-ordered by ≤. Then, there exists an infinite
chain (xn) such that a < xn < b and xn+1 < xn, for all n ≥ 0. We define
a function f : P 7→ P , by setting: f(x) = x, if x > b or x < xn, for all
n ≥ 0, and f(x) = b, otherwise. Again, f is unbounded and monotone. The set
{y : b ≤ f(y)} is cofinal with (xn), hence it contains no minimal element. Then,
f l(b) does not exist. �

Pregroups are closed under direct products. Thus, from the Lambek pre-
group one can construct other proper pregroups. The simplest one is FL × FL.
It is easy to see that FL×FL is isomorphic to the following pregroup of functions
on a fully ordered set. This set is the union Z1 ∪Z2 of two copies of Z with the
natural ordering on Z1 and Z2 and, additionally, x < y, for all x ∈ Z1, y ∈ Z2.
FL × FL can be represented as the family of all functions on this poset whose
restrictions to Zi are unbounded and monotone mappings on Zi, for i = 1, 2.
Clearly, this new pregroup consists of some but not all unbounded, monotone
mappings from Z1 ∪ Z2 into itself. Other interesting pregroups are countable
substructures of the Lambek pregroup (not considered here).

Lemma 2 For every element a of a pregroup, the following conditions are equiv-
alent: (i) al ≤ ar, (ii) aal = 1, (iii) aar = 1.

Lemma 3 For every element a of a pregroup, the following conditions are equiv-
alent: (i) ar ≤ al, (ii) ala = 1, (iii) ara = 1.

Proof. We only prove lemma 2. Assume (i). Then, 1 ≤ aal ≤ aar ≤ 1,
hence (ii) and (iii) hold. Assume (ii). Then, ar = araal ≥ al, hence (i) holds.
(iii) entails (i), by a similar argument. �

An element a fulfilling conditions of lemma 2 (resp. lemma 3) is called
surjective (resp. injective; it is called bijective, if al = ar. In pregroups of
functions, f is surjective (resp. injective) in the sense of pregroups iff f is
surjective (resp. injective) as a mapping. For assume f ◦ f l = I. Then, f ◦ f l

is a surjective mapping, hence f must be a surjective mapping. Assume f be
a surjective mapping. Then, f ◦ f l ◦ f = f yields (f ◦ f l)(f(x)) = f(x), for all
x, and consequently, f ◦ f l = I. The second claim is proved in a similar way.
Consequently, a pregroup of functions is proper iff not all functions in it are
bijective mappings. We have got another evidence that the Lambek pregroup
is proper.

Using the above observations and proposition 2, one obtains the following
facts, true for every pregroup: (1) if ab is injective, then b is injective, (2) if ab
is surjective, then a is surjective, (3) if a is injective (resp. surjective), then al

and ar are surjective (resp. injective).

Lemma 4 If every element of a pregroup is injective or surjective, then every
element of this pregroup is bijective.

8



Proof. Assume the antecedent. Suppose a be not injective. Then, ala is
not injective, by (1), hence ala is surjective, and consequently, al is surjective,
by (2). Then, a is injective, by (3). Accordingly, all elements are injective. By
(3), all elements are surjective. �

Theorem 2 No fully ordered pregroup is proper.

Proof. In a fully ordered pregroup, al ≤ ar or ar ≤ al, for all elements a.
Use lemma 4. �

Theorem 3 No finite pregroup is proper.

Proof. We prove more: if (G,≤, ·, l, r, 1) is a finite pregroup, then ≤ is the
identity relation, and consequently, this pregroup must be a group. It is known
that there are no finite p.o. groups with a nontrivial ordering [8], but the proof
for pregroups is different.

In pregroups, aarb ≤ b and bara ≥ b. Consequently, for all a, b, there exist
x, y such that ax ≤ b and ya ≥ b. Now, let a be a minimal and b be a maximal
element of (G,≤). There exists x such that bx ≤ a, hence there exists a minimal
element x such that bx = a. Let x1, . . . , xn be all minimal elements. Then, the
set {bx1, . . . , bxn} must contain all elements x1, . . . , xn, hence this set equals
{x1, . . . , xn}. As a consequence, bx is minimal, for every minimal element x. A
dual argument yields: if x is minimal, and y is maximal, then yx is maximal.
Since b is maximal, then all elements bxi are maximal. Accordingly, all minimal
elements are maximal, which proves the theorem. �

At the end, we show that there exist no proper pregroups of functions on the
set of real numbers or the set of rational numbers. First, we observe that every
pregroup of functions on a fully ordered set must consist of continuous functions
only. The function f : P 7→ P is continuous, if it satisfies the conditions: (i)
if x =sup{y : y < x}, then f(x) =sup{f(y) : y < x}, (ii) if x =inf{y : y > x},
then f(x) =inf{f(y) : y > x}. Assume f be not continuous. Let x ∈ P does not
fulfil (i). Since f is monotone, then f(x) is an upper bound of {f(y) : y < x}.
Since f(x) is not the least upper bound, then there exists another upper bound
z < f(x). Yet, fr(z) =max{y : f(y) ≤ z} =max{y : y < x} does not exist. If x
does not fulfil (ii), the resoning is similar.

Let (P,≤) be a dense, fully ordered set. Let F be a pregroup of functions on
(P,≤). We show that all functions in F are injective; so, they are also bijective,
by lemma 4. Suppose f ∈ F be not injective. Then, there are x, y ∈ P such
that x < y and f(x) = f(y). Set a = f(x). By lemma 1, a is not an endpoint
of P . Since P is dense, a =sup{z : z < a}. We have fr(a) ≥ y, but fr(z) < x,
for all z < a. Consequently, fr is not continuous, which contradicts the above
paragraph.

3 Free pregroups and grammars

For any element a of a pregroup, one defines an element a(n), for n ∈ Z: a(0) = a,
a(n+1) = (an)r, for n ≥ 0, a(n−1) = (a(n))l, for n ≤ 0. Then, the equalities

9



a(n+1) = (a(n))r and a(n−1) = (an)l hold true, for all n ∈ Z. As a consequence
of (PRE) and antimonotony conditions, we obtain:

a(n)a(n+1) ≤ 1 ≤ a(n+1)a(n), for all n ∈ Z.

if a ≤ b then a(2n) ≤ b(2n) and b(2n+1) ≤ a(2n+1), for all n ∈ Z.

This motivates the construction of a free pregroup, due to Lambek [13]. Let
(P,≤) be a poset. Elements of P are treated as constant symbols. Terms are
expressions a(n), for a ∈ P , n ∈ Z; a(0) is identified with a. Types are finite
strings of terms.

Quasi-pregroups are defined as pregroups except that ≤ need not be anti-
symmetrical, that means, ≤ is a quasi-ordering. If ≤ is a quasi-ordering on X,
then one defines x ∼ y iff x ≤ y and y ≤ x, for x, y ∈ X. Then, ∼ is an equiva-
lence relation, and the quotient relation [x] ≤ [y] iff x ≤ y is a partial ordering
on the quotient set X/ ∼. If (G,≤, ·, l, r, 1) is a quasi-pregroup, then ∼ is a
congruence on this structure (use monotony conditions for · and antimonotony
conditions for l, r). We can construct the quotient-structure on G/ ∼, by set-
ting: [x] · [y] = [xy], [x]l = [xl], [x]r = [xr], for x ∈ G. The quotien-structure is
a pregroup whose unit element equals [1].

First, we define a quasi-pregroup whose elements are types. For types x, y,
x · y is the concatenation of strings x, y, and 1 is the empty string. The adjoints
are defined as follows:

(a(n1)
1 . . . a

(nk)
k )l = a

(nk−1)
k . . . a

(n1−1)
1 , (a(n1)

1 . . . a
(nk)
k )r = a

(nk+1)
k . . . a

(n1+1)
1 ,

The quasi-ordering≤ is the reflexive and transitive closure of the relation defined
by the following clauses:

(CON) xa(n)a(n+1)y ≤ xy (contraction),

(EXP) xy ≤ xa(n+1)a(n)y (expansion),

(IND) xa(2n)y ≤ xb(2n)y and xb(2n+1)y ≤ xa(2n+1)y if a ≤ b in P (induced
steps),

for all types x, y, n ∈ Z, and a, b ∈ P ,
It is easy to check that this structure is a quasi-pregroup. It is not a pregroup,

since aa(1)a ∼ a but aa(1)a 6= a. The quotient-structure, defined as above, is
a pregroup. It is called the free pregroup generated by (P,≤) and denoted
F ((P,≤)) or F (P ), for short.

In what follows, we are mainly concerned with inequalities x ≤ y which hold
in the quasi-pregroup underlying F (P ). Following Lambek, we distniguish two
special cases:

(GCON) xa(n)b(n+1)y ≤ xy if either n is even and a ≤ b in P , or n is odd and
b ≤ a in P (generalized contraction),

(GEXP) xy ≤ xa(n+1)b(n)y if either n is even and a ≤ b in P , or n is odd and
b ≤ a in P (generalized expansion).

10



Clearly, (GCON) can be obtained as (IND) followed by (CON), and (GEXP)
as (EXP) followed by (IND). Clearly, (CON) and (EXP) are special cases of
(GCON) and (GEXP), respectively. Thus, if x ≤ y in the quasi-pregroup, then
there exists a derivation x = x0 ≤ x1 ≤ . . . ≤ xm = y, m ≥ 0 such that
xk ≤ xk+1 is (GEXP), (GCON) or (IND), for all 0 ≤ k < m. The number m is
called the length of this derivation.

Lemma 5 (Lambek switching lemma) If x ≤ y has a derivation of length m,
then there exist types z, z′ such that x ≤ z by generalized contractions or x = z,
z ≤ z′ by induced steps or z = z′, and z′ ≤ y by generalized expansions or
z′ = y, and the sum of lengths of these three derivations is not greater than m.

The key observation is that two adjacent steps of the form (IND)-(GCON)
or (GEXP)-(IND) can be interchanged, if the relevant terms do not overlap, and
reduced to a single (GCON) or (GEXP), otherwise; also, two adjacent steps of
the form (GEXP)-(GCON) can be interchanged, if the relevant terms do not
overlap, and reduced to a single induced step, otherwise. Let us demonstrate
the latter reduction. There are two possibilities.

(I) va(n)w ≤ va(n)b(n+1)c(n)w ≤ vc(n)w, by (GEXP) and (GCON). Assume
n be even. Then, b ≤ c and a ≤ b, which yields a ≤ c. Clearly, va(n)w ≤ vc(n)w
is an induced step. Assume n be odd. Then, c ≤ b and b ≤ a, which yields
c ≤ a. Again, these two steps can be reduced to a single induced step.

(II) vc(n+1)w ≤ va(n+1)b(n)c(n+1)w ≤ va(n+1)w, by (GEXP) and (GCON).
Assume n be even. Then, a ≤ b and b ≤ c, hence a ≤ c, and we reason as above.
Assume n be odd. Then, b ≤ a and c ≤ b, hence c ≤ a, and we reason as above.

Now, the lemma can easily be proved by induction on m. In the initial
derivation of length m one moves all generalized contractions to the left. If the
move is blocked, then the derivation can be replaced by a shorter one, and we
apply the induction hypothesis. Next, one moves all generalized expansions to
the right.

It follows from the lemma that if x ≤ t holds in the quasi-pregroup, and t
is a term, then there is a derivation of x ≤ t which does not apply (GEXP).
Consequently, inequalities x ≤ t can be derived by (CON) and (IND) only.

Let (P,≤) be a finite poset. A pregroup grammar based on this poset is
defined as a triple (V, I, s) such that V is a finite lexicon (alphabet), I is a
mapping which assigns a finite set of types (in the sense of this section) to
every v ∈ V , and s ∈ P . We say that this grammar assigns a type x to
a string v1 . . . vn, vi ∈ V , if there exist types xi ∈ I(vi), i = 1, . . . , n, such
that x1 . . . xn ≤ x in the quasi-pregroup underlying F (P ). The language of
this grammar consists of all nonempty strings on V which are assigned type s.
Evidently, these notions are analogous to basic notions for categorial grammars
(see section 1).

As a consequence of lemma 5, we show that the language of each pregroup
grammar must be a context-free language. Fix a pregroup grammar (V, I, s)
based on a finite poset (P,≤). Let X denote the set of all terms appearing in

11



types assigned by I to words from V . We define:

p = max{n ≥ 0 : (∃a ∈ P )(a(n) ∈ X ∨ a(−n) ∈ X)}.

By N we denote the set of all terms a(n) such that a ∈ P and −p ≤ n ≤ p.
We show that the set L of all types t1 . . . tn such that n > 0, ti ∈ N , for
i = 1, . . . , n, and t1 . . . tn ≤ s in the quasi-pregroup underlying F (P ) is a
context-free language. The context-free grammar which generates L is defined
as follows. Both terminal and nonterminal symbols are all terms from N . By
lemma 5, t1 . . . tn ≤ s iff it can be derived by (CON) and (IND) only. Clearly, if
t1, . . . , tn ∈ N , then all terms in such a derivation are elements of N . Accord-
ingly, production rules of the context-free grammar are of the following form:
(i) all rules t → tuv such that t, u, v ∈ N and tuv ≤ t is a contraction, (ii) all
rules t → uvt such that t, u, v ∈ N and uvt ≤ t is a contraction, (iii) all rules
t → u such that t, u ∈ N and u ≤ t is an induced step.

For any v ∈ V and any x ∈ I(v), we create a new symbol vx. Let V ′ denote
the set of all new symbols. We define a homomorphism f from V ′ into the set
of types, by setting: f(vx) = x. The coimage of L under f is the set:

f−1[L] = {v1
x1

. . . vn
xn

: n > 0, x1 . . . xn ∈ L}.

Since context-free languages are closed under homomorphic coimages [9], then
f−1[L] is a context-free language. We define a homomorphism g from V ′ into
the set of strings on V , by setting: g(vx) = v. Clearly, the language of the
pregroup grammar (V, I, s) equals g[f−1[L]]. Since context-free languages are
also closed under homomorphic images, then the latter language is context-free.

We also prove the converse: every context-free language, not containing the
empty string, is the language of some pregroup grammar. We use the classical
theorem of Gaifman [3]: every context-free language, not containing the empty
string, is the language of an AB-grammar whose mapping I uses types of the
form p, p/q, (p/q)/r only, where p, q, r are atomic types. These types are of
order not greater than 1.

Lemma 6 Let A1, . . . , An ` p be a sequent such that p is atomic, and o(Ai) ≤ 1,
for all 1 ≤ i ≤ n. Then, this sequent is derivable in AB iff it is derivable in
L1.

Proof. One direction is straightforward, since AB is a subsystem of L1.
We prove the converse direction. Assume the sequent is derivable in L1. Then,
it has a cut-free derivation in L1. By induction on the height of this derivation,
we show that it is derivable in AB. If it is the axiom p ` p, the thesis is
true. Otherwise, it must be a conclusion of (L\) or (L/). In both cases, the
premises are sequents Γ ` q such that q is atomic and all types in Γ are of
order not greater than 1; Γ cannot be empty, since ` q has no derivation. By
the induction hypothesis, both premises are derivable in AB. Since AB admits
(L\) and (L/), then the conclusion is derivable in AB. �

For every product-free type A, we define a pregroup type T (A), by the
following recursion: T (p) = p, T (A\B) = T (A)rT (B), T (A/B) = T (A)T (B)l.
Here, we identify atomic types with memebers of P .

12



Lemma 7 Under the assumptions of lemma 6, A1 . . . An ` p is derivable in
AB iff T (A1) . . . T (An) ≤ p has a derivation in the sense of free pregroups, by
contractions only.

Proof. It is well know that Γ ` p is derivable in AB iff Γ can be reduced to
p by a finite number of Ajdukiewicz contractions A,A\B → B and A/B,B →
A. By (CON), we derive T (A)T (A\B) ≤ T (B) and T (A/B)T (B) ≤ T (A).
Consequently, the implication (⇒) holds true.

The converse implication is proved by induction on n. Let n = 1. Assume
T (A1) ≤ p be derivable in free pregroups by contractions. It is easy to see that,
if o(A) ≤ 1, then T (A) is of the form qr

k . . . qr
1prl

1 . . . rl
m, for k, m ≥ 0 and p, qi, rj

atomic. Clearly, no contraction can be executed within T (A). So, T (A1) ≤ p
must be the trivial case T (A1) = A1 = p, and p ` p is derivable in AB. Let n >
0. Assume T (A1) . . . T (An) ≤ p be derivable in free pregroups by contractions.
Consider the first contraction. By the above observation, this contraction cannot
be executed within some T (Ai). So, for some 0 ≤ i < n, the relevent terms must
be the right-most term of T (Ai) and the left-most term of T (Ai+1). Assume
this contraction is rlr ≤ 1. Then, T (Ai) = qr

k . . . qr
1prl

1 . . . rl
mrl and T (Ai+1) =

rsl
1 . . . sl

j . We can represent Ai and Ai+1 as:

Ai = qk\ · · · \q1\p/r1/ · · · /rm/r,

Ai+1 = r/s1/ · · · /sj .

In Ai+1 parentheses are associated to the left, and in Ai they are associated to
the middle p in any way, since the laws:

(A\B)/C ` A\(B/C), A\(B/C) ` (A\B)/C

are derivable in L1. We construct the type:

B = qk\ · · · \q1\p/r1/ · · · /rm/s1/ · · · /sj .

Now, T (B) results from T (Ai)T (Ai+1) by the contraction, and AiAi+1 ` B is
derivable in L1. The inequality:

T (A1) . . . T (Ai−1)T (B)T (Ai+2) . . . T (An) ≤ p

is derivable by contractions in free pregroups, hence the sequent:

A1 . . . Ai−1, B, Ai+2 . . . An ` p

is derivable in AB, by the induction hypothesis. Consequently, the sequent
A1 . . . An ` p (i.e. our starting sequent) is derivable in L1, hence also in AB,
by lemma 6. If the first contraction is qqr ≤ 1, then the reasoning is similar. �

Let L be a context-free language, not containing the empty string. By
Gaifman theorem, there is an AB-grammar (V, I, s), using types of order not
greater than 1, which generates this language. We consider the poset (P,=) such
that P is the set of atomic types used by this grammar. We define a pregroup

13



grammar (V, I ′, s) based on this poset, by setting I ′(v) = {T (A) : A ∈ I(v)}.
Now, v1 . . . vn ∈ L iff there exist types Ai ∈ I(vi), for i = 1, . . . , n, such that
A1 . . . An ` s is derivable in AB iff there exist pregroup types T (Ai) ∈ I ′(vi)
such that T (A1) . . . T (An) ≤ s in free pregroups (lemmas 5, 7) iff v1 . . . vn

belongs to the language of (V, I ′, s). Consequently, L equals the language of the
pregroup grammar. We have proved the following theorem.

Theorem 4 The languages of pregroup grammars are precisely the context-free
languages, not containing the empty string.

References

[1] V.M. Abrusci, Lambek Calculus, Cyclic Multiplicative-Additive Linear
Logic, Noncommutative Multiplicative-Additive Linear Logic: language
and sequent calculus, in: V.M. Abrusci and C. Casadio (eds.), Proofs and
Linguistic Categories, Proc. 1996 Roma Workshop, Bologna, 1996, 21-48.

[2] K. Ajdukiewicz, Die syntaktische Konnexität, Studia Philosophica 1 (1935),
1-27.

[3] Y. Bar-Hillel, C. Gaifman and E. Shamir, On categorial and phrase struc-
ture grammars, Bull. Res. Council Israel F 9 (1960), 155-166.

[4] W. Buszkowski, Completeness results for Lambek Syntactic Calculus,
Zeitschrift für mathematische Logik und Grundlagen der Mathematik 32
(1986), 13-28.

[5] W. Buszkowski, Generative capacity of nonassociative Lambek calculus,
Bull. Polish Academy Scie. Math. 34 (1986), 507-516.

[6] W. Buszkowski, Extending Lambek grammars to basic categorial gram-
mars, Journal of Logic, Language and Information 5 (1996), 279-295.

[7] W. Buszkowski, Mathematical linguistics and proof theory, in: J. van Ben-
them and A. ter Meulen (eds.), Handbook of Logic and Language, Elsevier,
Amsterdam, MIT Press, Cambridge Mass., 1997, 683-736.

[8] L. Fuchs, Partially Ordered Algebraic Systems, Pergamon Press, Oxford,
1963.

[9] S. Ginsburg, The Mathematical Theory of Context-Free Languages,
McGraw-Hill, New York, 1966.

[10] M. Kandulski, The equivalence of nonassociative Lambek categorial gram-
mars and context-free grammars, Zeitschrift für mathematische Logik und
Grundlagen der Mathematik 34 (1988), 41-52.

[11] A. Kíslak, Parsing based on pregroups. Comments on the new Lambek
theory of syntactic structure, to appear.

14



[12] J. Lambek, The mathematics of sentence structure, American Mathematical
Monthly 65 (1958), 154-170.

[13] J. Lambek, Type grammars revisited, in: A. Lecomte, F. Lamarche and G.
Perrier (eds.), Logical Aspects of Computational Linguistics, LNAI 1582,
Springer, Berlin, 1999, 1-27.

[14] M. Pentus, Lambek grammars are context-free. Prepublication Series:
Mathematical Logic and Theoretical Computer Science 8, Steklov Math-
ematical Institute, Moscow, 1992.

15


