
Categorial Grammars and Their Logics

Wojciech Buszkowski
Adam Mickiewicz University in Poznań

Published in: A. Garrido and U. Wybraniec-Skardowska (eds.), The Lvov-
Warsaw School. Past and Present. Studies in Universal Logic, Birkhäuser, 2018,
pp. 91–115.

Abstract

This paper surveys the development of categorial grammars (also called
type grammars) with emphasis on type logics (i.e. logical calculi under-
lying these grammars) and their relation to the origin in Ajdukiewicz [4].

1 Introduction

In the modern literature Kazimierz Ajdukiewicz is commonly accepted as the
father of categorial grammars: formal grammars assigning logical types to ex-
pressions. His seminal paper [4] provided a clear idea of these grammars.
Ajdukiewicz acknowledged an impact of E. Husserl and S. Leśniewski. From
Husserl [31] he took the idea of semantical categories which can be defined in
terms of mutual substitution of expressions in meaningful or sentential contexts.
From Leśniewski he took a classification of categories in basic categories and
functor categories. Here I cannot cite any single publication of S. Leśniewski,
since in his works he never wrote a longer passage on this matter. Ajdukiewicz
and other authors cite [45], but this paper on new foundations of mathematics
merely contains short notes on ‘the theory of semantical categories’; different
logical symbols are characterized as functors of a particular category (no special
symbols for categories are introduced). It seems that more elaborated consid-
erations only appeared in Leśniewski’s oral lectures.

Ajdukiewicz introduced a system of indices for categories. This system is
employed in his procedure for verifying the ‘syntactic connexion’ of expres-
sions. In [4] he writes: “We shall base our work here on the relevant results of
Leśniewski, adding on our part a symbolism, in principle applicable to almost
all languages [and enabling us to build a calculus], which makes it possible to
formally define and examine the syntactic connexion of a word pattern.”1 (The
passage in brackets has been omitted in the English translation in [6]; I add it,
since the word ‘calculus’ is quite important.) In fact, the indices for categories

1All citations from Ajdukiewicz are based on the English translations of Ajdukiewicz’s
original papers, collected in [6].

1

were introduced in Ajdukiewicz’s earlier paper [3], where they were used in a
semantical analysis of the problem of universals.

Let me briefly comment on terminology. The indices for categories will be
called types, according to modern standards in logic. Categories can be un-
derstood as some sets of expressions or sets of ontological objects (having a
common type). Although Leśniewski and Ajdukiewicz use the term ‘semantical
category’ (after Husserl), the term ‘syntactic(al) category’ is more appropriate.
This was noticed by Ajdukiewicz [5]: “The concept of semantical categories must
be clearly distinguished from the concept of syntactical categories. The term
‘semantical category’ was introduced for the first time by Husserl; however, the
concept he associated with it would correspond better to the term ‘syntactical
category’. For Husserl pointed out that the expressions of a language may be
classified according to the role they can play within a sentence. He defined,
therefore, the categories from the syntactical viewpoint.” Ajdukiewicz [5] out-
lined a theory of semantical categories: the type of an expression is determined
by the ontological type of the denotation of this expression. The first semantical
interpretation of [4] is due to Bocheński [13].

The connections of syntactic (semantic) types with categories defined by
mutual substitution are by no way obvious, nor simple. They are quite tight
for deterministic (or: rigid) grammars which assign at most one type to one
expression, but become less regular for categorially ambiguous grammars. A
thorough discussion of this topic can be found in [19] .

The present paper focuses on categorial grammars: how they developed from
the origin in [4] to their modern forms. Categorial grammars are also called ‘type
grammars’, and the latter term seems better. The classification of expressions
in categories appears in different grammar formalisms (e.g. phrase structure
grammars), whereas logical types assigned to expressions are characteristic of
the grammars considered here. To emphasize this Morrill [51] and others use
an even more explicit term ‘type logical grammar’. In the present paper both
terms are used: the former in traditional names of grammars, the latter in
general considerations.

The impact of [4] can be seen in several areas of formal linguistics and log-
ical philosophy of language. Type grammars belong to formal linguistics, since
their main intention is to describe natural language. They are closely related to
type-theoretic semantics of natural language, initiated by Monatgue [46], with
an explicit reference to [4], and extensively studied by many authors as Mon-
tague Grammar. Some other works may be counted to the logical turn: they
study types and categories in formal languages of logic and mathematics. This
direction was represented in Poland by Suszko [62, 63], Wybraniec-Skardowska
[67] and others. Suszko elaborated a formal framework for syntax and semantics
of higher-order languages. Wybraniec-Skardowska presented a general theory of
‘categorial languages’ with a distinction between expression-tokens and abstract
expressions (this theory, however, does not directly address natural language).
Ta lasiewicz [64] provided a philosophical analysis of Ajdukiewicz’s approach,
applied to natural language, with an interpretation in terms of situation seman-
tics,

2

It is a bit surprising that just the linguistic turn leads to new logical cal-
culi (Lambek logics) and models (residuated algebras), whereas the logical turn
usually focuses on some standard logical systems (higher-order logics, type the-
ories). To keep this survey in a reasonable size I will mainly write on the new
logics elaborated for type grammars and only briefly note some links with other
developments. Montague Grammar and its descendants cannot be discussed in
detail; the reader is referred to [12] and the items cited there.

This survey is addressed to a wide community, not necessarily experts in type
grammars. Therefore I omit mathematical subtleties. I do not even discuss all
important mathematical results in this area; I only briefly note some of them
to clarify the main ideas. Nonetheless an acquaintance with general logic and
formal linguistics may help the reader to follow the text. I provide a couple of
linguistic examples, but all are quite simple. The reader is referred to [50, 49,
51, 52, 44] for a more advanced linguistic material.

Section 2 is concerned with basic categorial grammars, a framework directly
related to Ajdukiewicz’s proposal (modified in [8]). Section 3 discusses the
Lambek calculus and several analogous systems with a particular emphasis on
their role in type grammars. At the end, I defend the view that Lambek logics
are important, general logics of syntactic and semantic types (besides other
applications), but not as good for efficient parsing. An optimal strategy seems
the following: (1) to apply Lambek logics in metatheory and on the lexical level,
(2) to preserve the Ajdukiewicz system as a parsing procedure for compound
expressions.

2 Basic categorial grammars

Ajdukiewicz (following Leśniewski) distinguishes two basic categories: sentence
(type s) and name (type n), but stipulates that in general “nothing could be
decided about the number and kind of basic semantic [categories] and functor
categories, since these may vary in different languages.” The types of functor
categories have the form of fractions:

α

β1 . . . βn
;

an expression of this type with arguments of type β1, . . . , βn forms a compound
expression of type α. For example, an intransitive verb is of type s

n , a transitive
verb of type s

nn , a sentential connective of type s
s s , an adverb of type α

α for
α = s

n , and so on.
The procedure of checking the ‘syntactic connexion’ of a compound expres-

sion is designed as follows. First, the expression is rewritten in prefix notation:
each functor directly precedes its arguments. So one writes likes John wine

instead of John likes wine and hardly works John instead of John works

hardly (my examples). Second, one considers the sequence of types corre-
sponding to the words of the rearranged expression. For these two examples

3

one obtains the sequences:

s

nn
, n, n and

s
n
s
n

,
s

n
, n.

Third, one reduces a block of adjacent types:

α

β1 . . . βn
, β1, . . . , βn

to α and repeats this step as many times, as possible. If this reduction ends
in a single type, the expression is qualified to be ‘syntactically connected’ and
assigned the resulting type. The Ajdukiewicz reduction procedure applied to
our examples yields:

s

nn
, n, n ⇒ s in one step,

s
n
s
n

,
s

n
, n ⇒ s

n
, n ⇒ s in two steps.

So both expressions are syntactically connected (of type s). In fact, Ajdukiewicz’s
original procedure was more restrictive: at each step one reduces the left-most
occurrence of a reducible pattern, but this constraint narrows its applications
[17].

This approach reveals two characteristic components of modern type gram-
mars: (1) the type lexicon, i.e. an assignment of types to words, (2) the type
processing machinery, i.e. a procedure of checking the grammatical correct-
ness of arbitrary expressions and at the same time deriving types of them. In
terms of contemporary computational linguistics, (2) is a parsing procedure.
Ajdukiewicz was the first who clearly formulated the problem of parsing and
proposed a parsing algorithm (twenty years before mathematical linguistics was
founded by Noam Chomsky).

The Ajdukiewicz procedure requires the rewriting of the parsed expression
in prefix notation. In practice this restricts its applications to some formal
languages. In fact Ajdukiewicz acknowledged that one of his goals was a gen-
eralization of the parenthesis-free notation, elaborated by J. Lukasiewicz for
propositional logics, toward richer formal languages. On the other hand, his ex-
amples came from natural languages, and he expected a wide applicability of his
method. Probably he admitted various modifications of the original procedure,
when applied in practice.

Bar-Hillel [7] adjusted this approach to natural language. He introduced
directional types of the form:

α

β1 . . . βm; γ1 . . . γn

and the reduction procedure based on the rule:

β1, . . . , βm,
α

β1 . . . βm; γ1 . . . γn
, γ1, . . . , γn ⇒ α.

4

Now transitive verbs are assigned type s
n;n , and John likes Mary is parsed as:

n,
s

n;n
, n⇒ s in one step.

In [8], this approach was modified. After Lambek [40], functor types were
restricted to α\β and α/β. An expression of type α\β (resp. β/α) with an
argument of type α on the left (resp. on the right) forms a compound expression
of type β. So α\β corresponds to β

α; in the former notation, α/β to α
;β , and the

fraction α
β;γ is represented as β\(α/γ) or (β\α)/γ. The representation of many-

argument types by (nested) one-argument types is closely related to ‘currying’,
i.e. the representation of many-argument functions by one-argument functions
of higher order, a routine in modern type theories.

The reduction procedure is based on two rules:

(RED.1) α, α\β ⇒ β, (RED.2) α/β, β ⇒ α .

In [8], a categorial grammar is formally defined as a triple G = (Σ, I, s) such
that Σ is a nonempty finite set, I is a finite relation between elements of Σ
and types, and s is an atomic type. The elements of Σ are interpreted as the
words of a natural language (then Σ is referred to as the lexicon) or symbols of
a formal language (then Σ is referred to as the alphabet). Nowadays I is called
the type lexicon or the initial type assignment. Often I is represented as a map
which assigns finite sets of types to elements of Σ. In examples we write v : α
for α ∈ I(v). One refers to s as the designated type. One admits an arbitrary
finite set of atomic types.

Finite sequences of elements of Σ are called strings (on Σ). The empty string
is denoted by ε. The string (v1, . . . , vn) is usually written as v1 . . . vn. One says
that G assigns type α to the string v1 . . . vn, if there exist types α1, . . . , αn,
belonging to I(v1), . . . , I(vn), respectively, such that the sequence α1, . . . , αn
reduces to α by finitely many applications of rules (RED.1), (RED.2). The
language of G consists of all strings on Σ which are assigned type s by G.

In the modern literature, categorial grammars in the sense of [8] are called ba-
sic categorial grammars (BCGs) or: classical categorial grammars, AB-grammars
(a credit to Ajdukiewicz and Bar-Hillel).

The main mathematical theorem of [8] establishes the weak equivalence of
BCGs and Chomsky’s (ε−free) context-free grammars (CFGs). Recall that a
CFG is defined as a quadruple G = (Σ, N, s, P) such that Σ and N are disjoint
finite sets (whose elements are treated as simple symbols), s ∈ N , and P is a
finite set of pairs (a, x), where a ∈ N and x is a string on Σ∪N . The elements
of Σ (resp. N) are called terminal symbols (resp. nonterminal symbols or
variables), and s is called the start symbol. The pairs in P are called production
rules. one writes a 7→ x for (a, x) and interprets it as a rewriting rule: the
string yaz can be rewritten as yxz according to this rule (by xy one denotes the
concatenation of x and y). The language of G (or: generated by G) consists of
all strings on Σ which can be derived from s by finitely many applications of
the production rules. A CFG is ε−free, if it contains no nullary rule of the form

5

a 7→ ε. The equivalence theorem states that BCGs and ε−free CFGs generate
the same class of languages. More precisely, for any BCG G there exists an
ε−free CFG G′ such that L(G) = L(G′), and conversely.

The first part of this theorem can easily be proved: a BCG G = (Σ, I, s)
generates the same language as the CFG with the terminal alphabet Σ, the
nonterminal alphabet consisting of all types involved in G and their subtypes
(i.e. subterms), the start symbol s, and the production rules reversing (RED.1),
(RED.2) (restricted to the types in the nonterminal alphabet) plus the lexical
rules α 7→ v, for α ∈ I(v). The second part is more difficult; the proof in
[8] yields, in fact, the Greibach normal form theorem for CFGs (independently
proved a few years later).

In opposition to CFGs, BCGs are lexical : the whole information on the de-
scribed language is contained in the type lexicon, whereas the parsing procedure
is independent of this particular language (it employs the language-independent
rules (RED.1), (RED.2)). This is not the case for CFGs. For instance, a stan-
dard non-lexical rule for English is s 7→ np, vp (a sentence consists of a noun
phrase and a verb phrase). The lexicality is a characteristic feature of all type
grammars, considered nowadays. Sometimes it is convenient to admit certain
simple non-lexical rules, e.g. pn ⇒ np (a proper noun is a noun phrase), but
one tends to eliminate them, whenever possible.

The nonterminal symbols of a CFG can be interpreted as names of syntactic
categories, like types in a BCG. Types, however, can be compound terms, not
just simple symbols. This is significant for lexicality and makes it possible to
study logics of types, expressing deeper relations between types.

Although CFGs are weakly equivalent to BCGs, the strong equivalence does
not hold; this means that the structured languages differ for the two classes of
grammars. For a CFG, each derivation of a string from a nonterminal symbol
determines a unique phrase structure of this string. For instance, the grammar
with production rules:

s 7→ np, vp vp 7→ tv, np

np 7→ John np 7→ tee tv 7→ drinks

admits the derivation:

s⇒ np, vp⇒ np, tv, np⇒ · · · ⇒ John, drinks, tee

which yields the phrase structure (John (drinks tee)) or, more explicitly, (Johnnp
(drinkstv teenp)vp)s. These phrase structures can be depicted as binary trees;
see Figure 1.

Similarly, each reduction in a BCG gives rise to a unique phrase structure
of the input string. With the type lexicon:

John : np drinks : (np\s)/np tee : np

one obtains the reduction:

np, (np\s)/np, np⇒ np, np\s⇒ s ,

6

\
\\

�
�
�c

John
A
AA
�
��c

drinks tee

@
@
@

�
�
�

s

John: np
A
A
A
A

�
�
�
�

vp

drinks: tv tee: np

Figure 1: Phrase structures as binary trees

which yields the same phrase structure (John (drinks tee)). We need an auxiliary
notion. The degree of type α, denoted by d(α), is defined as follows: d(α) = 0 if
α is atomic, d(α\β) = d(β/α) = d(β) + 1. For any phrase structure generated
by a BCG G, depicted as a tree, and for any node of this tree, the length of
shortest paths from this node to a leaf is not greater than the maximal degree
of types involved in G. Therefore a BCG cannot generate languages of phrase
structures with arbitrarily long shortest paths from a node to a leaf. On the
contrary, a CFG can generate such languages.

For instance, the CFG with rules s 7→ s, s and s 7→ 0 generates all possible
phrase structures on the alphabet {0}. The BCG with the type lexicon 0 : s/s,
0 : s generates the same language of strings, which consists of all nonempty
strings on {0}, but not the same language of phrase structures. One only gets
the phrase structures: 0, (00), (0(00)), (0(0(00))), and so on, but not ((00)0).

For BCGs, one also considers functor-argument structures (fa-structures),
i.e. phrase structures augmented with functor markers. For the BCG considered
above, the phrase structure (John (drinks tee)) can be refined to the fa-structure
(John (drinks tee)1)2, which means that (drinks tee) is the functor in the whole
structure and drinks is the functor in (drinks tee). Every reduction in a BCG
determines a unique fa-structure of the recognized string. The languages of fa-
structures and phrase structures take an essential part in the theory of BCGs;
see [15, 19]. In particular, syntactic categories can be defined as certain sets of
fa-structures rather than strings, which results in a more elegant theory.

The type lexicon of a BCG can assign several types to one word. This reflects
the syntactic ambiguity of words in natural language. For instance, and appears
as a sentential connective, but also as a noun connective, verb connective, ad-
verb connective, and others. As a rule, in logical and mathematical formalisms
one symbol can be assigned a unique type, which completely characterizes the
syntactic role of this symbol. These languages can be described by rigid (or:
deterministic) BCGs (I is a function from Σ to the set of types).

Worthy of noting, not all languages of formal logic can be described by rigid
BCGs. The standard example is the language of (type-free) lambda calculus.
Also in the language of first-order logic, a unary function symbol f requires
two types t/iv, t/t, where iv is the type of individual variables and t of terms
(quantifiers are typed (s/s)/iv, where s is the type of formulas). Alternatively,

7

one can assign only t/t to f and admit a non-lexical rule iv ⇒ t.
The type of quantifiers, given above, adequately characterizes their role in

the syntax of first-order logic (in modern setting): the quantifier followed by a
variable, next by a formula, yields a formula. It is also fully compatible with
Tarskian semantics for this logic. It, however, does not express the variable-
binding role of quantifiers. The final part of [4] is devoted to the special status
of variable-binding operators, and several authors continue this issue; see [62,
63, 53, 67]. I do not discuss this matter here, since it goes too far from the main
topics of this paper.

One of the leitmotives of type grammars is a close relationship between
syntax and semantics (the dictum syntax mirrors ontology). I have already
noted that Bocheński [13] proposed the semantical interpretation of the theory
of Leśniewski and Ajdukiewicz, and this turn was adopted by Ajdukiewicz [5].
According to the latter, the basic types are i (individual) and w (truth value;
‘value’ corresponds to Polish ‘wartość’ and German ‘Wert’). Intransitive verbs
are typed w

i , as they denote functions from the set of individuals to the set
of truth values, transitive verbs w

i i , as they denote two-argument functions of
this kind, (binary) sentential connectives w

ww , as they denote binary truth-value
functions, and so on. [5] brings a radical idea of a purely flectional language: the
types of words only account for semantical categories of these words (i.e. the on-
tological status of their denotations), whereas their syntactic roles are described
by certain new indices, indicating the position of these words in syntactic trees
(some representations of fa-structures). This idea seems very interesting, but
the symbolism, proposed in [5], has a limited value, since the new indices show
the positions of words in one particular tree, not in any well-formed syntactic
tree, containing the given word.

On the other hand, the semantical interpretation is quite fundamental and
- modulo terminology and notation - has been commonly adopted in modern
type-theoretic semantics. Syntactic types are translated into semantic types:
atomic types and compound types α → β, where α, β are simpler types. Each
atomic type p corresponds to a semantic domain (or: ontological category) Dp.
One defines Dα→β as the set of all functions from Dα to Dβ . For instance, s is
translated into t (the type of truth values) and n into e (the type of entities).
Let α• denote the translation of α. One recursively defines:

(α\β)• = (β/α)• = α• → β•.

So n\s is translated into e→ t (the type of sets of entities, identified with their
characteristic functions), s/(n\s) into (e → t) → t (the type of families of sets
of entities), and so on. The latter agrees with the interpretation of complete
noun phrases as generalized quantifiers; see van Benthem [10].

In semantics, the reduction rules (RED.1), (RED.2) can be interpreted as
the application of a function f ∈ Dα•→β• to an argument a ∈ Dα• , which
yields f(a) ∈ Dβ• . Thus, given some fixed denotations of all words of the
parsed expression, whose semantic types correspond to their syntactic types, as
above, one can determine the denotation of this expression by the (iterated)

8

application of functions to their arguments, following the syntactic reduction
procedure. This fully agrees with the principle of compositionality, a central
idea of logical semantics.

3 Lambek Calculus

3.1 Basic systems

An essential refinement of BCGs is due to Lambek [40]. His Syntactic Calculus,
nowadays called Lambek Calculus and denoted by L, is regarded as a basic
type logic. Lambek presented his system as an improvement of BCGs: “[...]
this paper is concerned with a development of the technique of Ajdukiewicz
and Bar-Hillel in a mathematical direction. We introduce a calculus of types,
which is related to the well-known calculus of residuals. The decision procedure
for this system is solved affirmatively, following a procedure first proposed by
Gentzen for the intuitionistic propositional calculus.”

Types are built from atomic types by \, / and · (product; some authors write
⊗). An axiomatization of L employs simple sequents of the form α⇒ β, where
α, β are types. L admits the following axioms and inference rules.

(Id) α⇒ α

(A.1) (α · β) · γ ⇒ α · (β · γ) (A.2) α · (β · γ)⇒ (α · β) · γ

(Res.1)
α · β ⇒ γ

β ⇒ α\γ
(Res.2)

α · β ⇒ γ

α⇒ γ/β

(Cut.1)
α⇒ β β ⇒ γ

α⇒ γ

The double line in (Res.1), (Res.2) means that these rules can be used in both
directions: top-down and bottom-up.

By dropping the associativity axioms (A.1), (A.2), one obtains Nonassocia-
tive Lambek Calculus (NL), due to Lambek [41]. The counterparts of (RED.1),
(RED.2):

(Red.1) α · (α\β)⇒ β , (Red.2) (α/β) · β ⇒ α

are provable in NL, using (Id), (Res.1), (Res.2). We, however, obtain (infinitely)
many other laws. Here are some examples.

(L1) α⇒ (β/α)\β and α⇒ β/(α\β),

(L2) α⇒ β\(β · α) and α⇒ (α · β)/β,

(L3) (α\β) · (β\γ)⇒ α\γ and (α/β) · (β/γ)⇒ α/γ,

(L4) α\β ⇒ (γ\β)\(γ\α) and α/β ⇒ (α/γ)/(β/γ),

(L5) (α\β)/γ ⇔ α\(β/γ) (⇔ stands for both ⇒ and ⇐).

9

(L1), (L2) are provable in NL, but (L3), (L4), (L5) in L only. Other laws
can be obtained, by using the monotonicity rules: from α⇒ β infer γ ·α⇒ γ ·β,
α · γ ⇒ β · γ, γ\α ⇒ γ\β, β\γ ⇒ α\γ, α/γ ⇒ β/γ, γ/β ⇒ γ/α, which are
derivable in both systems.

The most general algebraic models of NL are residuated groupoids, i.e. or-
dered algebras (A, ·, \, /,≤) such that (A,≤) is a partially ordered set, and ·, \, /
are binary operations on A, satisfying the residuation laws:

(RES) a · b ≤ c iff b ≤ a\c iff a ≤ c/b, for all a, b, c ∈ A .

The operations \, / are called the residual operations for product. Residuated
semigroups are residuated groupoids such that · is associative; they are models
for L. Both systems are strongly complete with respect to the corresponding
models: the sequents provable in the system from a set of nonlogical hypotheses
are precisely those sequents which are true in all models, for all valuations µ,
satisfying the hypotheses. α⇒ β is true for µ, if µ(α) ≤ µ(β).

According to Lambek [40], the intended models for L are language models,
i.e. some algebras of languages (by a language one means a set of strings). By
Σ+ we denote the set of all nonempty strings on Σ. For L1, L2 ⊆ Σ+, one
defines:

L1 · L2 = {xy : x ∈ L1, y ∈ L2} ,

L1\L2 = {y ∈ Σ+ : xy ∈ L2 for any x ∈ L1},

L1/L2 = {x ∈ Σ+ : xy ∈ L1 for any y ∈ L2},

where xy denotes the concatenation of strings x and y. It is easy to show that
the powerset of Σ+ with ·, \, / defined as above and inclusion as the order,
is a residuated semigroup. α ⇒ β is true for µ in this model if and only if
µ(α) ⊆ µ(β) (equivalently: every string of type α is of type β). The term
‘language model’ is due to Pentus [56]; this paper shows the weak completeness
of L with respect to language models (the sequents provable in L are precisely
those which are valid in all language models). The strong completeness does
not hold, but it holds for the product-free L [14].

Analogously, the intended models for NL are algebras of languages consisting
of phrase structures. Let ΣP denote the set of all phrase structures on Σ. On
the powerset of ΣP one defines ·, \, / as above except that Σ+ is replaced by ΣP

and xy by (x, y). The weak and the strong completeness (with respect to these
models) hold for the product-free fragment of NL only [25, 36].

The intended models exhibit Lambek’s interpretation of categories, which is
not the same as in BCGs. For a BCG, the category of type α consists of all
(structured) expressions which are assigned this type by the grammar. Accord-
ing to Lambek, the basic categories, i.e. those which are assigned atomic types,
generate all other categories by operations ·, \, /, interpreted in the algebra of
languages. In particular, if y is of type α\β (resp. β/α), then, for any x of type
α, xy (resp. yx) is of type β in a BCG. Lambek replaces ‘if . . . then’ by ‘if and
only if’. This is an essential difference; it leads to new reduction patterns, like
(L1)-(L5), not admitted in BCGs.

10

This novel understanding of types caused, probably, a relatively small impact
of Lambek’s approach on his contemporaries. Only in the 1980-ties there began
more systematic studies in Lambek calculi and their role in type grammars
and type-theoretic semantics, initiated by W. Zielonka and the present author
in Poznań and J. van Benthem and his students (especially M. Moortgat) in
Amsterdam. This research was reported in two collection volumes [54, 21]; the
second one also contains reprints of some earlier papers. The books [15, 47]
elaborate on logical and algebraic properties of Lambek calculi and grammars.

Lambek grammars are defined like BCGs except that the reduction proce-
dure is replaced with the provability in L, NL or a related system. One employs
sequents of the form α1, . . . , αn ⇒ β; in algebras, each comma is interpreted as
product. For nonassociative systems, the antecedents of sequents take the form
of bracketed sequences, e.g. (α, (β, γ)), which is different from ((α, β), γ). So
(Red.1), (Red.2) can be written as (RED.1), (RED.2), and similarly for other
laws. Warning: (RED.1), (RED.2) have been called reduction rules in Sec-
tion 2, but now the term ‘rule’ is reserved for inference rules of type logics, e.g.
(Res.1), (Res.2), (Cut.1), whereas the provable sequents are referred to as laws.

Both L and NL can be presented as sequent systems [40, 41]. For L, the
axioms are (Id) and the inference rules are as follows (Γ and ∆ stand for finite,
possibly empty, sequences of types).

(· ⇒)
Γ, α, β,Γ′ ⇒ γ

Γ, α · β,Γ′ ⇒ γ
(⇒ ·) Γ⇒ α ∆⇒ β

Γ,∆⇒ α · β

(\ ⇒)
Γ, β,Γ′ ⇒ γ ∆⇒ α

Γ,∆, α\β,Γ′ ⇒ γ
(⇒ \) α,Γ⇒ β

Γ⇒ α\β

(/⇒)
Γ, α,Γ′ ⇒ γ ∆⇒ β

Γ, α/β,∆,Γ′ ⇒ γ
(⇒ /)

Γ, β ⇒ α

Γ⇒ α/β

(Cut)
Γ, α,Γ′ ⇒ β ∆⇒ α

Γ,∆,Γ′ ⇒ β

One assumes that Γ is nonempty in (⇒ \), (⇒ /). In sequents, one omits outer
parentheses of antecedent sequences and writes Γ,∆ for the concatenation of Γ
and ∆.

The sequent system for NL is similar. The antecedents of sequents are
bracketed sequences of types, hence all rules look a bit differently; see [15, 49].

Clearly these systems are certain intuitionistic sequent systems, types play
the role of formulas, and atomic types of variables (or nonlogical constants).
The rules (· ⇒)-(⇒ /) are the introduction rules for connectives, and (Cut) is
the cut rule.

By dropping (Cut), one obtains the cut-free (sequent system for) L. Lambek
[40] proved the cut elimination theorems for L (and in [41] for NL): every
provable sequent is provable in the cut-free system. As a consequence, both
systems possess the subformula property : every provable sequent possesses a
proof such that each formula appearing in this proof is a subformula of a formula
occurring in this sequent. Since, additionally, each introduction rule increases

11

the size of sequents, then the provability in either system is decidable. It is
easy to extract language-restricted fragments. For instance, the product-free
fragment admits product-free formulas only and drops rules (· ⇒), (⇒ ·). L is
a conservative extension of its language-restricted fragments, and similarly for
NL.

The product-free L, restricted to (Id), (\ ⇒) and (/ ⇒) ((Cut) is admis-
sible), yields precisely the correct reduction patterns of BCGs. This system is
sometimes denoted by AB. L is much stronger than AB, but both systems
coincide for sequents of the form α1, . . . , αn ⇒ p such that p is an atom and no
αi contains a compound type on the argument place. In other words, the order
of each αi is at most 1. The order of α, denoted by o(α), is recursively defined
as follows: o(p) = 0 for atomic p,

o(α\β) = o(β/α) = max(o(β), o(α) + 1), o(α · β) = max(o(α), o(β)).

For example, p\q, p\(q\r), (p\q)/r are of order 1, p/(q\p) is of order 2, and so
on (p, q, r are atoms). The product-free L is stronger than any extension of AB
by finitely many new reduction patterns, provable in L [69].

[8] shows that every ε−free CFG G is equivalent to a BCG G′ with all types
of order at most 1. By the above, the language of G′ does not change, if one
replaces AB by L. Consequently, every ε−free CFG is equivalent to a Lambek
grammar. The converse holds as well [55]. Analogous results for NL were
obtained in [15, 37].

Due to new laws, Lambek grammars provide a more flexible description of
natural language. We consider atomic types s, n, as above, and n∗ for plural
nouns. In BCGs we get:

1. John likes Jane. n, (n\s)/n, n⇒ s.

2. John works here. n, n\s, s\s⇒ s.

3. John never works. n, (n\s)/(n\s), n\s⇒ s.

4. John works for Jane. n, n\s, (s\s)/n, n⇒ s.

5. John works and Jane rests. n, n\s, (s\s)/s, n, n\s⇒ s.

6. men work. n∗, n∗\s⇒ s.

7. poor men work. n∗/n∗, n∗, n∗\s⇒ s.

8. men works. n∗, n\s 6⇒ s.

9. John work. n, n∗\s 6⇒ s.

Here 6⇒ means that the sequent is not provable in AB. The sequents in 8, 9 are
unprovable in L, either.

Now assign s/(n\s) to he and (s/n)\s to her; We abbreviate these types as
nps and npo, respectively, since they correspond to (singular) noun phrase as
subject and noun phrase as object.

12

10. he likes Jane. s/(n\s), (n\s)/n, n⇒ s.

11. John likes her. n, n\(s/n), (s/n)\s⇒ s.

12. he likes her. s/(n\s), (n\s)/n, (s/n)\s 6⇒ s.

13. John works for her. n, n\s, (s\s)/n, (s/n)\s 6⇒ s.

The sequent in 12 remains unprovable in AB, if even one replaces (n\s)/n
by n\(s/n). In L, these two types are equivalent, by (L5), and this sequent
is provable: use (Red.1) s/n, (s/n)\s ⇒ s, (L3) (to the first and the second
type of 12) and (Cut). Also the sequent in 13 is provable in L. Notice that the
student follows the teacher can be parsed like 12 and John works for a

friend like 13 (assign nc to common nouns and nps/nc, npo/nc to articles).
These examples, similar to those in [40], well illustrate the power of Lambek

grammars. In a BCG we need at least two types of likes (see 10, 11); they
are equivalent in L, hence only one of them is sufficient. To parse 12 in a
BCG we need additional types of words, e.g. (s/n)/((n\s)/n) of he; s/(n\s)⇒
(s/n)/((n\s)/n) is an instance of (L4), hence s/(n\s) is sufficient in a Lambek
grammar. Even in NL one proves n ⇒ nps, n ⇒ npo as instances of (L1).
This shows that L provides some logical transformations of types and explains
certain syntactic ambiguities of expressions. Of course, not all; we still need n\s
and n∗\s for worked, n/n and n∗/n∗ for poor.

Only four atomic types appear in these examples. Realistic grammars for a
natural language employ much more atoms. Lambek [44] uses 33 atomic types
for a fragment of English, described by a pregroup grammar (see 3.2.4). We list
some of them.

π = subject
π1 = first person singular subject
π2 = second person singular and any plural personal subject
π3 = third person singular subject
s = statement (declarative sentence)
s1 = statement in present tense
s2 = statement in past tense
q̄ = question
q = yes-or-no question
q1 = yes-or-no question in present tense
q2 = yes-or-no question in past tense
i = infinitive of transitive verb
j = infinitive of complete verb phrase
j̄ = complete infinitive with to

o = direct object
n = name
n0 = mass noun
n1 = count noun
n2 = plural noun
n̄ = complete noun phrase

13

p1 = present participle
p2 = past participle

For semantic considerations, however, it is more natural to reduce the num-
ber of atomic types. Lambek’s n̄ can be defined as s/(n\s) or (s/n)\s, depending
on the role in a sentence (subject or object). Some authors choose np (noun
phrase) as an atom and assign (np\s)/np to transitive verbs, instead of (n\s)/n
(this neglects tense and number).

Every proof of Γ ⇒ α in the sequent system of L determines a unique
bracketing of Γ, and similarly for NL. This induces a unique phrase structure
of the parsed expression. Due to associativity, L is ‘structurally omnipotent’:
every possible bracketing of Γ comes from some proof of Γ⇒ α (if (Cut) can be
used). Consequently, Lambek grammars based on L are not sensitive to phrase
structures; they describe languages of strings.

On the contrary, Lambek grammars based on NL naturally describe lan-
guages of phrase structures. [38] shows the strong equivalence of these gram-
mars and BCGs. Therefore some linguists prefer this weaker logic. It is quite
weak, indeed; neither 12, nor 13 can be parsed in NL, if the same types are
used. Worthy of notice, with NL one can interchange the roles of functors and
arguments. From x : α and y : α\β we infer (x, y)2 : β, but, using (L1), we
obtain x : β/(α\β), hence also (x, y)1 : β.

3.2 Extensions

3.2.1 Multi-modal systems

To make it more flexible Moortgat [49] and other authors extend NL in different
ways: admit several products ⊗i with residuals \i, /i and unary modalities

♦i,�
↓
i , which form a residuation pair (♦iα⇒ β and α⇒ �↓i β are equivalent in

models and derivable from each other in the formal system). From ♦iα⇒ ♦iα
we obtain α⇒ �↓i♦iα, and from �↓iα⇒ �↓iα we obtain ♦i�

↓
iα⇒ α.

Let us consider an example from [50]. np can be lifted up to both �↓n♦nnp
and �↓a♦anp, where the subscripts abbreviate nominative and accusative. We
assign np to John, Mary, �↓n♦nnp to he, she, �↓a♦anp to him, her, and (�↓n♦nnp\s)/�↓a♦anp
to likes. The resulting grammar assigns s to John likes Mary, he likes

her, but not to her likes Mary.
Another example comes from [49]. Let r be the type of relative clause,

e.g. that Kazimierz wrote (in the book that Kazimierz wrote). With L
we can assign r/(s/np) to that, which yields that Kazimierz wrote: r, since

r/(s/np), np, (np\s)/np⇒ r

is provable. This sequent, however, is not provable in NL (with any bracketing).
We assign r/(s/♦a�↓anp) to that and admit the weak associativity axiom:

(α · β) · ♦aγ ⇒ α · (β · ♦aγ).

14

In NL we prove (np, ((np\s)/np, np))⇒ s, and consequently,

(np, ((np\s)/np,♦a�↓anp))⇒ s.

This yields ((np, (np\s)/np),♦a�↓anp)⇒ s, by the new axiom, hence

(np, (np\s)/np)⇒ s/♦a�
↓
anp,

by (⇒ /). Thus, Kazimierz wrote: s/♦a�↓anp and that Kazimierz wrote:
r.

These examples show the spirit of multi-modal Lambek grammars, exten-
sively studied by a group of contemporary linguists. The unary modalities are
used to construct subtypes and super-types of some types and to restrict asso-
ciativity and commutativity to some special cases. (By a subtype of α we mean
a type β such that β ⇒ α is true, not a subformula of α.) This resembles the
usage of exponentials !, ? in linear logic, where structural rules (weakening, con-
traction) are limited to formulas !α, ?α. More information on the multi-modal
framework can be found in [49, 51, 50].

Morrill [52] elaborated Discontinuous Lambek Calculus, a special multi-
modal and multi-sorted logic, intended to process types of discontinuous ex-
pressions. In language models, one admits strings with some occurrences of |
(separator); α ⊗i β denotes the substitution of β for the i−the separator in α.
The interpretation of product as substitution also appeared in [15].

3.2.2 Substructural logics

One can add lattice connectives ∧,∨, satisfying the lattice laws. It suffices to
add:

α ∧ β ⇒ α α ∧ β ⇒ β
α⇒ β α⇒ γ

α⇒ β ∧ γ

α⇒ α ∨ β β ⇒ α ∨ β α⇒ γ β ⇒ γ

α ∨ β ⇒ γ

to the first axiomatization of L or NL. The corresponding sequent systems (we
skip details) admit cut elimination, hence both logics are decidable. Here are
the distributive laws, provable in NL with ∧,∨.

α · (β ∨ γ)⇔ (α · β) ∨ (α · γ) (α ∨ β) · γ ⇔ (α · γ) ∨ (β · γ)

α\(β ∧ γ)⇔ (α\β) ∧ (α\γ) (α ∧ β)/γ ⇔ (α/γ) ∧ (β/γ)

(α ∨ β)\γ ⇔ (α\γ) ∧ (β\γ) α/(β ∨ γ)⇔ (α/β) ∧ (α/γ)

Let us note some simple applications of types with ∧,∨ in type grammars.
Lambek [41] noticed that a type assignment I(v) = {α1, . . . , αn} could be re-
placed with the rigid type assignment I(v) = α1∧· · ·∧αn. Another application
concerns subtypes. Lambek [44] needs nonlogical assumptions πi ⇒ π, sj ⇒ s,
for i = 1, 2, 3, j = 1, 2. Instead one can define s = s1 ∨ s2, π = π1 ∨ π2 ∨ π3
and apply a pure logic with ∨ but no nonlogical assumptions (according to the

15

paradigm of lexicality). Kanazawa [35] proposed feature-decomposition types:
works is of type (np∧ sg)\s, work of type (np∧pl)\s, worked of type np\s, and
became of type ((np\s)/(np∨ ad), where np, sg, pl, ad are types of noun phrase,
singular, plural, and adjective, respectively.

By L1 we denote L with constant 1 and the axioms:

1 · α⇔ α α · 1⇔ α .

L1 is strongly complete with respect to residuated monoids, i.e. residuated
semigroups with an element 1 (the unit for product). The sequent system is
obtained from that for L by admitting sequents⇒ α (interpreted in algebras as
1 ≤ µ(α)), allowing Γ to be empty in rules (⇒ \), (⇒ /), and adding:

(1⇒)
Γ,Γ′ ⇒ α

Γ, 1,Γ′ ⇒ α
(⇒ 1) ⇒ 1 .

NL1 can be presented in a similar way. Notice that in L1 one proves new laws,
not containing 1, nor the empty antecedent, e.g. α/(α\α) ⇒ α; ⇐ is provable
in L. To prove the former, from α ⇒ α infer ⇒ α\α, by (⇒ \), then apply
(/⇒). This proof works in NL1 as well.

The language models for L1 are algebras of subsets of Σ∗ = Σ+ ∪ {ε}; the
operations ·, \, / for languages are defined as above except that Σ+ is replaced
with Σ∗. The language {ε} is the unit for product. The intended models for NL1
employ languages of phrase structures, now enriched with the empty structure
ε such that (ε, x) = (x, ε) = x for any phrase structure x.

Some linguists object the suitability of L1 as a logic for type grammars.
α/α ⇔ (α/α)/(α/α) is provable in L1, hence nc/nc and (nc/nc)/(nc/nc) are
equivalent, but the former is a natural type of adjectives and the latter of
adverbs.

On the other hand, logicians prefer L1 and its extensions. In these sys-
tems, some formulas are provable (a formula α is said to be provable, if ⇒ α
is provable); for example, α\α in NL1 and (α\β)\((γ\α)\(γ\β)) in L1. Fur-
thermore, every sequent is deductively equivalent to a formula, e.g. α, β ⇒ γ
to β\(α\γ). Accordingly, these logics can be presented in the form of Hilbert
style systems and more easily compared with other nonclassical logics. For ex-
ample, the product-free L1 can be axiomatized as a Hilbert style system with
the following axioms and rules.

(a.1) 1 (a.2) 1\(α\α) (a.3) ((α\β)/γ)\(α\(β/γ)) (a.4) (α\(β/γ))\((α\β)/γ)

(a.5) (α\β)\((γ\α)\(γ\β)) (a.6) ((α/γ)/(β/γ))/(α/β)

(mp\) α α\β
β

(\-/)
α\β
β/α

For the 1-free fragment, (a.1), (a.2) are replaced by (id) α\α. Other axiom
systems can be found in [70] and for richer logics in [26].

L1 with ∧,∨ is called Full Lambek Calculus (FL) and regarded as a basic
substructural logic [26]. Substructural logics can be defined as axiom and rule

16

extensions of FL. They correspond to some classes (usually varieties or quasi-
varieties) of residuated lattices, i.e. lattice-ordered residuated monoids. One
often adds a new constant 0 and defines negations: ∼ α = α\0, −α = 0/α (0 is
interpreted as an arbitrary element of the residuated lattice).

The term ‘substructural logics’ refers to the fact that sequent systems for
these logics lack some structural rules, characteristic of the Gentzen system for
intutionistic logic: exchange (e), contraction (c), left weakening or integrality
(i), right weakening (o). The first three rules have the following forms.

(e)
Γ, α, β,Γ′ ⇒ γ

Γ, β, α,Γ′ ⇒ γ
(c)

Γ,∆,∆,Γ′ ⇒ α

Γ,∆,Γ′ ⇒ α

(i)
Γ,Γ′ ⇒ β

Γ, α,Γ′ ⇒ β

They express some algebraic properties of product: (e) a · b = b · a, (c) a ≤ a · a,
(i) a · b ≤ a, a · b ≤ b (with 1 this amounts to a ≤ 1). (o) involves sequents of
the form Γ ⇒ (interpreted as µ(Γ) ≤ 0). They can be eliminated, and (o) can
be replaced by the axiom Γ, 0,Γ′ ⇒ α.

For logics with (e), corresponding to commutative algebras, α\β is equivalent
to β/α (in algebras a\b = b/a), and one writes α → β for both. The sequent
systems are simpler (we omit details). Also ∼ α is equivalent to −α, and one
writes ¬α for both.

From the algebraic point of view, substructural logics treat implication(s) as
residual(s) of the product operation; the latter usually differs from the lattice
meet. Many well-known nonclassical logics belong to this family: relevant logics,
many-valued logics, fuzzy logics, and intuitionistic and classical logics as the
limit cases. For instance, intuitionistic logic amounts to FL with (e), (c), (i),
(o) (in fact, (e) is derivable with (c), (i)), and Lukasiewicz infinitely valued logic
to FL with (e), (i), (o) and the axiom α ∨ β ⇔ (α→ β)→ β [26].

Linear logic of Girard [28] can be presented as FL with 0, (e) and the
double negation axiom ¬¬α⇒ α (⇐ is provable); we neglect exponentials !, ?.
Noncommutative versions are due to Yetter [68] and Abrusci [1]. The former
can be presented as FL with 0 and the axioms α\0⇔ 0/α (hence ∼ α and −α
collapse in ¬α) and ¬¬α⇒ α; the latter as FL with 0 and the axioms ∼ −α⇒
α, − ∼ α⇒ α (again ⇐ are provable). Both logics are conservative extensions
of FL without 0 [2]. In [26] they are called Cyclic Involutive Full Lambek
Calculus (CyInFL) and Involutive Full Lambek Calculus (InFL), respectively.

Cut-free sequent systems of linear logics look differently. Formulas are built
from atoms by ⊗,⊕ and negation(s), where ⊗ stands for product and ⊕ for the
dual product (‘par’). In algebras, a ⊕ b = ¬(¬b ⊗ ¬a) for Girard’s logic and
CyInFL and a⊕b =∼ (−b⊗−a) for InFL. One employs classical sequents Γ⇒
∆ or one-sided sequents only: either⇒ ∆ (Schütte style), or Γ⇒ (dual Schütte
style). Each comma Γ is interpreted as product and in ∆ as dual product. In
InFL, presented in this way, one can define \, / as follows: α\β =∼ α ⊕ β,
α/β = α⊕−β.

17

In the literature on linear logics, ⊗,⊕, \, 1, 0 and negation(s) are referred
to as multiplicatives and ∧,∨ (also constants >,⊥, interpreted as the greatest
and the least element) as additives. According to a different tradition, they are
intensional and extensional connectives and constants, respectively. L1 is often
characterized as the intuitionistic fragment of multiplicative linear logic.

Type grammars usually employ basic intuitionistic substructural logics, of-
ten not admitting empty antecedents of sequents and being restricted to mul-
tiplicative connectives (also multi-modal). Nonetheless the impact of linear
logics (which are ‘classical’) can be seen in current developments. I have al-
ready noted an analogy between modalities in type grammars and exponentials
of Girard [28]. Also proof nets, i.e. a representation of proofs in multiplicative
linear logics by means of some graphs of links between formulas, are used as
representations of syntactic structures in type grammars, either directly, or in a
form suitable for intuitionistic fragments. We cannot discuss this matter here;
the reader is referred to [50].

In language models, ∧,∨ can be interpreted as the set theoretic intersection
and union of languages. Then, we obtain a distributive lattice. The distributive
laws for ∧,∨ are not provable in FL, nor other logics, discussed above. One can
add them as new axioms; it suffices to add:

(D) α ∧ (β ∨ γ)⇒ (α ∧ β) ∨ (α ∧ γ) .

Nevertheless, some interesting linguistic interpretations of logics without (D)
are possible. Clark [22] introduced syntactic concept lattices as a special kind
of concept lattices from lattice theory. Let L0 ⊆ Σ∗ be a fixed language. Pairs
(x, y), for x, y ∈ Σ∗, are called contexts. For a set of contexts X, one defines XC

as the set of all z ∈ Σ∗ such that xzy ∈ L0, for all (x, y) ∈ X. The sets of the
form XC are called syntactic concepts for L0. They can be interpreted as the
syntactic categories determined by L0, a reasonable generalization of Husserl’s
idea, followed by Ajdukiewicz. Since L provides nontrivial laws α⇒ β, syntac-
tic categories in Lambek grammars cannot be equivalence classes (substitution
classes). The family of syntactic concepts for L0 is a complete residuated lattice
with operations: X ∧ Y = X ∩ Y , X ∨ Y (resp. X ⊗ Y , 1) equal to the smallest
concept containing X ∪ Y (resp. X · Y , {ε}), and \, / defined as for languages.

3.2.3 Semantic types

The product-free L with (e) was studied by van Benthem [9, 10] as a logic
of semantic types; we call this logic the Lambek-van Benthem calculus (LB).
Proofs in a natural deduction system (ND-system) for LB can be encoded by
some terms of typed lambda calculus, namely linear terms (i.e. every λ binds
exactly one occurrence of a variable), satisfying the additional constraint: no
subterm is closed. This is an adaptation of the ‘Curry-Howard isomorphism’
between ND-proofs and lambda terms [59]. Since every ND-proof in L can be
translated into an ND-proof in LB, the former determines a unique lambda
term; this lambda term, interpreted in a standard type-theoretic model (see
Section 2), denotes a semantic transformation corresponding to the syntactic

18

parsing in the grammar. Size limits do not allow us to discuss this framework
in detail. Let us consider one example. Recall that the characteristic inference
rules of ND-systems are the introduction rules and the elimination rules for
connectives.

From n ⇒ n and n\s ⇒ n\s we get n, n\s ⇒ s, by the \−elimination rule:
from Γ ⇒ α and ∆ ⇒ α\β infer Γ,∆ ⇒ β (in an ND-system for L). This is
translated in LB as: from e → t ⇒ e → t and e ⇒ e infer e → t, e ⇒ t, by the
→ −elimination rule (in an ND-system for LB). In L we obtain n ⇒ s/(n\s),
by the /−introduction rule, which is translated into e ⇒ (e → t) → t in LB.
The ND-proof in LB is encoded by the term:

λye→t.ye→txe.

This is a linear term, satisfying the additional constraint. In a type-theoretic
model, if xe is valuated as a ∈ De (an individual), then this term denotes the
family of all (characteristic functions of) X ⊆ De such that a ∈ X. Thus, the
syntactic law n ⇒ s/(n\s) corresponds to the semantic transformation which
sends an individual into the family of all properties (interpreted extensionally)
of this individual. In particular, any proper noun (denoting an individual) can
be treated as a noun phrase (denoting a generalized quantifier, i.e. a family of
sets of individuals).

We have explained a semantic interpretation of (L1). Similarly, (L3) corre-
spond to the composition of functions, (L5) to the interchange of arguments,
and so on. An interesting theorem of [9] shows that every provable sequent
of LB admits only finitely many different proofs up to the equality in lambda
calculus; so every expression possesses only finitely many ‘semantic readings’.
Further studies on this topic can be found in [47, 49].

Analogous correspondences were elaborated for richer logics [66]. Lambek
[42] studied category-theoretic interpretations of L and its extensions. Abstract
Categorial Grammars, introduced by de Groote [29], employ linear lambda-
terms as representations of both syntactic structures and semantic structures
(logical forms) of expressions in natural language with certain homomorphisms
between them.

3.2.4 Pregroup grammars

Lambek [43] proposed another extension of L1, called compact bilinear logic
(CBL). It corresponds to pregroups, i.e. ordered algebras (A, ·,r ,l , 1,≤) such
that (A, ·, 1,≤) is a partially ordered monoid and r,l are unary operations, sat-
isfying the adjoint laws:

al · a ≤ 1 ≤ a · al and a · ar ≤ 1 ≤ ar · a ,

for any a ∈ A. ar (resp. al) is called the right (resp. left) adjoint of a.
(This terminology is transferred from category theory.) Pregroups coincide with
the algebras for the multiplicative fragment of noncommutative linear logic of
Abrusci [1] such that ⊗ equals ⊕ and 1 = 0. The residuals of product are defined

19

by: a\b = ar · b, a/b = a · bl. We have: arl = alr = a, (a · b)r = br · ar, and
similarly for l. Adjoints reverse the ordering: if a ≤ b then br ≤ ar and bl ≤ al.

CBL is a logic of free pregroups. From atoms p, q, r, . . . one builds simple
types p(n), where n is an integer. p(0) is interpreted as p, p(n), n > 0, as pr...r

(n times), and p(n), n < 0, as pl...l (|n| times). Pregroup types are finite strings
of simple types.

One also assumes that the set of atoms is partially ordered by a relation �.
The relation ⇒, between pregroup types, is defined by the following rewriting
rules:

(Contraction) X, p(n), p(n+1), Y ⇒ X,Y ,

(Expansion) X,Y ⇒ X, p(n+1), p(n), Y ,

(Induced Step) X, p(n), Y ⇒ X, q(n), Y , if either p � q and n is even, or q � p
and n is odd.

U ⇒ V holds, if U can be transformed into V by finitely many applications of
these rules.

Pregroup grammars are defined as Lambek grammars except that L is re-
placed by CBL (and types of L by pregroup types). Lambek [43] shows that
(Expansion) can be eliminated from proofs of X ⇒ p, where p is an atom. Fur-
thermore, (Induced Step) and (Contraction) can be collapsed with one rule of
generalized contraction:

(GCON) X, p(n), q(n+1), Y ⇒ X,Y , with the same condition as in (Induced
Step).

If α1, . . . , αn are assigned to v1, . . . , vn, respectively, then the grammar as-
signs p to v1 . . . vn, if the concatenation α1 · · ·αn reduces to p by a finite number
of applications of (GCON) and, possibly, (Induced Step) at the end of the reduc-
tion. Such derivations can be presented by means of links, joining the reduced
types of (GCON).

For example, we assume she: π3, will: πrs1j
l, see: iol and him: o, where

i, j are types of infinitive of intransitive verb and infinitive of any complex verb
phrase, and π, π3, o are understood as above. We also assume π3 � π, i � j.
Then, she will see him is assigned s1, since:

π3, π
rs1j

l, iol, o⇒ s1 .

The reduction can be depicted as follows:

π3, π
r s1 j

l, i ol, o

where each link corresponds to one application of (GCON).
With man: n1 (count noun), whom: nr1n1o

llsl, saw: πrs2o
l and s2 � s, one

assigns n1 to man whom she saw, by the reduction:

n1, n
r
1 n1 o

ll sl, π3, π
r s2 ol .

20

These examples come from [44] (up to minor changes), where Lambek an-
alyzed many basic grammatical constructions of English within the pregroup
framework. In other publications he and his collaborators applied this approach
to several languages: German, French, Italian, Polish and some non-European
languages; see [44] for references.

Parsing by pregroups is computationally simple; it runs in polynomial time
[18], whereas L is NP-complete [57]. CBL is stronger than L1: (p/((p/p)/p))/p⇒
p is provable in CBL (define / as above), but not in L1. The logical meaning
of the new laws is not clear; the latter does not hold even in classical logic
(interpret / as implication with the antecedent on the right). No type-theoretic
semantics for pregroup grammars is known. It seems that CBL is an algebraic
calculus rather than a genuine logic. This opinion is confirmed by the fact that
bounded pregroups are trivial (one-element) algebras, hence CBL with > is in-
consistent [18]. (The latter paper shows that pregroup grammars are equivalent
to CFGs.)

On the other hand, all linguistic examples, analyzed by Lambek and other
authors by means of pregroups, can easily be parsed with L. We return to man

whom she saw. The pregroup types, given above, are translations of L-types;
e.g. whom: (n1\n1)/(s2/o), saw: (π\s2)/o. The sequent:

n1, (n1\n1)/(s/o), π3, (π\s2)/o⇒ n1

is provable in L augmented with s2 ⇒ s, π3 ⇒ π. Therefore, the semantics for
these examples can be transferred from L.

3.2.5 Modal logics

At the end, we consider other modal logics, extending L and NL. [20] studied
NL with ∧,∨, which satisfy the laws of a distributive lattice, and its extensions
with either classical negation (BFNL), or intuitionistic implication and >,⊥
(HFNL); these logics were presented as sequent systems with cut. Hilbert-
style systems for the latter logics, denoted by NLC and NLI, were studied
in [33, 34]. The connectives are ∧,∨,⇒,¬ (now ⇒ stands for the classical or
intuitionistic implication, and ¬ for the classical or intuitionistic negation) and
Lambek connectives ·, \, /. Lambek’s sequents α⇒ β are treated as condition-
als. NLC (resp. NLI) can be axiomatized by all tautologies of classical (resp.
intuitionistic) propositional logic in the extended language and the rules: modus
ponens for ⇒, (Res.1), (Res.2). In the associative versions LC, LI one adds
axioms (A.1), (A.2). The following formulas, similar to the modal axiom (K),
are provable in NLI, hence also in NLC, LI, LC (we assume that \, / bind
stronger than ⇒).

γ\(α⇒ β)⇒ (γ\α⇒ γ\β) (α⇒ β)/γ ⇒ (α/γ ⇒ β/γ)

It should be emphasized that the theorems (i.e. provable formulas) of these
systems are >−theorems: they satisfy µ(α) = > in algebras. In substructural
logics one usually considers 1-theorems (1 ≤ µ(α) in algebras). Both notions

21

v1 . . . vn
α1 . . . αn ⇒ s
⇓ . . . ⇓
β1 . . . βn

AB⇒ s

Figure 2: A parsing scheme

collapse for substructural logics with (i). LC is a conservative extension of L,
and NLC of NL.

NLC, LC and NLI, LI are, in fact, some classical and intuitionistic multi-
modal logics; product and its residuals are binary modalities. This perspective
was already admitted in Arrow Logic of van Benthem [11] and multi-modal
versions of Lambek calculi. [33, 34] study relational frames for NLC, LC,
NLI, LI, proving some completeness and decidability results. Interestingly, the
undecidability of LC follows from some results of [39], whereas LI is decidable
[34]. For NLC, NLI even the consequence relations are decidable [20].

3.3 Lambek versus Ajdukiewicz

Although Lambek logics are much stronger than AB, the parsing procedure in
Lambek grammars can be carried out in a similar way as in BCGs. The action
of L and related systems can be reduced to the lexical level: the type lexicon is
extended by new types, derivable from the initial types in the system.

For example, if α, β, γ ⇒ δ is provable in L, then α ⇒ (δ/γ)/β is provable,
by (⇒ /), and the sequent:

(δ/γ)/β, β, γ ⇒ δ

is provable in AB. For NL, if α, (β, γ) ⇒ δ is provable, then α ⇒ δ/(β · γ) is
provable, and δ/(β · γ), (β, γ) ⇒ δ is provable in AB (with product; see [38]).
To eliminate product, one can use β ⇒ (α\δ)/γ and prove in AB:

α, (α\δ)/γ, γ ⇒ δ .

For vi : αi, i = 1, . . . , n, a successful parsing can be arranged as in Figure 2
(αi ⇒ βi is provable in a Lambek logic).

In the same way one can arrange semantic derivations: the semantic trans-
formations, definable in (a fragment of) lambda calculus, can be performed on
the initial denotations of words in a type-theoretic model, and the denotations
of compound expressions are obtained by the (iterated) application of functions
to their arguments.

Such laws as (L1), (L2), (L4) produce infinitely many types β derivable from
a single type α. For instance, starting from n, one derives:

n⇒ s/(n\s)⇒ s/((s/(n\s))\s)⇒ · · · .

22

Nonetheless only finitely many of them are really needed to parse any ex-
pression in a particular grammar. [16] shows that every type grammar G, based
on L, is equivalent to a BCG G′ whose type lexicon extends that of G by finitely
many new types, derivable in L from those in the type lexicon of G. The same
was earlier shown for NL in [38].

These results seem to support the opinion that Lambek logics can be re-
garded as general logics of syntactic or semantic types rather than type process-
ing systems in type grammars. The former explain deeper reasons for syntactic
ambiguities of expressions and guide our choice of lexical types. On the other
hand, parsing can be based on the classical type reduction procedure, proposed
by Ajdukiewicz, with necessary modifications.

This opinion is non-orthodox. Many authors maintain the priority of Lam-
bek logics, directly applied in grammars, according to the general paradigm of
parsing as deduction. They, however, usually ignore the problems of efficiency.
Parsers for BCGs can be designed like for CFGs; they run in cubic time in the
length of the parsed expression. This is impossible for type grammars based
on L, which is NP-complete [57]. Type grammars with NL remain polynomial
[30], but parsers are not as simple as for BCGs.

At the end of this subsection, let me mention some developments in type
grammars, which are closer to Ajdukiewicz.

Combinatory Categorial Grammars (CCGs), developed by M. Steedman, A.
Szabolcsi and others, enrich AB with finitely many new reduction patterns,
semantically corresponding to some combinators, i.e. closed lambda-terms; see
[61] for an overview. This direction continues certain ideas of Curry [23] and
Shaumyan [58]. Some of the new patterns are provable in L, but others require
a stronger logic (some instances of exchange and contraction). The Ajdukiewicz
procedure enriched with composition laws (similar to (L3), (L4)) was earlier
proposed by Geach [27].

Categorial Unification Grammars (CUGs), studied by Uszkoreit [65], admit
polymorphic types, containing variables, which range over a family of types. The
simplest example is (x\x)/x as the type of and. In the course of parsing, one
applies the reduction rules of BCGs and a unification algorithm. For instance,
α, β\γ ⇒ σ(γ), where σ is a substitution such that σ(α) = σ(β).

L with ∧,∨ can generate some non-context-free languages, e.g. the intersec-
tion of two context-free languages [35]. This also holds for grammars based on
AB with ∧,∨. Other frameworks going beyond the context-free world are Tu-
pled Pregroup Grammars [60] and Categorial Dependency Grammars [24]. Both
approaches employ very restricted types only; the resulting grammars might be
presented as BCGs with all types of order at most 1 and certain constraints
imposed on reductions.

References

[1] Abrusci, V.M.: Phase semantics and sequent calculus for pure noncom-
mutative classical linear logic. Journal of Symbolic Logic 56, 1403–1451

23

(1991)

[2] Abrusci, V.M.: Classical Conservative Extensions of Lambek Calculus. Stu-
dia Logica 71, 277–314 (2002)

[3] Ajdukiewicz, K.: W sprawie ‘uniwersaliów’ (On the problem of ‘univer-
sals’). Przegla̧d Filozoficzny 37, 219–234 (1934)

[4] Ajdukiewicz, K.: Die syntaktische Konnexität (Syntactic connexion). Stu-
dia Philosophica 1, 1–27 (1935)

[5] Ajdukiewicz, K.: Zwia̧zki sk ladniowe miȩdzy cz lonami zdań oznajmuja̧cych
(Syntactic connections between constituents of declarative sentences). Stu-
dia Filozoficzne 6.21, 73–86 (1960)

[6] Ajdukiewicz, K.: The Scientific World-Perspective and Other Essays, 1931-
1963. J. Giedymin (ed.), D. Reidel (1978)

[7] Bar-Hillel, Y.: A quasi-arithmetical notation for syntactic description. Lan-
guage 29, 47–58 (1953)

[8] Bar-Hillel, Y., Gaifman, C., Shamir, E.: On categorial and phrase structure
grammars. Bull. Res. Council Israel F9, 155–166 (1960)

[9] Benthem, J. van: The semantics of variety in categorial grammar. In: [21],
pp. 37–55.

[10] Benthem, J. van: Essays in Logical Semantics. D. Reidel (1986)

[11] Benthem, J. van: Language in Action. Categories, Lambdas and Dynamic
Logic. North-Holland (1991)

[12] Benthem, J. van, Meulen. A. ter (eds.): Handbook of Logic and Language.
Elsevier, The MIT Press (1997)

[13] Bocheński, J.: On the syntactical categories. New Scholasticism 23, 257–
280 (1949)

[14] Buszkowski, W.: Some decision problems in the theory of syntactic cate-
gories. Zeitschrift f. mathematische Logik und Grundlagen der Math. 28,
539–548 (1982)

[15] Buszkowski, W.: Logiczne podstawy gramatyk kategorialnych
Ajdukiewicza-Lambeka (Logical foundations of Ajdukiewicz-Lambek
categorial grammars). Państwowe Wydawnictwo Naukowe (1989)

[16] Buszkowski, W.: Extending Lambek Grammars to Basic Categorial Gram-
mars. Journal of Logic, Language, and Information 5, 279–295 (1996)

[17] Buszkowski, W.: The Ajdukiewicz calculus, Polish notation and Hilbert-
style proofs. In: Woleński, J. (ed.), The Lvov-Warsaw School and Contem-
porary Philosophy, pp. 241–252 (1998)

24

[18] Buszkowski, W.: Lambek grammars based on pregroups. In: Logical As-
pects of Computational Linguistics. LNCS 2099, pp. 95–109. Springer
(2001)

[19] Buszkowski, W.: Syntactic Categories and Types: Ajdukiewicz and Modern
Categorial Grammars. In: Brożek, A., et al. (eds.) Tradition of the Lvov-
Warsaw School: Ideas and Continuations, pp. 35–71. Brill - Rodopi (2016)

[20] Buszkowski, W., Farulewski, M.: Nonassociative Lambek Calculus with
Additives and Context-Free Languages. In: Languages: From Formal to
Natural. LNCS 5533, pp. 45–58. Springer (2008)

[21] Buszkowski, W., Marciszewski, W., Benthem, J. van (eds.): Categorial
Grammar. J. Benjamins (1988)

[22] Clark, A.: A learnable representation of syntax using residuated lattices.
In: Formal Grammar. LNCS 5591, pp. 183–198. Springer (2011)

[23] Curry, H.B.: Some logical aspects of grammatical structure. In: [32], pp.
56–68

[24] Dekhtyar, M., Dikovsky, A., Karlov, B.: Categorial dependency grammars.
Theoretical Computer Science 579, 33–63 (2015)

[25] Došen, K.: A brief survey of frames for the Lambek calculus. Zeitschrift f.
mathematische Logik und Grundlagen der Math. 38, 179–187 (1992)

[26] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An
Algebraic Glimpse at Substructural Logics. Elsevier (2007)

[27] Geach, P.T.: A program for syntax. Synthese 22, 3–17 (1971)

[28] Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)

[29] Groote, Ph. de: Towards abstract categorial grammars. In: Proc. 39th
Annual Meeting and 10th Conference of the European Chapter of ACL.
Association of Computational Linguistics, pp. 148–155 (2001)

[30] Groote, Ph. de, Lamarche, F.: Classical Non-Associative Lambek Calculus.
Studia Logica 71, 355–388 (2002)

[31] Husserl, E.: Logische Untersuchungen (1900–1901)

[32] Jakobson, R. (ed.): Structure of Language and Its Mathematical Aspects.
Proc. Symposium in Applied Mathematics. American Mathematical Soci-
ety (1961)

[33] Kaminski, M., Francez, N.: Relational semantics of the Lambek calculus
extended with classical propositional logic. Studia Logica 102, 479–497
(2014)

25

[34] Kaminski, M., Francez, N.: The Lambek Calculus Extended with Intuition-
istic Propositional Logic. Studia Logica 104, 1051–1082 (2016)

[35] Kanazawa, M.: The Lambek Calculus Enriched with Additional Connec-
tives. Journal of Logic, Language, and Information 1, 141–171 (1992)

[36] Kandulski, M.: The non-associative Lambek calculus. In: [21], pp. 141–151

[37] Kandulski, M.: The equivalence of nonassociative Lambek categorial gram-
mars and context-free grammars. Zeitschrift f. mathematische Logik und
Grundlagen der Math. 34, 41–52 (1988)

[38] Kandulski, M.: Phrase-structure languages generated by categorial gram-
mars with product. Zeitschrift f. mathematische Logik und Grundlagen der
Math. 34, 373–383 (1988)

[39] Kurucz, A., Németi, I., Sain, I., Simon, A.: Decidable and Undecidable
Logics with a Binary Modality. Journal of Logic, Language, and Informa-
tion 4, 191–206 (1995)

[40] Lambek, J.: The mathematics of sentence structure. American Mathemat-
ical Monthly 65, 154–170 (1958)

[41] Lambek, J.: On the calculus of syntactic types. In: [32], pp. 166-178

[42] Lambek, J.: Deductive systems and categories I. Journal of Mathematical
Systems Theory 2, 287–318 (1968)

[43] Lambek, J.: Type grammars revisited. In: Logical Aspects of Computa-
tional Linguistics. LNCS 1582, pp. 1–27. Springer (1999)

[44] Lambek, J.: From Word to Sentence: a computational algebraic approach
to grammar. Polimetrica (2008)

[45] Leśniewski, S.: Grundzüge eines neuen System der Grundlagen der Math-
ematik. Fundamenta Mathematicae 14, 1–81 (1929)

[46] Montague, R.: English as a Formal Language. In: Thomason, R. (ed.)
Formal Philosophy: Selected Papers of Richard Montague, pp. 188-221.
Yale University Press (1974)

[47] Moortgat, M.: Categorial Investigations. Logical and Linguistic Aspects of
the Lambek Calculus. Foris (1988)

[48] Moortgat, M.: Multimodal linguistic inference. Journal of Logic, Language,
and Information 5, 349–385 (1996)

[49] Moortgat, M.: Categorial Type Logics. In: [12], pp. 93–177

[50] Moot, R., Retoré, C.: The Logic of Categorial Grammars: A Deductive
Account of Natural Language Syntax and Semantics. LNCS 6850. Springer
(2012)

26

[51] Morrill, G.: Type-Logical Grammar: Categorial Logic of Signs. Kluwer
(1994)

[52] Morrill, G.: Categorial Grammar: Logical Syntax, Semantics, and Process-
ing. Oxford University Press (2011)

[53] Nowaczyk, A.: Categorial languages and variable-binding operators. Studia
Logica 37, 27–39 (1978)

[54] Oehrle, R.T., Bach, E., Wheeler, D. (eds.): Categorial Grammars and Nat-
ural Language Structures. D. Reidel (1988)

[55] Pentus, M.: Lambek grammars are context-free. In: Proc. of 8th IEEE
Symposium on Logic in Computer Science, pp. 429–433 (1993)

[56] Pentus, M.: Models for the Lambek calculus. Annals of Pure and Applied
Logic 75, 179–213 (1995)

[57] Pentus, M.: Lambek calculus is NP-complete. Theoretical Computer Sci-
ence 357, 186–201 (2006)

[58] Shaumyan, S.: Applicational grammar as a semantic theory of natural
language. Edinburgh University Press (1977)

[59] Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism.
Elsevier (2006)

[60] Stabler, E.: Tupled pregroup grammars. In: Casadio, C., Lambek, J. (eds.)
Computational Algebraic Approaches to Natural Language, pp. 23–52.
Polimetrica (2008)

[61] Steedman, M.: Categorial Grammar. Lingua 90, 221–258 (1993)

[62] Suszko, R.: Syntactic Structure and Semantical Reference I. Studia Logica
8, 213–244 (1958)

[63] Suszko, R.: Syntactic Structure and Semantical Reference II. Studia Logica
9, 63–91 (1960)

[64] Ta lasiewicz, M.: Philosophy of Syntax. Foundational Topics. Trends in
Logic 29. Springer (2010)

[65] Uszkoreit, H.: Categorial unification grammar. In: Proc. 11th International
Conference on Computational Linguistics, pp. 187–194 (1986)

[66] Wansing, H.: The Logic of Information Structures. Ph.D. Thesis, University
of Amsterdam (1992)

[67] Wybraniec-Skardowska, U.: Theory of Language Syntax. Kluwer (1991)

[68] Yetter, D.N.: Quantales and (non-commutative) linear logic. Journal of
Symbolic Logic 55, 41–64 (1990)

27

[69] Zielonka, W.: Axiomatizability of Ajdukiewicz-Lambek calculus by means
of cancellation schemes. Zeitschrift f. mathematische Logik und Grundlagen
der Math. 27, 215–224 (1981)

[70] Zielonka, W.: Weak implicational logics related to the Lambek calculus -
Gentzen versus Hilbert formalisms. In: Towards mathematical philosophy.
Trends in Logic 28, pp. 201–212. Springer (2009)

28

